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Interface
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SPI Phases
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SPI Registers
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SPI Master Interface



SoC Bus (Slave) of SPI Master Interface
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DUT – SoC WB Bus Interface

• May use a typical at: https://opencores.org/projects/spi 

• And https://github.com/xfguo/spi/tree/master/rtl/verilog 

• And 
https://opencores.org/websvn/filedetails?repname=spi&path=%2Fspi%2F
trunk%2Fdoc%2Fspi.pdf 
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DUT – SoC SPI

• May use a typical at: https://opencores.org/projects/spi 

• And https://github.com/xfguo/spi/tree/master/rtl/verilog 
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Reg 
Name

Access 
Address

Bus Width Access Mode Description

Rx0 0x00 32 R Receive data register 0

Rx1 0x04 32 R Receive data register 1

Rx2 0x08 32 R Receive data register 2

Rx3 0x0C 32 R Receive data register 3

Tx0 0x00 32 W/R Transmit data register 0

Tx1 0x04 32 W/R Transmit data register 1

Tx2 0x08 32 W/R Transmit data register 2

Tx3 0x0C 32 W/R Transmit data register 3

CTRL 0x10 32 W/R Control and Status register

DIVIDER 0x14 32 W/R Clock dividing register

SS 0x18 32 W/R Slave chip select register

https://opencores.org/projects/spi
https://github.com/xfguo/spi/tree/master/rtl/verilog


32-bit Receive Data Reg

• Reset Value: 0x00000000
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32-bit Transmit Data Reg

• Reset Value: 0x00000000
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Configuration Note

• We use Receive data register 0 that holds the value of data received from 
the last transfer.

• CTRL register holds the data word length field:

– E.g., if use CTRL [9:3] (… 00 0000 1000) that is set to 0x10, 

• Then, bits Rx[15:0] (16 low bits) can hold 16-bit received data.

– If CTRL[9:3] is set to 0x08, bit RxL[7:0] holds the received data

• We use Transmit data register 0 that holds the value of data received from 
the last transfer.

• CTRL register holds the data word length field:

– E.g., if use CTRL [9:3] (… 00 0000 1000) that is set to 0x10, 

• Then, bits Tx[15:0] (16 low bits) can hold 16-bit received data.

– if CTRL[9:3] is set
to 0x08, the bit Tx0[7:0] will be transmitted in next transfer
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Control and Status register [CTRL]

• Reset Value: 0x00000000
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Configuration Note (2)

• Automatic SS (ASS) bit

– When the automatic SS bit (ASS) is set, the o_ss signal is generated 
automatically.

– Data transfer is started by setting CTRL[GO_BSY], 

• the slave select (SS) signal which is selected in SS register 

– is asserted by the SPI module

–  and is de-asserted after the transfer is fnished. 

– If ASS bit is cleared, then

•  the slave select (SS) signals are asserted and de-asserted 

• by writing and clearing the bits in SS register.
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Configuration Note (3)

IE
If this bit is set, the interrupt output is set active after a transfer is 
finished. 

• The Interrupt signal is deasserted after a Read or Write to any register. 

LSB
If this bit is set, the LSB is sent first on the line (bit TxL[0]), and the first bit 
received from the line will be put in the LSB position in the Rx register (bit 
RxL[0]). 

• If this bit is cleared, the MSB is transmitted/received first (which bit in 
Tx/Rx register that is depends on the CHAR_LEN field in the CTRL register). 
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Configuration Note (4)

Tx_NEG
If this bit is set, the mosi signal is changed on the falling edge of a sclk 
clock signal, or otherwise the mosi signal is changed on the rising edge of 
sclk.

Rx_NEG
If this bit is set, the miso signal is latched on the falling edge of a sclk clock 
signal, or otherwise the miso signal is latched on the rising edge of sclk.

GO_BSY
Writing 1 to this bit starts the transfer. 

• This bit remains set during the transfer and is automatically cleared after 
the transfer finished. 

• Writing 0 to this bit has no effect. 
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Configuration Note (5)

NOTE: 

• All registers, including the CTRL register, should be set before writing 1 to 
the GO_BSY bit in the CTRL register. 

• The configuration in the CTRL register must be changed with the GO_BSY 
bit cleared, i.e. two Writes to the CTRL register must be executed when 
changing the configuration and performing the next transfer, firstly with 
the GO_BSY bit cleared and secondly with GO_BSY bit set to start the 
transfer.

• When a transfer is in progress, writing to any register of the SPI Master 
core has no effect. 
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Configuration Note (6)

• CHAR_LEN
This field specifies how many bits are transmitted in one transfer. 

• Up to 64 bits can be transmitted.
CHAR_LEN = 0x01 … 1 bit
CHAR_LEN = 0x02 … 2 bits
…
CHAR_LEN = 0x7f … 127 bits
CHAR_LEN = 0x00 … 128 bits 
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Configuration Note (6bis)
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Clk dividing register [DIVIDER] 

• Reset Value: 0x0000ffff

• The value in this field is the frequency divider of the system clock i_wb_clk 
to generate the serial clock on the output o_sclk. 

• The desired frequency is obtained according to the following equation:
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SS Reg
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Configuration Note (7)

• SS Register 

– When CTRL[ASS] bit is cleared, writing 0x1 (0001) to any of the bit 
locations of this feld sets the proper o_ss line to an active state and 
writing 0x0 sets the line back to the inactive state.

– When CTRL [ASS] bit is set, writing 1 to any bit location of this feld will 
select appropriate o_ss line to be automatically driven to an active 
state for the duration of the transfer, and will be driven to an inactive 
state for the rest of the time.
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BFM

• Bus functional model (BFM) is a model of physical interfaces of the DUT. 

• It ppresents all the bus level scenario that DUT can experience on the 
attached bus. 

• BFMs 

1. on one side provide the logical interface for the high level 
transactions interface to test bench components 

2. and on another side connect to the physical interface of the DUT.
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BFM (2)

• Bus Functional Model (BFM) simulates transactions/sequence items of a 
bus, like READ and WRITE, 

– reducing the overhead of a testbench of taking care of the timing 
analysis for the same. 

• There are a lot more interpretations of a BFM, 

– BFMs typically reduce the job of a testbench by making it more data 
focused.
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UVM Testbench Architecture (Cookbook)
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Implementation
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May not needed ‘cause we can use test with reset phase
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External Note

• TASK:

– Write a BFM class used for transactions at SoC AMBA bus.

– Typical:

• AXI Bus

– ab_bfm.svh 

– or axi_bfm.svh

– Specifications:

• https://kolegite.com/EE_library/datasheets_and_manuals/FPGA/A
MBA/IHI0022H_c_amba_axi_protocol_spec.pdf (2021)

– Overview:

• https://www.cis.upenn.edu/~cis5710/current/slides/13_axi.pdf 
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NOTE for v5
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Note
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Backup Slide
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Thank You
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