
SPI Bus (Serial Peripheral Interface Bus)
SoC – SPI (for slow PCs)

Tuan Nguyen-viet

111/21/2024

Processor-SPI Interaction

211/21/2024

SPI Master / Slave

3

sclk

mosi

miso

ss

Master
Interface

sclk

mosi

miso

ss

Slave
Interface

11/21/2024

DUT – SoC SPI

11/21/2024 4

DUT – SoC SPI

11/21/2024 5

DUT – SoC SPI

11/21/2024 6

DUT – SoC SPI

11/21/2024 7

DUT – SoC SPI

11/21/2024 8

Interface

11/21/2024 9

SPI Phases

11/21/2024 10

Configuration Phase

Run Phase

SoC BFM/Interface/DUT

11/21/2024 11

SoC BFM/Interface/DUT

11/21/2024 12

11/21/2024 13

11/21/2024 14

11/21/2024 15

SPI Registers

11/21/2024 16

11/21/2024 17

11/21/2024 18

11/21/2024 19

SPI Master Interface

SoC Bus (Slave) of SPI Master Interface

11/21/2024 20

wb_cyc_i

wb_stb_i

wb_we_i

[4:0] wb_addr_i

[31:0] wb_data_i

[3:0] wb_sel_i

wb_stall_o

wb_ack_o

[31:0] wb_data_o

wb_err_o

wb_clk_i

wb_rst_i

wb_int_o

[31:0]

[4:0]

DUT – SoC WB Bus Interface

• May use a typical at: https://opencores.org/projects/spi

• And https://github.com/xfguo/spi/tree/master/rtl/verilog

• And
https://opencores.org/websvn/filedetails?repname=spi&path=%2Fspi%2F
trunk%2Fdoc%2Fspi.pdf

11/21/2024 21

https://opencores.org/projects/spi
https://github.com/xfguo/spi/tree/master/rtl/verilog
https://opencores.org/websvn/filedetails?repname=spi&path=%2Fspi%2Ftrunk%2Fdoc%2Fspi.pdf
https://opencores.org/websvn/filedetails?repname=spi&path=%2Fspi%2Ftrunk%2Fdoc%2Fspi.pdf

DUT – SoC SPI

• May use a typical at: https://opencores.org/projects/spi

• And https://github.com/xfguo/spi/tree/master/rtl/verilog
11/21/2024 22

Reg
Name

Access
Address

Bus Width Access Mode Description

Rx0 0x00 32 R Receive data register 0

Rx1 0x04 32 R Receive data register 1

Rx2 0x08 32 R Receive data register 2

Rx3 0x0C 32 R Receive data register 3

Tx0 0x00 32 W/R Transmit data register 0

Tx1 0x04 32 W/R Transmit data register 1

Tx2 0x08 32 W/R Transmit data register 2

Tx3 0x0C 32 W/R Transmit data register 3

CTRL 0x10 32 W/R Control and Status register

DIVIDER 0x14 32 W/R Clock dividing register

SS 0x18 32 W/R Slave chip select register

https://opencores.org/projects/spi
https://github.com/xfguo/spi/tree/master/rtl/verilog

32-bit Receive Data Reg

• Reset Value: 0x00000000

11/21/2024 23

32-bit Transmit Data Reg

• Reset Value: 0x00000000

11/21/2024 24

Configuration Note

• We use Receive data register 0 that holds the value of data received from
the last transfer.

• CTRL register holds the data word length field:

– E.g., if use CTRL [9:3] (… 00 0000 1000) that is set to 0x10,

• Then, bits Rx[15:0] (16 low bits) can hold 16-bit received data.

– If CTRL[9:3] is set to 0x08, bit RxL[7:0] holds the received data

• We use Transmit data register 0 that holds the value of data received from
the last transfer.

• CTRL register holds the data word length field:

– E.g., if use CTRL [9:3] (… 00 0000 1000) that is set to 0x10,

• Then, bits Tx[15:0] (16 low bits) can hold 16-bit received data.

– if CTRL[9:3] is set
to 0x08, the bit Tx0[7:0] will be transmitted in next transfer

11/21/2024 25

Control and Status register [CTRL]

• Reset Value: 0x00000000

11/21/2024 26

Configuration Note (2)

• Automatic SS (ASS) bit

– When the automatic SS bit (ASS) is set, the o_ss signal is generated
automatically.

– Data transfer is started by setting CTRL[GO_BSY],

• the slave select (SS) signal which is selected in SS register

– is asserted by the SPI module

– and is de-asserted after the transfer is fnished.

– If ASS bit is cleared, then

• the slave select (SS) signals are asserted and de-asserted

• by writing and clearing the bits in SS register.

11/21/2024 27

Configuration Note (3)

IE
If this bit is set, the interrupt output is set active after a transfer is
finished.

• The Interrupt signal is deasserted after a Read or Write to any register.

LSB
If this bit is set, the LSB is sent first on the line (bit TxL[0]), and the first bit
received from the line will be put in the LSB position in the Rx register (bit
RxL[0]).

• If this bit is cleared, the MSB is transmitted/received first (which bit in
Tx/Rx register that is depends on the CHAR_LEN field in the CTRL register).

11/21/2024 28

Configuration Note (4)

Tx_NEG
If this bit is set, the mosi signal is changed on the falling edge of a sclk
clock signal, or otherwise the mosi signal is changed on the rising edge of
sclk.

Rx_NEG
If this bit is set, the miso signal is latched on the falling edge of a sclk clock
signal, or otherwise the miso signal is latched on the rising edge of sclk.

GO_BSY
Writing 1 to this bit starts the transfer.

• This bit remains set during the transfer and is automatically cleared after
the transfer finished.

• Writing 0 to this bit has no effect.

11/21/2024 29

Configuration Note (5)

NOTE:

• All registers, including the CTRL register, should be set before writing 1 to
the GO_BSY bit in the CTRL register.

• The configuration in the CTRL register must be changed with the GO_BSY
bit cleared, i.e. two Writes to the CTRL register must be executed when
changing the configuration and performing the next transfer, firstly with
the GO_BSY bit cleared and secondly with GO_BSY bit set to start the
transfer.

• When a transfer is in progress, writing to any register of the SPI Master
core has no effect.

11/21/2024 30

Configuration Note (6)

• CHAR_LEN
This field specifies how many bits are transmitted in one transfer.

• Up to 64 bits can be transmitted.
CHAR_LEN = 0x01 … 1 bit
CHAR_LEN = 0x02 … 2 bits
…
CHAR_LEN = 0x7f … 127 bits
CHAR_LEN = 0x00 … 128 bits

11/21/2024 31

Configuration Note (6bis)

11/21/2024 32

Clk dividing register [DIVIDER]

• Reset Value: 0x0000ffff

• The value in this field is the frequency divider of the system clock i_wb_clk
to generate the serial clock on the output o_sclk.

• The desired frequency is obtained according to the following equation:

11/21/2024 33

SS Reg

11/21/2024 34

Configuration Note (7)

• SS Register

– When CTRL[ASS] bit is cleared, writing 0x1 (0001) to any of the bit
locations of this feld sets the proper o_ss line to an active state and
writing 0x0 sets the line back to the inactive state.

– When CTRL [ASS] bit is set, writing 1 to any bit location of this feld will
select appropriate o_ss line to be automatically driven to an active
state for the duration of the transfer, and will be driven to an inactive
state for the rest of the time.

11/21/2024 35

BFM

• Bus functional model (BFM) is a model of physical interfaces of the DUT.

• It ppresents all the bus level scenario that DUT can experience on the
attached bus.

• BFMs

1. on one side provide the logical interface for the high level
transactions interface to test bench components

2. and on another side connect to the physical interface of the DUT.

11/21/2024 36

BFM (2)

• Bus Functional Model (BFM) simulates transactions/sequence items of a
bus, like READ and WRITE,

– reducing the overhead of a testbench of taking care of the timing
analysis for the same.

• There are a lot more interpretations of a BFM,

– BFMs typically reduce the job of a testbench by making it more data
focused.

11/21/2024 37

UVM Testbench Architecture (Cookbook)

3811/21/2024

11/21/2024 39

11/21/2024 40

Implementation

11/21/2024 41

11/21/2024 42

11/21/2024 43

11/21/2024 44

11/21/2024 45

11/21/2024 46

11/21/2024 47

May not needed ‘cause we can use test with reset phase

11/21/2024 48

11/21/2024 49

11/21/2024 50

11/21/2024 51

External Note

• TASK:

– Write a BFM class used for transactions at SoC AMBA bus.

– Typical:

• AXI Bus

– ab_bfm.svh

– or axi_bfm.svh

– Specifications:

• https://kolegite.com/EE_library/datasheets_and_manuals/FPGA/A
MBA/IHI0022H_c_amba_axi_protocol_spec.pdf (2021)

– Overview:

• https://www.cis.upenn.edu/~cis5710/current/slides/13_axi.pdf

11/21/2024 52

https://kolegite.com/EE_library/datasheets_and_manuals/FPGA/AMBA/IHI0022H_c_amba_axi_protocol_spec.pdf
https://kolegite.com/EE_library/datasheets_and_manuals/FPGA/AMBA/IHI0022H_c_amba_axi_protocol_spec.pdf
https://www.cis.upenn.edu/~cis5710/current/slides/13_axi.pdf

11/21/2024 53

11/21/2024 54

NOTE for v5

11/21/2024 55

11/21/2024 56

11/21/2024 57

11/21/2024 58

11/21/2024 59

11/21/2024 60

11/21/2024 61

11/21/2024 62

11/21/2024 63

11/21/2024 64

11/21/2024 65

Note

11/21/2024 66

11/21/2024 67

11/21/2024 68

11/21/2024 69

11/21/2024 70

11/21/2024 71

11/21/2024 72

Backup Slide

11/21/2024 73

11/21/2024 74

11/21/2024 75

11/21/2024 76

11/21/2024 77

11/21/2024 78

Thank You

7911/21/2024

	Slide 1: SPI Bus (Serial Peripheral Interface Bus) SoC – SPI (for slow PCs)
	Slide 2: Processor-SPI Interaction
	Slide 3: SPI Master / Slave
	Slide 4: DUT – SoC SPI
	Slide 5: DUT – SoC SPI
	Slide 6: DUT – SoC SPI
	Slide 7: DUT – SoC SPI
	Slide 8: DUT – SoC SPI
	Slide 9: Interface
	Slide 10: SPI Phases
	Slide 11: SoC BFM/Interface/DUT
	Slide 12: SoC BFM/Interface/DUT
	Slide 13
	Slide 14
	Slide 15
	Slide 16: SPI Registers
	Slide 17
	Slide 18
	Slide 19
	Slide 20: SoC Bus (Slave) of SPI Master Interface
	Slide 21: DUT – SoC WB Bus Interface
	Slide 22: DUT – SoC SPI
	Slide 23: 32-bit Receive Data Reg
	Slide 24: 32-bit Transmit Data Reg
	Slide 25: Configuration Note
	Slide 26: Control and Status register [CTRL]
	Slide 27: Configuration Note (2)
	Slide 28: Configuration Note (3)
	Slide 29: Configuration Note (4)
	Slide 30: Configuration Note (5)
	Slide 31: Configuration Note (6)
	Slide 32: Configuration Note (6bis)
	Slide 33: Clk dividing register [DIVIDER]
	Slide 34: SS Reg
	Slide 35: Configuration Note (7)
	Slide 36: BFM
	Slide 37: BFM (2)
	Slide 38: UVM Testbench Architecture (Cookbook)
	Slide 39
	Slide 40
	Slide 41: Implementation
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: External Note
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Backup Slide
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Thank You

