True DPRAM - UVM Testbench
For whom can know how to program

Tuan Nguyen-viet

Simple Protocol/Interface

Single driving agent I

e Simple protocol/interface

— Just one sequencer sending the stimulus to the driver.

testl _

— Top-level test will use this sequencer to process the env \
sequences.

— May not need a virtual sequence /a virtual sequencer.

NO virtual
sequencer
required

REF: Using UVM Virtual Sequencers & Virtual Sequences, by Clifford E. Cummings and Janick Bergeron

Two or More Interfaces/Protocols

DUT is having 2 different interface ports,

— There would be 2 Agents serving each interface port
inside the UVM Testbench.

Virtual Sequence will co-ordinate and synchronize the
Transactions (sequence items)

— for the 2 Agents to generate the simulation.

Virtual Sequence acts like a Controller of the simulation
data being generated for the DUT.

From top-level test,
— need a way to control two sequencers.
=>» using a virtual sequencer and virtual sequences.

vsaqumfcar
busl sqrpsqgrl
sgt sqr2

Two or More Interfaces/Protocols (2)

e |n SoC: different modules that interact with different protocols.

— need different drivers to drive corresponding interfaces.
— keep separate agents to handle the different protocols.
— execute sequences on corresponding sequencers.

e multiple cores in SoC.

— multiple cores present in SoC that can
* handle different operations on input provided
» and respond to the device/chip differently.
— =» different sequence execution becomes important on different sequencers.

* |tis recommended to use a virtual sequencer/sequence
1. if we have multiple agents
2. and stimulus coordination is required.

SFIFO

input_data
—>Quevelpll
compare
7 /
input_data ——/p o Output_data
wr_clk P 4— rd_clk
wr_en —P <€¢—— rd_en
full €+—— —» empty

reset

UVM - Simple Architecture w/ Single Agent

Single driving agent

NO virtual
sequencer
required

Testbench Top

Test

Environment

Agent

v 1
DUT

U

Scoreboard
Sequence items
% Sequence] Coverage
i / Collector
/
Y4
Sequencer 17
! £
Driver Monitor
\ A
A 7
\ Vs
N
Interface

UVM - Simple Architecture w/ Single Agent (2)

top

Tests start sequences on a sequencer | * testl S
Example: seq.start (e.agnt. sgr)

cover

tb scoreboard

Sets the m_sequencer
handle in the sequence

The sequence now has a handle to
the sequencer where it is running

REF: Understanding the UVM m_sequencer, p_sequencer, handles, and the ‘'uvm_declare_p_sequencer Macro, by Clifford E. Cummings

7

SFIFO UVM Testbench

Single driving agent I

class sfifo_test extends uvm test;
sfifo sequence f seq;
sfifo environment f env;
‘uvm compeonent utils(sfifo test)

1 function new(string name = "sfifo test", uvm component parent);
test = super.new(name, parent);
env \ endfuncticn
agnt
p virtual function weoid build phase (uvm phase phase);
super.build phase(phase);
IEE! f seq = sfifo sequence::type id::create("f seq", this);
f env = sfifo envirconment::type id::create("f env", this);
o endfunction
- virtual task run phase(uvm phase phase);
phase.raise objection(this);
f seq.start(f env.f agt.f seqr); €————
phase.drop cbjection(this);
4 phase.phase done.set drain time(this, 100);
endtask
NO virtual endclass
sequencer
required

DUT — True DPRAM

Port A Port B
wr_clk > < rd_clk ck —
din_a -+ <+— din_b din_a +> <— din_b
dout_a <~ —/+» dout_b dout_a </— DUT —/+ dout_b
addr a -+ «/— addr_b addr a -+ /— addr b
we_a —» — web we_a —» — we_b
sclr sclr

Sample: We will do a UVM Testbench for TDPRAM shown above.

UVM - Simple Architecture w/ Two Agents

testl =~

~ Test

(= (=

Environment
l vSeqr I

Agent 1

—

Seqr
—

Driver

Monitor

1

Agent 2

Monitor
2

10

UVM - Simple Architecture w/ Two Agents (Al and B2)

Testbench Top
Test
Environment
Agent 1 (active) > Coverage
1 Collector
Sequence /
T Sequence items /
oatuassensnnnaa? /
% : IIIIIIIIIIIIIIII > Scoreboard
'...Z ------------ D ¢ - vsequencersll /
vSequences Sé'qﬁéncér 1&2 , v A
11032 7
¢ ? Agent 2 -
Driver Monitor (passive) Monitor
1 2
ANY |

Port A* ® Port B /’ Port A

N\
A4

Port B

Interface

Port A %
D

U

‘T Port B
T

11

FIFO at Scoreboard

12

SV-Queue FIFO

env

Mon (producer)

Scbd (consumer)
temp_reg

Seq_item

(transaction)”

>| mm queue mm |-

>
]-compare
—————————— >Em

13

TLM Analysis FI

FO

env

producer

put port

consumer

@ C

Analysis FIFO

<> uvm_analysis_port #({seq_item)

O uvm_tlm_analysis_fifo #(seq_item)

uvm_tlm_analysis_fifo

www.vlsiverify.com

14

Producer (e.g. Monitor)

class producer extends uvm_component;

seq_item req;
uvm _analysis port #(seg item) a port;

“uvm_ component utils(producer)

function new{string name = “"producer”, uvm_component parent = null);
super.new(name, parent);
a port = new(™a port”, this);

endfunction

task run_phase(uvm phase phase);

super.run_phase(phase);

repeat(18) begin
req = seq_item::type id::create("req");
assert(req.randomize());
a_port.write({req);
“uvm_info(get name(), %sformatf("Send value = %Bh", req.value), UVM NONE);
#5;

end

endtask

endclass

REF: https://visiverify.com/uvm/tim/tlm-analysis-fifo/

15

Consumer (e.g. Scoreboard)

class consumer extends uvm component;
seg_item req;

uvm tlm analysis fifo #(seq item) tlm a fifo;
“uvm_component utils(consumer)

function new(string name = “"consumer”, uvm_component parent = null);
super.new{name, parent);
tlm a fifo = new{"tlm a fifo", this);

endfunction

task run_phase{uvm phase phase);

super.run_phase(phase);

repeat(18) begin
#13;
tim a fifo.get(req);
“uvm_info(get type name(), %sformatf("Received value = %Bh", reqg.value), UVM NOME);
end
endtask

endclass

Virtual Sequence and Virtual Sequencer

17

Virtual Sequence and Virtual Sequencer

A virtual sequence starts multiple sequences on different sequencers.

Virtual sequencer controls other sequencers
— and itis not attached to any driver.

A virtual sequence is usually executed on the virtual sequencer.

18

Why are the virtual_sequence and virtual_sequencer
named virtual?

System Verilog has virtual methods, virtual interfaces, and virtual classes.
— “virtual” keyword is common in all of them.
But, virtual_sequence and virtual_sequencer do not require any virtual keyword.

— UVM does not have uvm_virtual _sequence and uvm_virtual _sequencer as
base classes.

A virtual sequence is derived from uvm_sequence.
A virtual_sequencer is derived from uvm_sequencer as a base class.
Virtual sequencer controls other sequencers.

It is not attached to any driver and can not process any sequence_items too.
Hence, it is named virtual.

19

Backup Slide 1
DIFFERENCE BETWEEN LOGIC AND BIT IN SYSTEMVERILOG

20

Difference b/w logic and bit in SystemVerilog

In SystemVerilog, "logic" and "bit" are two different data types with distinct characteristics:

1. logic: The logic data type is a multi-valued logic type that can represent values beyond the
traditional binary 0 and 1.

— It can represent the following values: 0, 1, X (unknown), and Z (high-impedance).
— The logic data type is the most commonly used data type in SystemVerilog
e and is the recommended data type for general use.
2. bit: The bit data type is a binary data type that can only represent the values 0 and 1.
— Itis a more compact representation compared to logic,
e as it does not have the additional values of X and Z.
— The bit data type is typically used for Boolean or single-bit operations
* where the additional values provided by logic are not required.

REF: https://www.quora.com/What-is-the-difference-between-logic-and-bit-in-
SystemVerilogh:~:text=bit%20is%20a%202%2Dstate,1%2C%20x%2C%20and%20z.

Difference b/w logic and bit in SystemVerilog (2)

The main differences between logic and bit are:

1. Supported Values: logic can represent 0, 1, X, and Z, while bit can only represent 0 and 1.

2. Memory Usage: bit is more memory-efficient than logic
— because bit only requires a single bit of storage,
— whereas logic requires more memory to represent the additional values.

3. Functionality: logic is more versatile
— and can be used in a wider range of applications,
e while bit is better suited for simple Boolean operations.

* Ingeneral, you should use logic as the default data type in SystemVerilog
— unless you have a specific reason to use bit,

e such as when you need to optimize memory usage or perform simple Boolean
operations.

REF: https://www.quora.com/What-is-the-difference-between-logic-and-bit-in-
SystemVerilogh:~:text=bit%20is%20a%202%2Dstate,1%2C%20x%2C%20and%20z.

22

Backup Slide 2
MODPORTS IN SV

23

Modports in SV

 Modports are a part of an interface that helps define the direction of
signals.

* But we can also define the direction of signals within the interface,
— so what is the need for modports?

* We can see how modports help us organize signals in complex designs as
well as testbenches.

REF: https://www.theoctetinstitute.com/content/sv/modports/

24

What are modports?

 Modports can be considered as a sub-entity of interface which defines a
particular direction to the signals.

* In an interface, there can be many modports
— and all modports can define different directions to the signal.

Syntax:

modport <modport_name> (<direction> <signal_name [range]>, <direction> <signal_name [range]>, ...);
modport <name> (input <port_list>, output <port_list>);

modport TB (output a,b, en, input out, ack);
modport RTL (input clk, reset, a,b, en, output out, ack);

REF: https://www.theoctetinstitute.com/content/sv/modports/

25

Interface

interface mult if {(input logic clk, reset);
logic [7:0] a, b;
logic [15:8] out;
logic en;

logic ack;

modport TB {(output a,b, en, input out, ack);

modport RTL (input clk, reset, a,b, en, output out, ack);

DUT (.sv)

module multiplier(mult if inf);

alwaysi@{posedge inf.clk or posedge inf.reset) begin
if(inf.reset) begin
inf.out <= 8;
inf.ack <= 8;
end
else if(inf.en) begin
inf.out <= inf.a * inf.b;
inf.ack <= 1;
end
else inf.ack <= 8;
end

endmodule

REF: https://visiverify.com/system-verilog/systemverilog-modport/

26

Need for modports

An interface is an entity that helps connect testbenches to
e designs
e ordifferent modules of a design.

For example, let's consider the simple scenario of connecting a testbench to a design.
 Anyinputs in the design need to be driven by the testbench.
e So, the signals that are inputs for the design are outputs for the testbench.
* However, inside an interface,
— the same signal cannot take on two different directions.
— This is where modports become helpful.

 We can define two modports inside the interface.

— One will define the directions with respect to the design,
— and the other will define the directions with respect to the testbench.

27

Need for modports (2)

We can see that complex testbenches often have drivers and monitors.
— For a driver to drive signals, the direction would be output,

— but a monitor, as its name suggests, needs to monitor the signals and thus all
the signals will be inputs in this case.

This is another scenario where modports are helpful.

This is the main reason why we use logic as a data type for signals inside.
— If we used reg or wire,
e then it would be difficult to make it behave as both input and output
— without worrying about the driver load issue.

28

How to define port directions ?

intertace myBus (input clk);
logic [7:8] data;
logic enable;

: // From TestBench perspective, ‘data’ is input and "write’ 1is output
& modport TB (input data, clk, output enable);

// From DUT perspective, 'data’ 1is output and "enable’ 1is input
modport DUT (output data, input enable, clk);
endinterftace

i |

M D

REF: https://www.chipverify.com/systemverilog/systemverilog-interface

29

m_sequencer and p_sequencer — Difference

* One of the most confusing UVM stuff is about m_sequencer and p_sequencer and
the difference between the two.

— In reality, its just a game of polymorphism.

* Referring to some forum answer, m_sequencer is a generic sequencer pointer of
type uvm_sequencer_base.

— It will always exist for a uvm_sequence
e and is initialized when the sequence is started.

« The p_sequenceris a , created by registering the
sequence to a sequencer using the ‘'uvm_declare_p_sequencer macros.

— Being type specific,

* you will be able to access anything added to the sequencer (i.e. pointers
to other sequencers, etc.).

— p_sequencer will not exist if the 'uvm_declare _p_sequencer macros isn’t
used.

REF: https://asic4u.wordpress.com/2015/12/31/m sequencer-p segquencer- 30
difference/#:~:text=The%20p sequencer%20is%20a%20type,other%20sequencers%2C%20etc.).

Thank You

31

	True DPRAM – UVM Testbench For whom can know how to program
	Simple Protocol/Interface
	Two or More Interfaces/Protocols
	Two or More Interfaces/Protocols (2)
	SFIFO
	UVM - Simple Architecture w/ Single Agent
	UVM - Simple Architecture w/ Single Agent (2)
	SFIFO UVM Testbench
	DUT – True DPRAM
	UVM - Simple Architecture w/ Two Agents
	UVM - Simple Architecture w/ Two Agents (A1 and B2)
	FIFO at Scoreboard
	SV-Queue FIFO
	TLM Analysis FIFO
	Producer (e.g. Monitor)
	Consumer (e.g. Scoreboard)
	Virtual Sequence and Virtual Sequencer
	Virtual Sequence and Virtual Sequencer
	Why are the virtual_sequence and virtual_sequencer named virtual?
	difference between logic and bit in SystemVerilog
	Difference b/w logic and bit in SystemVerilog
	Difference b/w logic and bit in SystemVerilog (2)
	Modports in SV
	Modports in SV
	What are modports?
	Need for modports
	How to define port directions ?
	Thank You

