
True DPRAM – UVM Testbench
For whom can know how to program

Tuan Nguyen-viet

1

Simple Protocol/Interface

• Simple protocol/interface

– Just one sequencersequencer sending the stimulus to the driverdriver.

–– TopTop--level testlevel test will use this sequencersequencer to process the
sequencessequences.

– May not need a virtual sequence /a virtual sequencer.

2REF: Using UVM Virtual Sequencers & Virtual Sequences, by Clifford E. Cummings and Janick Bergeron

Two or More Interfaces/Protocols

• DUT is having 2 different interface interface ports,

– There would be 2 AgentsAgents serving each interface interface port
inside the UVM Testbench.

• Virtual Sequence will co-ordinate and synchronize the
TransactionsTransactions (sequence itemssequence items)

– for the 2 AgentsAgents to generate the simulation.– for the 2 AgentsAgents to generate the simulation.

• Virtual Sequence acts like a Controller of the simulation
data being generated for the DUT.

• From toptop--level testlevel test,

– need a way to control two sequencerssequencers.

•  using a virtual sequencer and virtual sequences.

3

Two or More Interfaces/Protocols (2)

• In SoC: different modules that interact with different protocols.

– need different driversdrivers to drive corresponding interfacesinterfaces.

– keep separate agentsagents to handle the different protocols.

– execute sequencessequences on corresponding sequencerssequencers.

• multiple cores in SoC.

– multiple cores present in SoC that can – multiple cores present in SoC that can

•• handlehandle different operations on inputon input provided

• and respond torespond to the device/chip differently.

–  different sequencesequence execution becomes important on different sequencerssequencers.

• It is recommended to use a virtual sequencer/sequence

1. if we have multiple agentsagents

2. and stimulus coordination is required.

4

SFIFO

compare

input_data
Queue[$]

output_dataoutput_data

5

UVM - Simple Architecture w/ Single Agent

Sequencer

ScoreboardAgent

Environment

Test

Testbench Top

Sequence items
Coverage
Collector

Sequence

6
DUT

Interface

Driver Monitor

Sequencer

UVM - Simple Architecture w/ Single Agent (2)

7

REF: Understanding the UVM m_sequencer, p_sequencer, handles, and the `uvm_declare_p_sequencer Macro, by Clifford E. Cummings

SFIFO UVM Testbench

8

DUT – True DPRAM

din_a

dout_b

wr_clk rd_clk

dout_a

din_b din_a

dout_b

clk

dout_a

din_b

DUT

Port A Port B

9

addr_a

we_a we_b

sclr

addr_b

Sample: We will do a UVM Testbench for TDPRAM shown above.

addr_a

we_a we_b

sclr

addr_b

UVM - Simple Architecture w/ Two Agents
Test

Environment

Agent 1

Seqr

vSeqr

SeqvSeq

10

Driver

Monitor
1

Monitor
2

Agent 2

UVM - Simple Architecture w/ Two Agents (A1 and B2)

Sequencer

Scoreboard

Agent 1 (active)

Environment

Test

Testbench Top

Sequence items

Coverage
CollectorSequence

1

2

vSequences
1 & 2

vSequencers
1 & 2

11
DUT

Interface

Driver Monitor
1

Sequencer
1 2

Monitor
2

Agent 2
(passive)

vSequences
1 & 2

1 & 2

Port A Port B Port A Port B

Port A Port B

FIFO at Scoreboard

12

SV-Queue FIFO

env

Mon (producer) Scbd (consumer)

queue

temp_reg
Seq_item

(transaction) compare

13

TLM Analysis FIFO

14

Producer (e.g. Monitor)

15REF: https://vlsiverify.com/uvm/tlm/tlm-analysis-fifo/

Consumer (e.g. Scoreboard)

16

Virtual Sequence and Virtual Sequencer

17

Virtual Sequence and Virtual Sequencer

• A virtual sequence starts multiple sequencessequences on different sequencerssequencers.

• Virtual sequencer controls other sequencerssequencers

– and it is not attached to any driverdriver.

• A virtual sequence is usually executed on the virtual sequencer. • A virtual sequence is usually executed on the virtual sequencer.

18

Why are the virtual_sequence and virtual_sequencer
named virtual?

• System Verilog has virtual methodsvirtual methods, virtual interfacesvirtual interfaces, and virtual classesvirtual classes.

– “virtualvirtual” keyword is common in all of them.

• But, virtual_sequence and virtual_sequencer do not require any virtualvirtual keyword.

– UVM does not have uvm_virtual_sequence and uvm_virtual_sequencer as
base classes.

• A virtual sequence is derived from uvm_sequenceuvm_sequence.

• A virtual_sequencer is derived from uvm_sequenceruvm_sequencer as a base class.

• Virtual sequencer controls other sequencerssequencers.

• It is not attached to any driverdriver and can not process any sequence_itemssequence_items too.

• Hence, it is named virtual.

19

DIFFERENCE BETWEEN LOGIC AND BIT IN SYSTEMVERILOG

Backup Slide 1

20

Difference b/w logic and bit in SystemVerilog

In SystemVerilog, "logic" and "bit" are two different data types with distinct characteristics:

1. logic: The logic data type is a multi-valued logic type that can represent values beyond the
traditional binary 0 and 1.

– It can represent the following values: 0, 1, X (unknown), and Z (high-impedance).

– The logic data type is the most commonly usedthe most commonly used data type in SystemVerilog

• and is the recommended data typerecommended data type for general use.• and is the recommended data typerecommended data type for general use.

2. bit: The bit data type is a binary data type that can only represent the values 0 and 1.

– It is a more compact representation compared to logic,

• as it does not have the additional values of X and Z.

– The bit data type is typically used for Boolean or single-bit operations

• where the additional values provided by logic are not required.

21
REF: https://www.quora.com/What-is-the-difference-between-logic-and-bit-in-
SystemVerilog#:~:text=bit%20is%20a%202%2Dstate,1%2C%20x%2C%20and%20z.

Difference b/w logic and bit in SystemVerilog (2)

The main differences between logic and bit are:

1. Supported Values: logic can represent 0, 1, X, and Z, while bit can only represent 0 and 1.

2. Memory Usage: bit is more memorymemory--efficientefficient than logic

– because bit only requires a single bit of storage,

– whereas logic requires more memory to represent the additional values.

3. Functionality: logic is more versatile

– and can be used in a wider range of applications,

• while bit is better suited for simple Boolean operations.

• In general, you should use logic as the default data typedefault data type in SystemVerilog

– unless you have a specific reason to use bit,

• such as when you need to optimize memory usageneed to optimize memory usage or perform simple Boolean
operations.

22
REF: https://www.quora.com/What-is-the-difference-between-logic-and-bit-in-
SystemVerilog#:~:text=bit%20is%20a%202%2Dstate,1%2C%20x%2C%20and%20z.

MODPORTS IN SV

Backup Slide 2

23

Modports in SV

•• ModportsModports are a part of an interfaceinterface that helps define the direction of
signals.

• But we can also define the direction of signals within the interfaceinterface,

– so what is the need for modportsmodports?

• We can see how modportsmodports help us organize signals in complex designscomplex designs as
well as testbenchestestbenches.well as testbenchestestbenches.

24REF: https://www.theoctetinstitute.com/content/sv/modports/

What are modports?

•• ModportsModports can be considered as a sub-entity of interfaceinterface which defines a
particular direction to the signals.

• In an interfaceinterface, there can be many modportsmodports

– and all modportsmodports can define different directions to the signal.

Syntax:Syntax:
modport <modport_name> (<direction> <signal_name [range]>, <direction> <signal_name [range]>, ...);

modport <name> (input <port_list>, output <port_list>);

modport TB (output a,b, en, input out, ack);

modport RTL (input clk, reset, a,b, en, output out, ack);

25REF: https://www.theoctetinstitute.com/content/sv/modports/

Interface

DUT (.sv)

26REF: https://vlsiverify.com/system-verilog/systemverilog-modport/

Need for modports

An interfaceinterface is an entity that helps connect testbenches to

• designs

• or different modules of a design.

For example, let's consider the simple scenario of connecting a testbench to a design.

• Any inputs in the design need to be driven by the testbench.

• So, the signals that are inputs for the designinputs for the design are outputs for the testbenchoutputs for the testbench.

• However, inside an interfaceinterface, • However, inside an interfaceinterface,

– the same signal cannot take on two different directions.

– This is where modportsmodports become helpful.

• We can define two modportsmodports inside the interfaceinterface.

– One will define the directionsdirections with respect to the designthe design,

– and the other will define the directionsdirections with respect to the testbenchthe testbench.

27

Need for modports (2)

• We can see that complex testbenches often have driversdrivers and monitorsmonitors.

– For a driver to drive signals, the direction would be outputoutput,

– but a monitor, as its name suggests, needs to monitor the signals and thus all
the signals will be inputsinputs in this case.

• This is another scenario where modportsmodports are helpful.

• This is the main reason why we use logic as a data type for signals inside. • This is the main reason why we use logic as a data type for signals inside.

– If we used reg or wire,

• then it would be difficult to make it behave as both input and output

– without worrying about the driverdriver load issue.

28

How to define port directions ?

29

REF: https://www.chipverify.com/systemverilog/systemverilog-interface

m_sequencer and p_sequencer – Difference

• One of the most confusing UVM stuffthe most confusing UVM stuff is about m_sequencerm_sequencer and p_sequencerp_sequencer and
the difference between the two.

– In reality, its just a game of polymorphism.

• Referring to some forum answer, m_sequencer is a generic sequencer pointer of
type uvm_sequencer_baseuvm_sequencer_base.

– It will always exist for a uvm_sequenceuvm_sequence– It will always exist for a uvm_sequenceuvm_sequence

• and is initialized when the sequence is started.

• The p_sequencerp_sequencer is a type specific sequencer pointer, created by registering the
sequence to a sequencersequencer using the `uvm_declare_p_sequencer macros.

– Being type specific,

• you will be able to access anything added to the sequencersequencer (i.e. pointers
to other sequencerssequencers, etc.).

–– p_sequencerp_sequencer will not exist if the `uvm_declare_p_sequencer macros isn’t
used.

30REF: https://asic4u.wordpress.com/2015/12/31/m_sequencer-p_sequencer-
difference/#:~:text=The%20p_sequencer%20is%20a%20type,other%20sequencers%2C%20etc.).

Thank YouThank You

31

	True DPRAM – UVM Testbench For whom can know how to program
	Simple Protocol/Interface
	Two or More Interfaces/Protocols
	Two or More Interfaces/Protocols (2)
	SFIFO
	UVM - Simple Architecture w/ Single Agent
	UVM - Simple Architecture w/ Single Agent (2)
	SFIFO UVM Testbench
	DUT – True DPRAM
	UVM - Simple Architecture w/ Two Agents
	UVM - Simple Architecture w/ Two Agents (A1 and B2)
	FIFO at Scoreboard
	SV-Queue FIFO
	TLM Analysis FIFO
	Producer (e.g. Monitor)
	Consumer (e.g. Scoreboard)
	Virtual Sequence and Virtual Sequencer
	Virtual Sequence and Virtual Sequencer
	Why are the virtual_sequence and virtual_sequencer named virtual?
	difference between logic and bit in SystemVerilog
	Difference b/w logic and bit in SystemVerilog
	Difference b/w logic and bit in SystemVerilog (2)
	Modports in SV
	Modports in SV
	What are modports?
	Need for modports
	How to define port directions ?
	Thank You

