
UVM (Universal Verification Methodology)
For whom can know how to program

Tuan Nguyen-viet

1



UVM Testbench Basic

Sequence Item

Testbench Top Test

Environment Agent

InterfaceDUT

1 2 3 4

Sequence

5 6 7 8

2

ScoreboardSequencer Driver Monitor

CoverageConfiguration

13

Packages

9 10 11 12



Scoreboard

Agent

Environment
Test

Sequence items

Coverage

Sequence Class-based

Fixed-partVariable-part

module

module

interface

classes

classes

3
DUT

Interface

Driver Monitor

Sequencer

Testbench Top

Structural
modulemodule

interface



UVM Testbench Architecture (Cookbook)

4



Coverage Collectors (Cookbook)

imp_port
(analysis_export)

5

imp_port
(analysis_export)

Analysis_port (item_got_port)



Coverage Collectors (2)

• The uvm_monitoruvm_monitor is responsible for passively observing the pinpin--level level 
behaviorbehavior on the DUTDUT interfaceinterface, 

– converting it into sequence itemssequence items

– and providing those sequence itemssequence items to analysis components 

1. in the AgentAgent

2. or elsewhere in the testbench2. or elsewhere in the testbench

– such as 

»» coverage collectorscoverage collectors

» or scoreboardsscoreboards.

6



Coverage Collectors (3)

• Coverage information is paramount to answer the questions 

– "Are we done testing yet?" 

– or "Have we done enough testing yet?”

• Coverage collectors are analysis portanalysis port subscriberssubscribers that sample 

– observed transactionstransactions

– and activity into SystemVerilog functional coveragefunctional coverage groupsgroups.

• The coverage data collected from each test 

– is stored into a shared coverage databaseshared coverage database

• used to determine overall verification progress.

7



Transaction / Sequence Item: Functional Coverage

Scoreboard

Agent

Environment
Test

Sequence items

Coverage

Sequence

imp_port
(analysis_export)

8
DUT

Interface

Driver Monitor

Sequencer

Testbench Top

seq_item_export

seq_item_port

Abstract transaction items
are converted to pin 

wiggles by Driver
(wr_en, rd_en, 
input_data,...)

Analysis_port (item_got_port)



Subscriber Class

• The uvm_subscriberuvm_subscriber class provides an analysis export (Analysis imp) that connects 
with the analysis portanalysis port. Subscribers are basically listeners of an analysis portanalysis port. 

• They subscribe to a broadcaster (i.e. monitormonitor’s analysis portanalysis port)

– and receive objects/broadcasted transactions whenever an item is 
broadcasted via the connected analysis portanalysis port. (see the figure below).

9



Subscriber Class (2)

• A uvm_componentuvm_component class does not have an built-in analysis portanalysis port, 

– while a uvm_subscriberuvm_subscriber is an extended version 

• with an analysis portanalysis port named analysis_export.

10REF: https://www.chipverify.com/uvm/uvm-subscriber



Coverage Class

• The uvm_subscriberuvm_subscriber is derived from uvm_componentuvm_component

– and adds up the analysis_export port in the class

• The uvm_subscriberuvm_subscriber class defines the write method

• Since uvm_subscriberuvm_subscriber has built-in analysis_export, it is generally used to 
implement a functional coverage monitor.implement a functional coverage monitor.

– The user-defined subscriber (sfifo_coverage.svh) is derived from 
uvm_subscriberuvm_subscriber.

• An agentagent has a TLM analysis portanalysis port for it's monitormonitor

– to share the data objectdata object, which is collected on the agentagent's interfaceinterface, 

• with other testbench components, e.g. user-defined coverage class:

11



Coverage Class (2)

 Summarily, for the use case, it is easier: 

1. to create a useruser--defined classdefined class (sfifo_coverage) inherited from uvm_subscriberuvm_subscriber
(extends from uvm_componentuvm_component)

2. and use the built-in analysis_exportanalysis_export implementation 

– to connect to the analysis portanalysis port of the agentagent at the environment (see – to connect to the analysis portanalysis port of the agentagent at the environment (see 
sfifo_environment.svh)

• Implementation:

– See the file named sfifo_coverage.svh.

12



Functional Coverage (FC)

•• Functional CoverageFunctional Coverage checks the correctness of the design by collecting 
values (or sets of values) of design variables during the simulation. 

•  It is a user-written code that observes the execution of the test plan. 

– It ensures that a test did what was intended, 

• particularly with randomisationrandomisation. • particularly with randomisationrandomisation. 

– When the test plan has been executed, 

• testing can be declared as complete.

13



Code Coverage (CC)

•• Code CoverageCode Coverage is mainly described 

– as simulator (e.g. ModelsimModelsim/QuestasimQuestasim, etc.) collected metrics 

• on code that has been run. 

• While it identifies what has not been run, 

– it cannot identify the code 

•  that was not implemented as per the specification. 

• By nature, Code CoverageCode Coverage analyses 

– the structural correctness of the code, 

•  not the functional correctness.

14



Code Coverage and Functional Coverage

• Combining Code CoverageCode Coverage and Functional CoverageFunctional Coverage provides us with an 
overall set of testing metrics for the DUT.

•• Code CoverageCode Coverage can be used as a catch-all 

– to indicate whether something got missed in Functional CoverageFunctional Coverage.

• Therefore, we can safely say that:

Test DoneTest Done = 100% Code Coverage Code Coverage + 100% Functional CoverageFunctional Coverage

15



Functional Coverage and Assertion Coverage

• An assertion in Verilog/SystemVerilog/VHDL is a statement or condition that is 
checked during the simulation or formal verification of a digital circuit design.

• The main purpose of assertions is to validate the functionality and behavior of a 
digital circuit design.

• When a signal of the design is assertedasserted that means 

– it is active, 

– it is doing what its name says. 

• To assert a signal means to bring it to its activated state. We can use assertion to • To assert a signal means to bring it to its activated state. We can use assertion to 
describe the state of both active high or active low signals. 

– For example, 

• the signal RESET is assertedasserted when it is active, which is HIGH logic.

• the signal RESET_n is assertedasserted when it is active, which is LOW logic.

• Assertion level is the voltage level in a logic circuit that represents a logical "1". 

– Common level for High = +5v/1.2v/etc. (processprocess) and Low = 0v.

• Implementation:

– See file named sfifo_sequence.svh for assertion of signals

16



Functional Coverage Report

17



Code Coverage (simulator)
First compilecompile the design with cover optionscover options:

b – Collect branch statistics.

c – Collect condition statistics.

e – Collect expression statistics.

s – Collect statement statistics. Default.

t – Collect toggle statistics. 

• Cannot be used if ’x’ is specified.

x – Collect extended toggle statisticsx – Collect extended toggle statistics

• Cannot be used if ’t’ is specified(toggle coverage)

f – Collect FSM statistics.

1. Run vlog, for two examples:

vlog -cover bcs *.v

vlog -cover bcs work.tb_top

2. Start vsim with coverage switch, for two examples :

vsim -coverage test_design

vsim -coverage work.tb_top

18



Functional Coverage Report (2)

19



To improve UVM Assertion and Coverage skills

• Books

1. SystemVerilog Assertions and Functional Coverage by Ashok B. MehtaAshok B. Mehta

2. Coverage Cookbook by Mentor Graphics Verification Methodology TeamMentor Graphics Verification Methodology Team

• Need to practice and learn from different sources and examples

1. Online resources such as 

• blogs, 

• forums, • forums, 

• tutorials, 

• and documentation

2. Use sample codes such as those provided by 

• Mentor Graphics, 

• Cadence, 

• or Synopsys, 

•  to see how different test/scenarios and challenges are handled by UVM experts

20



BACKUP SLIDE

21



Transaction / Sequence Item: Scoreboard

Scoreboard

Agent

Environment
Test

Sequence items

Coverage

Sequence

imp_port
(item_got_export)

22
DUT

Interface

Driver Monitor

Sequencer

Testbench Top

seq_item_export

seq_item_port

Abstract transaction items
are converted to pin 

wiggles by Driver
(wr_en, rd_en, 
input_data,...)

Analysis_port (item_got_port)



Thank YouThank You

23


	UVM (Universal Verification Methodology) For whom can know how to program
	UVM Testbench Basic
	UVM Testbench Architecture (Cookbook)
	Coverage Collectors (2)
	Transaction / Sequence Item: Functional Coverage
	Subscriber Class (2)
	Coverage Class (2)
	Code Coverage (CC)
	Functional Coverage and Assertion Coverage
	Code Coverage (simulator)
	To improve UVM Assertion and Coverage skills
	Transaction / Sequence Item: Scoreboard
	



