UVM (Universal Verification Methodology)
For whom can know how to program

Tuan Nguyen-viet

UVM Testbench Basic

DUT Interface Testbench Top
1 2 3
Sequence Environment Agent
5 6 7
Sequencer Driver Monitor
9 10 11
Configuration Packages Coverage

13

Test

Sequence Item

8

Scoreboard

12

Variable-part Fixed-part

A A

’ \’ \ module

—_— module
Test -
Environment .
Scoreboard interface
Coverage classes
Agent T
|
] Sequence items |
% Sequence |- = = =|- - - l] : classes S— Class-based
|
Sequencer :
' |
4 !
Driver Monitor
N A
AJ 4
\ 2.
A/
¢ —
—
interface
Interface
v ¢ ™ Structural
module oUT module
Testbench Top I o 3

UVM Testbench Architecture (Cookbook)

4

Scoreboard

Test
T
Controller Coverage
/
f”
P
-’
Ll /
F 4
P4
Fy
F 4
rd
/
/
Driver
Stimulus BFM

/
{
{
/
j_k Driver
Proxy
i
[
I
!
I

Monitor
Proxy

DUT

Monitor
BFM

SV Classes
SV Interfaces
SV Modules

=== Tasks/Functions

<= Pin Wiggles

” <— Transactions
.
\\ Timed Domain
N Untimed Domalin
\
N
\
\
- \
esponder \\
Prox
Y :A—>c Slave
Responder i
BFM !;
1
Transactor ' Testbench
Layer Layer

Coverage Collectors (Cookbook)

Test

Env

Agent

& Analysis_pg

Sequencer

=]

Monitor

Y (analysis_expo

ort

{item_got_pog

-

Driver

DUT

Coverage Collectors (2)

 The uvm_monitor is responsible for passively observing the pin-level
behavior on the DUT interface,

— converting it into sequence items
— and providing those sequence items to analysis components
1. inthe Agent
2. orelsewhere in the
— such as
» coverage collectors
» or scoreboards.

Coverage Collectors (3)

e Coverage information is paramount to answer the questions
— "Are we done testing yet?"
— or "Have we done enough testing yet?”

* Coverage collectors are analysis port subscribers that sample
— observed transactions
— and activity into SystemVerilog functional coverage groups.

* The coverage data collected from each test
— is stored into a shared coverage database
* used to determine overall verification progress.

Transaction / Sequence Item: Functional Coverage

Test

rand bit wr _en;
rand bit rd en;

Environment
Scoreboard

Coverage

imp_porf
(analysis! expor]

swajl bas 4y

is| doft (item_got_port)

rand bit [7:0] input data;
bit full; Agent)
bit empty; T 4
bit [7:0] output data; | M
] Sequence items | 1
7’
Sequence | — - -—|-—-— I, -
ey =y
7
y 7
Sequencer I
/ -
seq_item_expprt ~- _:_ _--F
seq_item_poyt v_-- Analyis
Driver Monitor
Abstract transaction items AY N /ﬂ
are converted to pin =
wiggles by Driver f
(wr_en, rd_en,
input_data,...) Interface
DUT

Testbench Top

Subscriber Class

* The uvm_subscriber class provides an analysis export (Analysis imp) that connects
with the analysis port. Subscribers are basically listeners of an analysis port.

* They subscribe to a broadcaster (i.e. monitor’s analysis port)

— and receive objects/broadcasted transactions whenever an item is
broadcasted via the connected analysis port. (see the figure below).

TB top

Agent

Sequencer > Driver

pUT

Monitor -

Analysis port
Analysis im

Subscriber

M M U = = D = T =

www.vlsiverify.com

Subscriber Class (2)

A uvm_component class does not have an built-in analysis port,

— while a uvm_subscriber is an extended version

e with an analysis port named analysis_export.

typedaet uvm subscriber #(T) this type;

cuper.naw (name, parent);

endfunction

pure yirtual function void write (T, T);

spndclass

REF: https://www.chipverify.com/uvm/uvm-subscriber

analysis export = new (“analysis imp"

virtual class uvm subscriber #{type T=int| extends uvm component

uvm analycis imp #(T, this type) analysis axport:

function new (string name, uvm component parent);

this)

10

Coverage Class

The uvm_subscriber is derived from uvm_component
— and adds up the analysis_export port in the class

virtual class uvm_subacriber # (type T=int) extends uvm component;
uvm analysis imp #(T, this type) analysis export;

The uvm_subscriber class defines the write method

pure virtual function wvoid write(T t);

Since uvm_subscriber has built-in analysis_export, it is generally used to
implement a functional coverage monitor.

— The user-defined subscriber (sfifo_coverage.svh) is derived from
uvm_subscriber.

class sfifo coverage extends uvm subscriber $#(sfifo seq item);

An agent has a TLM analysis port for it's monitor
— to share the data object, which is collected on the agent's interface,

* with other testbench components, e.g. user-defined coverage class:

// Monitor behaves as a broadcaster.
f agt.f mon.item got port.connect(f cov.analysis export);

11

Coverage Class (2)

=>» Summarily, for the use case, it is easier:

1. to create a user-defined class (sfifo_coverage) inherited from uvm_subscriber
(extends from uvm_component)

2. and use the built-in analysis_export implementation

— to connect to the analysis port of the agent at the environment (see
sfifo_environment.svh)

* Implementation:
— See the file named sfifo_coverage.svh.

12

Functional Coverage (FC)

Functional Coverage checks the correctness of the design by collecting
values (or sets of values) of design variables during the simulation.

=>» It is a user-written code that observes the execution of the test plan.
— |t ensures that a test did what was intended,
e particularly with randomisation.
— When the test plan has been executed,
* testing can be declared as complete.

13

Code Coverage (CC)

Code Coverage is mainly described
— as simulator (e.g. Modelsim/Questasim, etc.) collected metrics
* on code that has been run.
While it identifies what has not been run,
— it cannot identify the code
e =» that was not implemented as per the specification.
By nature, Code Coverage analyses
— the structural correctness of the code,
» =» not the functional correctness.

14

Code Coverage and Functional Coverage

Combining Code Coverage and Functional Coverage provides us with an
overall set of testing metrics for the DUT.

Code Coverage can be used as a catch-all

— to indicate whether something got missed in Functional Coverage.

Therefore, we can safely say that:
Test Done = 100% Code Coverage + 100% Functional Coverage

15

Functional Coverage and Assertion Coverage

An assertion in Verilog/SystemVerilog/VHDL is a statement or condition that is
checked during the simulation or formal verification of a digital circuit design.

The main purpose of assertions is to validate the functionality and behavior of a
digital circuit design.

When a signal of the design is asserted that means
— it is active,
— itis doing what its name says.

To assert a signal means to bring it to its activated state. We can use assertion to
describe the state of both active high or active low signals.

— For example,
* the signal RESET is asserted when it is active, which is HIGH logic.
* thesignal RESET n is asserted when it is active, which is LOW logic.
Assertion level is the voltage level in a logic circuit that represents a logical "1".
— Common level for High = +5v/1.2v/etc. (process) and Low = Ov.
Implementation:
— See file named sfifo_sequence.svh for assertion of signals

16

c (@) File

E XG
Testplan | Design | DesUnits

--gtb top (no coverage)

- guvm_pkg (no coverage)
--gisfifo_agent pkg (no coverage)
- gisfifo_sequence_pkg

=- gsfifo_environment_pkg
--gsfifo_test pkg (no coverage)
tb_fop_sv_unit (no coverage)
- gquesta_uvm_pkg (no coverags

Functional Coverage Report

D:fQuestasim_projects/sfifo_uvm_de2 fcovhtmlreport/pages/_ frametop.htm

Questa Coverage Report

Number of tests run: 1
Passad: 1
|Warming: 0
|Error: |0
Fatal 0

List of tects included in report. .

List of global attributes included in report. ..

Coverage Summary by Structure:

sfifo_sequence pkg 100.00%
|sfifo_sequence 100.00%

:sﬁfo environment _ﬂ{g 100.00%
100.00%

|sfifo _coverage

Coverage Summary by Type:

Total Coverage: 100.00%] 100.00% |
Coverage Type Bins Hits Misses Weight % Hit Coverage
Covergroups 201 20 0l 1//100.00%| 100.00% |
Eﬁsser‘ti&ns _ :: 3] 3 [_Il?:: ;i_:lﬂﬂ.ﬂﬂ'?-f;f'lﬁﬁ.ﬁﬁ%'

Feport generated by Questa on Thursday 12 September 2024 04:23:44

17

Code Coverage (simulator)

First compile the design with cover options:
b — Collect branch statistics.
c — Collect condition statistics.
e — Collect expression statistics.
s — Collect statement statistics. Default.
t — Collect toggle statistics.
e Cannot be used if 'x’ is specified.
x — Collect extended toggle statistics
* Cannot be used if 't’ is specified(toggle coverage)
f — Collect FSM statistics.
1. Runvlog, for two examples:
vlog -cover bcs *.v
vlog -cover bcs work.tb_top
2. Start vsim with coverage switch, for two examples :
vsim -coverage test_design
vsim -coverage work.tb_top

18

Functional Coverage Report (2)

[T

Testplan DesUnits

=gt _top

- g@uvm_pkg (no coverage)

w- g sfifo_agent_pkg

- wsfifo_sequence_pkg

m- gsfifo_environment_pkg

w- wsfifo_test pkg

.- gltb top sv unit (no coverage)

‘- gquesta_uvm_pkg (no coveragg

Questa Coverage Report

‘Number of tests run: | 1
Passed: 1
Warning: 0
Error: 0
Fatal: 0

List of tests included 1n report. ..

List of global attributes included in report...

Coverage Summary by Structure: Coverage Summary by Type:

Design Seope «
top
{uf
dut
\sfifo seq_item
;éﬁfo sequencer
sfifo_driver
fsﬁfc; - monitor
sfifo_agent
;sﬁfc; sequence pkg
;sﬁfq _sequence

|sfifo_environment pkg

\sfifo_scoreboard

\sfifo_coverage

sfifo _environment ||

|sfifo_test pkg
\sfifo_test

| Covérag_e A

| 100.00%

- 100.00%
 100.00%
24.86%
1.69%

T 25.00%

62.73%

69.87%

| 58.33%

61.37%
6137%
79.84%
| 74.82%
79.16%
©70.00%
81.81%
81.81%

Total Coverage:

C;)V?er'ag_e.:l:)'pe::]}.insil.ﬂim ‘Misses

Covergroups ?_ﬁi 18|
Statements 219| -128 :
Branches || 126) 28|
Assertions 33

2]

91

o8|

0

Weight
| || 90.00%| 95.83% |

1
1
1
1

|| 48.09% 69.12%

58.44%|| 58.44%

[22.229-ﬁ'f.22.22°,-i: |

100.00% 100.00%

19

To improve UVM Assertion and Coverage skills

Books
1. SystemVerilog Assertions and Functional Coverage by Ashok B. Mehta

2. Coverage Cookbook by Mentor Graphics Verification Methodology Team
Need to practice and learn from different sources and examples

1. Online resources such as
* blogs,
e forums,
e tutorials,
e and documentation
2. Use sample codes such as those provided by
* Mentor Graphics,
* Cadence,

* or Synopsys,
=>» to see how different test/scenarios and challenges are handled by UVM experts

20

BACKUP SLIDE

21

Transaction / Sequence Item: Scoreboard

Test ;
Environment
Coverage
rand bit wr _en; Scoreboard
rand bit rd en; H
rand bit ["'?'I.] input data; Imww // o []
bit full; Agent (item_got_expoft) | L - AR
bit empty; | 17 %
bit [7:0] output data; | o ry 7
. p ®
O Sequence items | - =
Sequence | — - -—|-—-— I, - 3
'y =y g
R a \d
Sequencgf l _ - —M
0 [1 -
seq_item_expprt ~- _:_ _--F
seq_item_poft \ D Analydis| gogt (item_got_port)
Driver Monitor
Abstract transaction items AY N a4
are converted to pin = -
wiggles by Driver f
(wr_en, rd_en,
input_data,...) Interface
Testbench Top DUT

Thank You

23

	UVM (Universal Verification Methodology) For whom can know how to program
	UVM Testbench Basic
	UVM Testbench Architecture (Cookbook)
	Coverage Collectors (2)
	Transaction / Sequence Item: Functional Coverage
	Subscriber Class (2)
	Coverage Class (2)
	Code Coverage (CC)
	Functional Coverage and Assertion Coverage
	Code Coverage (simulator)
	To improve UVM Assertion and Coverage skills
	Transaction / Sequence Item: Scoreboard
	

