
UVM (Universal Verification Methodology)
For whom can know how to program

Tuan Nguyen-viet

1September 5, 2024



DUT and UVM Testbench – Basic

Sequence Item

Testbench Top Test

Environment Agent

InterfaceDUT

1 2 3 4

Sequence

5 6 7 8

2

ScoreboardSequencer Driver Monitor

CoverageConfiguration

13

Packages

9 10 11 12

September 5, 2024



Scoreboard

Agent

Environment
Test

Sequence items

Coverage

Sequence Class-based

Fixed-partVariable-part

module

module

interface

classes

classes

3
DUT

Interface

Driver Monitor

Sequencer

Testbench Top

Structural
modulemodule

interface

September 5, 2024



UVM Architecture Implementation

• 1. Interface

• 2. Testbench Top

• 3. UVM Components/Objects

– 1. Component/object factory registration using Utility macro (see APIAPI)

– 2. Adding factory constructor defaults (see prototype templateprototype template)

– 3. Component/object creation (note: build process is toptop--downdown), e.g.

– 4. Configuration database (see APIAPI)

4September 5, 2024



UVM Architecture Implementation (2)

• 4. Build Process

sfifo_test

f_seq

sfifo_environment

f_agt f_scb f_cov

f_env

5

sfifo_scoreboard

f_seqr

sfifo_agent sfifo_coverage

f_dri f_mon

sfifo_sequencer sfifo_driver sfifo_monitor

September 5, 2024



Configuration Database (2)

Instance Field Value

set()

Sequencer

Agent

Environment

Test

Testbench Top

get()

6

Driver

Monitorget()

Configuration Database Table

September 5, 2024



UVM Architecture Implementation (3)

• 5. Connection Process

– UVM connect phaseconnect phase follows the build phasebuild phase

• and works back up from the bottom of the hierarchy to the topfrom the bottom of the hierarchy to the top. 

– Its purpose is to 

• make TLM connectionsTLM connections between components, 

• assign virtual interfacevirtual interface handles 

• and make any other assignments for resources.

– Configuration objects are once again at play during the connection process – Configuration objects are once again at play during the connection process 

• as they may contain references to virtual interfacesvirtual interfaces or other information 
that guides the connection process. 

• For instance, inside an agentagent, 

– the virtual interfacevirtual interface assignment to a driverdriver

– and the TLM connectionTLM connection between a driverdriver and its sequencersequencer

» are only made if the agentagent is active.

1. Virtual interface

2. Sequence - Sequencer

3. Analysis port
7September 5, 2024



UVM Architecture Implementation (4)

8September 5, 2024



UVM Architecture Implementation (5)

9September 5, 2024



UVM Architecture Implementation (6): tb_top.sv

The uvm_config_db uvm_config_db is parameterised with the type virtual sfifo_interface

1. The first argument of the set()set() method is contextcontext, intended to be assigned a UVM component 
object handle;

1. in this case since it is in the HDL part of the testbench, 

• a null object handle is assigned.

2. Use "null" in the first argument as this code is in a top-level module rather than a 
uvm_component. 

2. The second argument of the set()set() method is a stringstring used to identify the UVM component 
instance name(s) within the UVM testbench component hierarchy that may access the data instance name(s) within the UVM testbench component hierarchy that may access the data 
object. 

– This is “uvm_test_top” here to restrict access to the top level UVM test object. 

 It could have been assigned a wildcardwildcard such as “*”, 

• which means that all components in the UVM testbench could access it, 

– but this may not be helpful, and carrys a potential lookup overhead in the 
get()get() process.

3. The third argument of the set()set() method is a stringstring, intended as the lookup name, i.e. a string 
that can be used to uniquely identify the virtual interface from within the uvm_config_dbuvm_config_db.

4. The final argument of the set()set() is the static interface assigned to the virtual interface handle 
entry that is created within the uvm_config_dbuvm_config_db. 

10September 5, 2024



Connecting the Testbench to the DUT

• UVM methodology uses the uvm_config_dbuvm_config_db utility to pass a virtual virtual 
interfaceinterface handle from a static testbench module to a UVM object class. 

11September 5, 2024



12September 5, 2024



UVM Testbench Architecture (Cookbook)

13September 5, 2024



Transactor (Cookbook)

14
From Next Slide on

September 5, 2024



Transaction / Sequence Item

• In Transaction Level Modeling (TLM), 

–– datadata is represented as transactionstransactions that flow between components via 
TLM interfacesTLM interfaces. 

•• These interfacesThese interfaces provide a way to connect and transfer data packetsdata packets
between components, 

– enabling efficient communication within a chip design verification 
process.process.

• TLM establishes a connection between producer and consumer 
components through which transactionstransactions are sent. 

– A transactiontransaction is nothing but a class object containing specific 
information.

15September 5, 2024



Transaction / Sequence Item (2)

Scoreboard

Agent

Environment
Test

Sequence items

Coverage

Sequence

imp_port
(item_got_export)

16
DUT

Interface

Driver Monitor

Sequencer

Testbench Top

seq_item_export

seq_item_port

Abstract transaction items
are converted to pin 

wiggles by Driver
(wr_en, rd_en, 
input_data,...)

Analysis_port (item_got_port)

September 5, 2024



TLM Analysis port / Multi Analysis imp port

• Connecting multiple ports to a single Analysis port:

– The uvm_analysis_port is a TLM-based class that provides a writewrite
method for communication. 

– TLM Analysis port broadcasts transactionstransactions to one or multiple 
components.

17

e.g. e.g. 
MonitorMonitor

September 5, 2024



TLM Analysis port / Multi Analysis imp port (2)

18

e.g. e.g. 
MonitorMonitor

September 5, 2024



TLM Analysis port / Multi Analysis imp port (3)

• An example of connecting to a single Analysis port:

19September 5, 2024



TLM Analysis port / Multi Analysis imp port (4)
at at 
sfifo_monitorsfifo_monitor

at at 
sfifo_scoreboardsfifo_scoreboard Syntax:Syntax: uvm_analysis_imp<> #(t,T) port_name;uvm_analysis_imp<> #(t,T) port_name;

20

sfifo_scoreboardsfifo_scoreboard Syntax:Syntax: uvm_analysis_imp<> #(t,T) port_name;uvm_analysis_imp<> #(t,T) port_name;

Syntax:Syntax:

September 5, 2024



TLM Analysis port / Multi Analysis imp port (5)

• Connecting Analysis port with the imp_port in environment:

Syntax:Syntax:

21

at at 
sfifo_environmentsfifo_environment

September 5, 2024



Queue and Its Methods at Scoreboard

22September 5, 2024



Queue and Its Methods at Scoreboard (2)

• Queue declaration:

–– data_type queue_name[$];data_type queue_name[$];

• data_type – data type of the queue elements.

• queue_name – name of the queue.

– E.g.

•• int queue[$];int queue[$]; // queue of int, (unbound queue)

• Typical methods:

–– push_back()push_back()

• inserts the given element at the end of the queue

–– pop_front()pop_front()

• removes and returns the first element of the queue

23September 5, 2024



Queue and Its Methods at Scoreboard (3)

at at 
sfifo_scoreboardsfifo_scoreboard

24September 5, 2024



User Communication

where * can be either infoinfo, errorerror, warningwarning, fatalfatal. 

• UVM has six levels of verbosity with each one represented by an integer.

25September 5, 2024



User Communication (2)

• Note that the VERBOSITY_LEVEL is only required for uvm_report_info.

• Usage of uvm_report_fatal will exit the simulation.

26September 5, 2024



User Communication (3)

• We can also display the filename and line number of the display message 

– by using `__FILE__`__FILE__ and `__LINE__`__LINE__, 

• which will be useful for debug purposes. 

• This can be disabled from commandcommand--lineline by defining 
+UVM_REPORT_DISABLE_FILE_LINE+UVM_REPORT_DISABLE_FILE_LINE

27September 5, 2024



User Communication (4)

• UVM reporting macros will automatically display the file and line 
information 

– without explicitly mentioning the `__FILE__`__FILE__ and `__LINE__`__LINE__ arguments.

28September 5, 2024



User Communication (5)

• Reporting functions:

– Reference 

• https://www.chipverify.com/uvm/report-functions

29September 5, 2024



Other Notes

30September 5, 2024



TLM Analysis FIFO

31September 5, 2024



Organizing package files into a directory

•• All filesAll files included in a given package should be put together in a single single 
directorydirectory. 

– This is particularly important for AgentsAgents

• where the AgentAgent directory structure needs to be a complete 
stand-alone package.

• A single include directorysingle include directory for package files

– facilitates compilation flow set-up, 

– and also aids reuse 

• since all the filesall the files for a package can be gathered together easily.

32September 5, 2024



Agent Note

1. Active Agent

– Active AgentsAgents generate stimulus and drive to DUT

– An active AgentAgent shall consists of all the three components DriverDriver, SequencerSequencer, and 
MonitorMonitor.

2. Passive Agent

– Passive AgentsAgents sample DUT signals but do not drive them

– A passive AgentAgent consists of onlyonly the MonitorMonitor.

3. An AgentAgent can be configured as ACTIVE/PASSIVE by using a set config method, 3. An AgentAgent can be configured as ACTIVE/PASSIVE by using a set config method, 

– the defaultdefault AgentAgent will be ACTIVEACTIVE.

4. get_is_active() Method

– get_is_active() returns 

• UVM_ACTIVE 

– if the AgentAgent is acting as an active AgentAgent

• and UVM_PASSIVE 

– if the AgentAgent is acting as a passive AgentAgent.

33September 5, 2024



Starting a sequence in UVM testbench

The Test is The Starting Point for The Build Process

 There are 2 ways of starting a sequence in UVM testbench.

1. Starting a sequence with default_sequencedefault_sequence (implicit)

// build phase of uvm test

function void build_phase(uvm_phase phase); 
super.build_phase(phase); 

env = my_env::type_id::create("env", this); 

// starting a sequence with default_sequence
uvm_config_db#(uvm_object_wrapper)::set(this,"env.agent.sequenc
er.run_phase", "default_sequence", my_sequence::type_id::get()); 

endfunction: build_phase

34September 5, 2024



35September 5, 2024



Starting a sequence in UVM testbench (2)

 There are 2 ways of starting a sequence in UVM testbench (cont’d).

2. Starting a sequence with startstart method (explicit)

// run phase of uvm test

task run_phase(uvm_phase phase); 

super.run_phase(phase); 

phase.raise_objection(this); 

// starting a sequence with start method

seq.start(env.agent.sequencer); 

phase.drop_objection(this); 

endtask: run_phase

36September 5, 2024



Starting a sequence in UVM testbench (3)

• Many people recommend using the startstart method to start a sequence

37September 5, 2024



Thank YouThank You

38September 5, 2024


	UVM (Universal Verification Methodology) For whom can know how to program
	DUT and UVM Testbench – Basic
	UVM Architecture Implementation
	Configuration Database (2)
	UVM Architecture Implementation (4)
	UVM Architecture Implementation (6): tb_top.sv
	UVM Testbench Architecture (Cookbook)
	Transaction / Sequence Item (2)
	TLM Analysis port / Multi Analysis imp port (3)
	Queue and Its Methods at Scoreboard
	User Communication
	User Communication (4)
	TLM Analysis FIFO
	Starting a sequence in UVM testbench
	Thank You



