UVM (Universal Verification Methodology)
For whom can know how to program

Tuan Nguyen-viet

September 5, 2024

DUT and UVM Testbench — Basic

DUT Interface Testbench Top Test

1 2 3 4
Sequence Environment Agent Sequence Item

5 6 7 8
Sequencer Driver Monitor Scoreboard

9 10 11 12

Configuration Packages Coverage
13

September 5, 2024

Variable-part Fixed-part

A A

’ " \ module

—_— module
Test -
Environment .

Coverage interface
Scoreboard classes

Agent T

|

] Sequence items |

% Sequence |- = = =|- - - l] : classes S— Class-based

|

Sequencer :

! |

. 4 |

Driver Monitor
N K
A J rd
\ Vi
L2
¢ —
—
interface
Interface
v % ™= Structural
module oUT module
sqprJRathensbiiop ' — 3

UVM Architecture Implementation

* 1. Interface

e 2. Testbench Top

* 3. UVM Components/Objects
— 1. Component/object factory registration using Utility macro (see API)
— 2. Adding factory constructor defaults (see prototype template)
— 3. Component/object creation (note: build process is top-down), e.g.

lclass env extends uvm env;

my component m my component;
my param component #{.ADDR_WIDTH{), .DATA WIDTH(:Z)) m my p component;

-// Constructor & registration macro left out

— 4, Configuration database (see API)

September 5, 2024 4

UVM Architecture Implementation (2)

e 4, Build Process l

sfifo_test

f seq f_env
]

v

sfifo_environment

f_agt f_scb f_cov
]]

v v v
sfifo_scoreboard sfifo_agent sfifo_coverage
f_seqr f_dri f_mon
1 1
sfifo_sequencer sfifo_driver sfifo_monitor

September 5, 2024

set()

Configuration Database (2)

Testbench Top

Test

Instance

Field

Value

get()

Configuration Database Table

September 5, 2024

get()

Environment

Agent

Sequencer

-1 Driver

1 Monitor

UVM Architecture Implementation (3)

* 5. Connection Process

— UVM connect phase follows the build phase
* and works back up from the bottom of the hierarchy to the top.

— Its purpose is to
* make TLM connections between components,
 assign virtual interface handles
e and make any other assignments for resources.

— Configuration objects are once again at play during the connection process

* as they may contain references to virtual interfaces or other information
that guides the connection process.

* Forinstance, inside an agent,
— the virtual interface assignment to a driver
— and the TLM connection between a driver and its sequencer
» are only made if the agent is active.
1. Virtual interface
2. Sequence - Sequencer

3. Analysis port
September 5, 2024

UVM Architecture Implementation (4)

Top-level module

Clock
Gestbench Startup) Gen

Pin

Interface
Connect -
Virtual Interface T
Reset

Gen

Testbench Domain
Top-level Module

Cl'estbench Startuj:D

HDL Domain
Top-level Module

Clock
Gen

A\

Connect —
Virtual Interface

BFM Pin

. Interface

I

Gen

Interface

September 5, 2024

UVM Architecture Implementation (5)

module top_tb;

bus_if BUS();
gpio_if GPIO();

bidirect_bus_slave DUT(.bus(BUS),

// Free running clock
initial
begin
BUS.clk = 0;
forever begin
#10 BUS.clk = -BUS.clk;
end
end

// Reset
initial
begin
BUS.resetn = 0;
repeat(3) begin
@ (posedge BUS.clk);
end
BUS.resetn = 1;
end

// UVM start up:
initial
begin

uvm_config db #(virtual bus if)::set(null,
run_test("bidirect_bus_test");

end

endmodule: top tb

.gpio(GPIO0));

Interface and DUT Instantiation

Clock Gen

Reset Gen

Connect Virtual Interface

"uvm_test top", "BUS vif" , BUS);

Testbench Startup

September 5, 2024

Testbench Domain

HDL Domain

UVM Architecture Implementation (6): tb_top.sv

The uvm_config_db is parameterised with the type virtual sfifo_interface

1. The first argument of the set() method is context, intended to be assigned a UVM component
object handle;

1. inthis case since it is in the HDL part of the testbench,
* anull object handle is assigned.

2. Use "null" in the first argument as this code is in a top-level module rather than a
uvm_component.

2. The second argument of the set() method is a string used to identify the UVM component
instance name(s) within the UVM testbench component hierarchy that may access the data
object.

— Thisis “uvm_test_top” here to restrict access to the top level UVM test object.
=» It could have been assigned a wildcard such as “*”,
* which means that all components in the UVM testbench could access it,

— but this may not be helpful, and carrys a potential lookup overhead in the
get() process.

3. The third argument of the set() method is a string, intended as the lookup name, i.e. a string
that can be used to uniquely identify the virtual interface from within the uvm_config_db.

4. The final argument of the set() is the static interface assigned to the virtual interface handle
entry that is created within the uvm_config_db.

September 5, 2024 10

Connecting the Testbench to the DUT

 UVM methodology uses the uvm_config_db utility to pass a virtual
interface handle from a static testbench module to a UVM object class.

B
Look: Te) | D |
Lookup D

| Jookup | _ D 1

- | |

_ uvm_config db /

initial begin

ET\ Monitor
Config 0O ’
run_test(); // Starts uvm tb

Sqr Driver end

) hvl_top

agent

Monitor
s [Design
Under
[Test
Driver
s > (DUT)
hdl top

Using the uvm_config_db to pass virtual interface handles from hdl_top to an agent

| initial begin

September 5, Zlg%ﬂl_config_db# (virtual sfifo interface)::set(null, "*", "vif", tif);

11

Information from DUT
to Testbench

Y e

config_do API

Information
down the
testbench

hierarchical
structure

lclass sfifo monitor extends uvm monitor;
virtual sfifo interface vif;

Diagram 1: Graphical View of DUT-TB Connection (Source: Cookbook)

September 5, 2024 12

UVM Testbench Architecture (Cookbook)

4

Scoreboard

Test
T
Controller Coverage
/
f”
P
-’
Ll /
F 4
P4
Fy
F 4
rd
/
/
Driver
Stimulus BFM

/
{
{
/
j_k Driver
Proxy
i
[
I
!
I

September 5, 2024

Monitor
Proxy

DUT

Monitor
BFM

SV Classes
SV Interfaces
SV Modules

=== Tasks/Functions

<= Pin Wiggles

” <— Transactions
.
\\ Timed Domain
N Untimed Domalin
\
N
\
\
- \
esponder \\
Prox
Y :A—>c Slave
Responder i
BFM !;
1
Transactor ' Testbench
Layer Layer

13

Transactor (Cookbook)

Transaction Level | 1 Pin Level

|
I
I
cal Inbound communication
|
| ._
HVL [HDL DT
proxy : BFM [DR-IU-LT
class | interface [=
I 3
Outbounc/ communication oy
:
|
|
\) I

Trans.'actor

From Next Slide on
September 5, 2024 14

Transaction / Sequence Item

In Transaction Level Modeling (TLM),

— data is represented as transactions that flow between components via

TLM interfaces.

These interfaces provide a way to connect and transfer data packets
between components,

— enabling efficient communication within a chip design verification

process.

 TLM establishes a connection between producer and consumer

components through which transactions are sent.

— A transaction is nothing but a class object containing specific

information.

Producer

Packet

¥

September 5, 2024

Consumer

wwwivlsiverify.com

15

Transaction / Sequence Item (2)

Test ;
Environment
Coverage
rand bit wr _en; Scoreboard
rand bit rd en; H
rand bit ["'T'I.] input data; Imww // o []
bit full; Agent (item_got_expoft) | L - AR
bit empty; |) 4 %
bit [7:0] output data; | o ry 7
. p ®
O Sequence items | - =
Sequence | — - -—|-—-— I, - 3
'y =y g
R a \d
Sequencgf l _ - —M
2 [1 -
seq_item_expprt ~- _:_ _--F
seq_item_poft \ D Analydis| gogt (item_got_port)
Driver Monitor
Abstract transaction items AY N /ﬂ
are converted to pin =
wiggles by Driver f
(wr_en, rd_en,
input_data,...) Interface
DUT
September 5, 2024 Testbench Top

TLM Analysis port / Multi Analysis imp port

* Connecting multiple ports to a single Analysis port:

— The uvm_analysis_port is a TLM-based class that provides a write
method for communication.

— TLM Analysis port broadcasts transactions to one or multiple
components.

uvm_analysis _imp #(<trans_item>, <receiver component:>) analysis_imp;

env

comp_a comp_b
B

e.g. b(‘_)r \-\

Monitor /,-)<\— function write_port_a(trans)

write(trans)
function write_port_b{trans)
0 = E:lﬂEiiYSiS pDI"[O = imp www.verificationguide.

September 5, 2024

17

TLM Analysis port / Multi Analysis imp port (2)

enyv

uvm_analysis _imp #(<trans_item>, <receiver component:>) analysis_imp;
’C consumer_A
prnducer <> :—C CDHSUFﬁEf_B
elgl
Monitor ‘—_"'C consumer C
<> uvm_analysis_port #{seq_item)

uvm_analysis_imp #(seq_item,
consumer_¥)

www.vlsiverify.co

TLM analysis port

18

TLM Analysis port / Multi Analysis imp port (3)

* An example of connecting to a single Analysis port:

1B top

September 5, 2024

Agent

Sequencer

Driver

Monitor

R

Analysis port
@ Analysis im

Scoreboard

L

M O O = = O = 3 —

F 3
L 2

www.vlsiverify.com

19

TLM Analysis port / Multi Analysis imp port (4)

at
sfifo_monitor

at
sfifo_scoreboard

September 5, 2024

sfifo seqg item item got;
//Step-1. Declaring analysis port
uvm analysis port#(sfifo seq item) item got port;

//Step-2. Creating analysis port
item_got_port = new("item got port™, this);

//Step-3. Calling write method
item got port.write(item got);

Syntax: uvm_analysis_imp<> #(t,T) port_name;
uvm_analysis imp #(<trans_item>, <receiver component:>) analysis_ imp;

lclass sfifo_scoreboard extends uvm scoreboard;
// 1. Declare the analysis port
uvm analysis imp#(sfifo seq item, sfifo scoreboard) item got export;

Syntax:

virtual function void write port a(transaction trans);

// 2. Implement the write method for the analysis port

function veid write(input sfifo seq item item got);

20

TLM Analysis port / Multi Analysis imp port (5)

 Connecting with the imp_port in environment:

Syntax:

function void connect_phase{uvm_phase phase);
J/Connecting analysis port to imp_ ports
comp_a.analysis port.connect(comp b.analysis imp_a);
comp_a.analysis port.connect(comp b.analysis imp b);
endfunction : connect phase

at
sfifo_environment
virtual function weoid connect phase (uvm phase phase);
//Connecting analysis port to imp ports

f agt.f mon.item got port.connect(f scb.item got export);
endfunction

September 5, 2024

Queue and Its Methods at Scoreboard

pop_front push_front

&

Queue
depth=8 3

¥

push_back

;;c-:ﬁ;_h ack

Bounded queue

www.vlsiverify.com

September 5, 2024

pop_front push_front

4 0
1
2
Queue
depth=N ' -
N-1
N
L4
push_back poR_ ek

Unbounded queue

wiww.vlsiverify.com

22

Queue and Its Methods at Scoreboard (2)

* Queue declaration:
— data_type queue_name[S];
* data type —datatype of the queue elements.
* queue_name —name of the queue.
— E.g.
* int queue[S$]; // queue of int, (unbound queue)

e Typical methods:
— push_back()
* inserts the given element at the end of the queue
— pop_front()
* removes and returns the first element of the queue

September 5, 2024

23

Queue and Its Methods at Scoreboard (3)

at

sfifo scoreboard // Queue declaration (unbound gueue)

int queue[3]:
// 2. Implement the write method for the analysis port

function void write(input sfifo seqg item item got);
bit [7:0] examdata;
if (item got.wr en == 'DLl)begin
queue.push back(item got.input data);

else if {item_got.rd_en == '0)begin
if (queue.size() >= 'd)begin
examdata = queue.pop front();

September 5, 2024

24

User Communication

uvm report * ("TAG", $sftormatf ("[Enter the display message]"), VERBOSITY LEVEL);

where * can be either info, error, warning, fatal.

* UVM has six levels of verbosity with each one represented by an integer.

1 | typedet enum {
UAVM NONE = B,
: WM LOW =168,
L WM MEDIUM = 208,
5 WM HIGH = 308,
6 WM FULL =488,
7 WM DEBUG = 588
+ouvm_verbosity;

September 5, 2024 25

User Communication (2)

* Note that the VERBOSITY LEVEL is only required for uvm_report_info.

e Usage of uvm_report_fatal will exit the simulation.

1 | uvm_report_info (get type name (), $sformatf ("None level message™), UVM_NONE);

3 | uvm_report info (get type name (), $stormatf (“"Low level message™), UVM LOW):
uvm_report _info (get type name (), $sformatf ("Medium level message”), UVM MEDIUM);

4 | wvm_report_info (get type name (), $sformatf ("High level message”), UVM HIGH);

| uvm_report_info (get type name (), $sformatf (“"Full level message”), UVM FULL);
uvm report info (get type name (), $stormatf ("Debug level message™), UVM DEBUG);

g | uvm report warning (get type name (), $sformatf ("Warning level message”));
uvm_report_error (get type name ()}, $sformatf ("Error level message”

i | uvm_report fatal (get type name (), $sformatf ("Fatal level message”)

September 5, 2024

User Communication (3)

 We can also display the filename and line number of the display message
— byusing " _FILE_ _and "_LINE__,
* which will be useful for debug purposes.

o (get type name (), $sformatf ("Hone level message - Display File/Line™), UVM NONE, -~ FILE , ° LINE

e This can be disabled from command-line by defining
+UVM_REPORT_DISABLE_FILE_LINE

September 5, 2024 27

User Communication (4)

* UVM reporting macros will automatically display the file and line

information

— without explicitly mentioning the °__FILE__and *__LINE__ arguments.

“uvm - info
2 | Tuvm info
3 | T uvm info
“wvm info
“uvm_info
“uvm info

September 5, 2024

‘get _type nams |
[get type name [
(get type nams ()
get type names |
(get type name (),
get_type name |

, Fsformatf ("[Driver] Medium level message”), UVM MEDIUM)
. ‘$sformatf ("[Driver] High level message™), UVM HIGH)

Tuvm warning (get type name |
5 | Tuvm error (get type name
18 | Tuvm fatal (get type name (),

$sformatf ("[Driver] None level message™), UNM_NONE)
$stormatf ("[Oriver] Low level message”), UVM LOW]

$sformatf ("[Driver] Full level message”), UVM FULL

. $sformatf ("[Driver] Debug level message™), UVM DEBUG)

, $stormatf ("[Driver] Warning level message™))
$sformatt ("[Driver] Error level message"))
$sformatf ("[Driver] Fatal level message")

28

User Communication (5)

* Reporting functions:
— Reference
* https://www.chipverify.com/uvm/report-functions

September 5, 2024

29

September 5, 2024

Other Notes

30

TLM Analysis FI

FO

env

producer

put port

consumer

@ C

Analysis FIFO

<> uvm_analysis_port #({seq_item)

O uvm_tlm_analysis_fifo #(seq_item)

uvm_tlm_analysis_fifo

www.vlsiverify.com

31

Organizing package files into a directory

included in a given package should be put together in a single
directory.

— This is particularly important for Agents

* where the Agent directory structure needs to be a complete
stand-alone package.

* Asingle include directory for package files
— facilitates compilation flow set-up,
— and also aids reuse
* since for a package can be gathered together easily.

September 5, 2024 32

Agent Note

1. Active Agent
— Active Agents generate stimulus and drive to DUT

— An active Agent shall consists of all the three components Driver, Sequencer, and
Monitor.

2. Passive Agent
— Passive Agents sample DUT signals but do not drive them
— A passive Agent consists of only the Monitor.

3. An Agent can be configured as ACTIVE/PASSIVE by using a set config method,
— the default Agent will be ACTIVE.

4. get_is_active() Method
— get_is_active() returns
e UVM_ACTIVE
— if the Agent is acting as an active Agent
 and UVM_PASSIVE
— if the Agent is acting as a passive Agent.

September 5, 2024 33

Starting a sequence in UVM testbench

The Test is The Starting Point for The Build Process
=>» There are 2 ways of starting a sequence in UVM testbench.
1. Starting a sequence with default_sequence (implicit)

// build phase of uvm test

function void build_phase(uvm_phase phase);
super.build_phase(phase);

env =my_env::type_id::create("env", this);

// starting a sequence with default _sequence
uvm_config_db#(uvm_object_wrapper)::set(this,"env.agent.sequenc
er.run_phase", "default_sequence", my sequence::type id::get());

endfunction: build_phase

September 5, 2024 34

S build phase of uvm test
function veid build phase(uvm_phase phase);

super.build phase(phase);

env = my_env::type id::create("env", this);

S/ starting a sequence with default_sequence

uvm_config db#(uvm_object wrapper)::set{this, "env.agent.sequencer.run_phase"”, "default sequence", my sequence::type id::get(});
endfunetion: build_phase

September 5, 2024 35

Starting a sequence in UVM testbench (2)

=>» There are 2 ways of starting a sequence in UVM testbench (cont’d).
2. Starting a sequence with start method (explicit)

// run phase of uvm test

task run_phase(uvm_phase phase);
super.run_phase(phase);
phase.raise_objection(this);
// starting a sequence with start method
seq.start(env.agent.sequencer);
phase.drop_objection(this);

endtask: run_phase

September 5, 2024

36

Starting a sequence in UVM testbench (3)

* Many people recommend using the start method to start a sequence

J4 run phase of uvm test

task run_phase(uvm_phase phase);
super.run_phase(phase);
phase.raise objection(this);
/4 starting a sequence with start method
seq.start{env.agent.sequencer);
phase.drop_objection(this);

endtask: run_phase

September 5, 2024

37

September 5, 2024

Thank You

38

	UVM (Universal Verification Methodology) For whom can know how to program
	DUT and UVM Testbench – Basic
	UVM Architecture Implementation
	Configuration Database (2)
	UVM Architecture Implementation (4)
	UVM Architecture Implementation (6): tb_top.sv
	UVM Testbench Architecture (Cookbook)
	Transaction / Sequence Item (2)
	TLM Analysis port / Multi Analysis imp port (3)
	Queue and Its Methods at Scoreboard
	User Communication
	User Communication (4)
	TLM Analysis FIFO
	Starting a sequence in UVM testbench
	Thank You

