
UVM (Universal Verification Methodology)
For SW Engineers

Tuan Nguyen-viet

1

Challenges of verifying complex systems – An Example

2

Challenges of verifying complex systems (2)

• Typical processor developmentprocessor development from scratch could be 100s of engineering
years

– Requires parallel developments across multiple sites,

• and it takes a large team to verify a processor

• The typical method is to divide and conquer,

– partitioning the whole CPU into smaller units

• and verify those units,

• then reuse the checkers and stimulus at a higher level

• The challenges are numerous

– Reuse of code becomes an absolute key to avoid duplication of work

– It is essential to have the ability to integrate an external IP

– This requires rigorous planning, code structure, & lockstep
development

– Standardization becomes a key consideration

•  UVM can help solve this

3

Key Components of a UVM Testbench

Sequencer Sequencer

Scoreboard

Functional
Coverage

4

DUT

Interface Interface

Driver Monitor

Sequencer

Driver Monitor

Sequencer

UVM Testbench Top

• All verification components, interfacesinterfaces and DUT

– are instantiated in a top level module called testbench.

• It is a static container to hold everything required to be simulated

– and becomes the root node in the hierarchy.

• This is usually named tb or tb_top

– although it can assume any other name.– although it can assume any other name.

• Simulators (e.g. NCSIM, Questasim, etc.) typically need to know the top
level module

– so that each can

• analyze components within the top module

• and elaborate the design hierarchy.

5

UVM Testbench Top
• The testbench top is a static container

– that has an instantiation of DUT and interfacesinterfaces.

• The interfaceinterface instanceinstance connects with DUT signals in the testbench top.

• The clockclock is generated and initially resetreset is applied to the DUT.

– It is also passed to the interfaceinterface handlehandle.

• An interfaceinterface is stored in the uvm_config_db

– using the setset methodmethod

• and it can be retrieved down the hierarchy

– using the getget methodmethod.

• UVM testbench top is also used to trigger a test

– using run_test() call.

• REF: https://vlsiverify.com/uvm/uvm-testbench-top/ 6

UVM - Simple Architecture w/ Single Agent

Sequencer

ScoreboardAgent

Environment

Test

Testbench Top

Sequence item / Sequence

7
DUT

Interface

Driver Monitor

Sequencer

Key Components of a UVM Testbench

Sequencer Sequencer

Scoreboard

Functional
Coverage

Tx Agent Rx Agent

Environment Top
Tx Environment Rx Environment

Test

Testbench Top

Sequence item / Sequence Sequence item / Sequence

8

DUT

Interface Interface

Driver Monitor Driver Monitor

9

UVM tb top

• Typical Testbench_top contains,

– DUT instance

–– interfaceinterface instance

–– run_test()run_test() method

–– virtual interfacevirtual interface set config_db

–– clockclock and resetreset generation logic

–– wave dumpwave dump logic

10

UVM Phases`include "uvm_macros.svh"

import uvm_pkg::*;

module testbench_top;

//

//

//

Interface instance ;

DUT instance;

//

//

//

initial begin

test

env

…

build phasebuild phase

11

initial begin

//

run_test ();

end

//

//

//

endmodule

agent 1 …
seqr

drv

mon

agent 2

seqr

drv

mon

agent N

seqr

drv

mon

scoreboard

connect phase, … run phase … report phaseconnect phase, … run phase … report phase

$finish;$finish;

module testbench_top;

//clock and reset signal declaration

bit clk;

bit reset;

//clock generation

always #5 clk = ~clk;

//reset Generation

initial begin

reset = 1;

#5 reset =0;

end

//creating instance of interfaceinstance of interface, in order to connect DUT and testcase

sync_fifo_if intf(clk,reset);

//DUT instance, interface signals are connected to the DUT ports

sync_fifo DUT (

.clk(intf.clk),

.reset(intf.reset),.reset(intf.reset),

.full(intf.full),

.empty(intf.empty),

.wr_en(intf.wr_en),

.rd_en(intf.rd_en),

.input_data(intf.wdata),

.output_data(intf.rdata)

);

//enabling the wave dump

initial begin

uvm_config_db#(virtual sync_fifo_if)::set(uvm_root::get(),"*",”sync_fifo_intf",intf);

$dumpfile("dump.vcd"); $dumpvars;

end

initial begin

run_test();

end

endmodule
12

UVM TestBench Architecture

• To maintain uniformityuniformity in naming the components/objects,

– all the component/object name’s are starts with sync_fifo_*.

13

Sequence Item/Transaction

14

UVM TB Architecture: Sequence Item/Transaction

•• Sequence ItemSequence Item is the same as a TransactionTransaction

– Examples: packet, AXI transaction, pixel

• Fields required to generate the stimulusstimulus are declared in the sequence sequence
itemitem.

1. sequence itemsequence item is written by extending uvm_sequence_itemuvm_sequence_item,

class sync_fifo_seq_itemsync_fifo_seq_item extends uvm_sequence_itemuvm_sequence_item; class sync_fifo_seq_itemsync_fifo_seq_item extends uvm_sequence_itemuvm_sequence_item;

//Utility macro

`uvm_object_utils(sync_fifo_seq_itemsync_fifo_seq_item)

//Constructor

function new(string name = “sync_fifo_seq_itemsync_fifo_seq_item");

super.new(name);

endfunction

endclass

15

UVM TB Architecture: Sequence Item/Transaction (2)

2. Declaring the fields in sync_fifo_seq_itemsync_fifo_seq_item,

class sync_fifo_seq_itemsync_fifo_seq_item extends uvm_sequence_itemuvm_sequence_item;

//data and control fields

bit full;

bit empty;

bit wr_en;

bit rd_en;bit rd_en;

bit [15:0] wdata;

bit [15:0] rdata;

//Utility macro

`uvm_object_utils(sync_fifo_seq_itemsync_fifo_seq_item)

//Constructor

function new(string name = " sync_fifo_seq_item sync_fifo_seq_item ");

super.new(name);

endfunction

endclass 16

UVM TB Architecture: Sequence Item/Transaction (3)

3. To generate the random stimulus, declare the fields as rand.

class sync_fifo_seq_itemsync_fifo_seq_item extends uvm_sequence_itemuvm_sequence_item;

//data and control fields

bit full;

bit empty

rand bit wr_en;

rand bit rd_en;rand bit rd_en;

rand bit [15:0] wdata;

bit [15:0] rdata;

//Utility macro

`uvm_object_utils(sync_fifo_seq_itemsync_fifo_seq_item)

//Constructor

function new(string name = " sync_fifo_seq_item sync_fifo_seq_item ");

super.new(name);

endfunction

endclass 17

UVM TB Architecture: Sequence Item/Transaction (4)

4. In order to use the uvm_object methods (copy, compare, pack, unpack,
record, print, and etc),

all the fields are registered to uvm_field_* macros.,

class sync_fifo_seq_itemsync_fifo_seq_item extends uvm_sequence_itemuvm_sequence_item;

//data and control fields

bit full, empty;

rand bit wr_en;

rand bit rd_en;

rand bit [7:0] wdata;rand bit [7:0] wdata;

bit [7:0] rdata;

//Utility and Field macros,

`uvm_object_utils_begin(sync_fifo_seq_itemsync_fifo_seq_item)

`uvm_field_int(wr_en, UVM_ALL_ON)

`uvm_field_int(rd_en, UVM_ALL_ON)

`uvm_field_int(wdata, UVM_ALL_ON)

`uvm_object_utils_end

//Constructor

function new(string name = “sync_fifo_seq_itemsync_fifo_seq_item");

super.new(name);

endfunction

endclass 18

UVM TB Architecture: Sequence Item/Transaction (5)

5. Either write or read operation will be performed at once,

so the constraintconstraint is added to generate wr_en and rd_en.
class sync_fifo_seq_itemsync_fifo_seq_item extends uvm_sequence_itemuvm_sequence_item;

//data and control fields

bit full, empty;

rand bit wr_en;

rand bit rd_en;

rand bit [7:0] wdata;

bit [7:0] rdata;

//Utility and Field macros,//Utility and Field macros,

`uvm_object_utils_begin(sync_fifo_seq_itemsync_fifo_seq_item)

`uvm_field_int(wr_en, UVM_ALL_ON)

`uvm_field_int(rd_en, UVM_ALL_ON)

`uvm_field_int(wdata, UVM_ALL_ON)

`uvm_object_utils_end

//Constructor

function new(string name = “sync_fifo_seq_itemsync_fifo_seq_item");

super.new(name);

endfunction

//constaint, to generate any one among write and read

constraintconstraint wr_rd_c { wr_en != rd_en; };

endclass
19

UVM TB Architecture: Sequence Item/Transaction (6)

Complete sync_fifo_seq_itemsync_fifo_seq_item code.
class sync_fifo_seq_itemsync_fifo_seq_item extends uvm_sequence_itemuvm_sequence_item;

//data and control fields

bit full;

bit empty;

rand bit wr_en;

rand bit rd_en;

rand bit [7:0] wdata;

bit [7:0] rdata;

//Utility and Field macros,

`uvm_object_utils_begin(sync_fifo_seq_item)`uvm_object_utils_begin(sync_fifo_seq_item)

`uvm_field_int(wr_en,UVM_ALL_ON)

`uvm_field_int(rd_en,UVM_ALL_ON)

`uvm_field_int(wdata,UVM_ALL_ON)

`uvm_object_utils_end

//Constructor

function new(string name = “sync_fifo_seq_item");

super.new(name);

endfunction

//constaint, to generate any one among write and read

constraint wr_rd_c { wr_en != rd_en; };

endclass

20

Sequence

21

UVM TB Architecture: Sequence

• UVM Sequence is a collection/list of UVM Sequence Items.

• UVM Sequence generates the stimulusstimulus

– and sends to UVM Driver via UVM Sequencer.

• A UVM Agent can have any number of UVM Sequences.

22

UVM TB Architecture: Sequence (2)

1. A sequence is written by extending the uvm_sequenceuvm_sequence,

class sync_fifo_sequencesync_fifo_sequence extends uvm_sequence uvm_sequence # (sync_fifo_seq_itemsync_fifo_seq_item);

`uvm_sequence_utils(sync_fifosync_fifo_sequencesequence, sync_fifosync_fifo_sequencersequencer)

//Constructor

function new(string name = “sync_fifosync_fifo_sequencesequence");

super.new(name);super.new(name);

endfunction

endclass

23

UVM TB Architecture: Sequence (3)

2. Logic to generate and send the sequence_item is added inside the body()
method,

class sync_fifo_sequencesync_fifo_sequence extends uvm_sequence uvm_sequence # (sync_fifo_seq_itemsync_fifo_seq_item);

`uvm_sequence_utils(sync_fifosync_fifo_sequencesequence, sync_fifosync_fifo_sequencersequencer)

//Constructor

function new(string name = “sync_fifosync_fifo_sequencesequence");

super.new(name);

endfunctionendfunction

virtual task body();

req = sync_fifo_seq_item sync_fifo_seq_item ::type_id::create("req");

wait_for_grant();

req.randomize();

send_request(req);

wait_for_item_done();

endtask

endclass

24

Sequencer

25

UVM TB Architecture: Sequencer

•• SequencerSequencer is written by extending uvm_sequenceruvm_sequencer,

– there is no extra logic required to be added in the sequencersequencer.

1. sequence itemsequence item is written by extending uvm_sequence_itemuvm_sequence_item,

class sync_fifo_sequencersync_fifo_sequencer extends uvm_sequenceruvm_sequencer #(sync_fifo_seq_itemsync_fifo_seq_item);

//Utility macro

`uvm_object_utils(sync_fifosync_fifo_sequencersequencer)`uvm_object_utils(sync_fifosync_fifo_sequencersequencer)

//Constructor

function new(string name, uvm_component parent);

super.new(name);

endfunction

endclass

26

UVM TB Architecture: Sequencer (2)

• A UVM sequencer connects a UVM Sequence to the UVM Driver

– It sends a transaction from the Sequence to the Driver

– It sends a response from the Driver to the Sequence

•• SequencerSequencer can also arbitrate between multiple sequences and send a
chosen transaction to the Driverchosen transaction to the Driver

• Provides the following methods:

– send_request (),

– get_response ()

27

Driver

28

UVM TB Architecture: Driver

• A UVM driver is responsible for decoding a transactiontransaction obtained from the
SequencerSequencer

• It is responsible for driving the DUT interface signals

• It understands the pin levelpin level protocol and the timing relationships• It understands the pin levelpin level protocol and the timing relationships

• Driver receives the stimulusstimulus from SequenceSequence via SequencerSequencer and drives on
interface signals.

29

UVM TB Architecture: Driver (2)

1. Driver is written by extending the uvm_driveruvm_driver,

class sync_fifo_driversync_fifo_driver extends uvm_driveruvm_driver #(sync_fifo_seq_itemsync_fifo_seq_item);

`uvm_component_utils(sync_fifo_driversync_fifo_driver)

// Constructor

function new (string name, uvm_component parent);

super.new(name, parent);super.new(name, parent);

endfunction : new

endclass : mem_driver

30

UVM TB Architecture: Driver (3)

2. Declare the virtual interface,

// Virtual Interface

virtual sync_fifo_ifsync_fifo_if vif;

31

UVM TB Architecture: Driver (4)

3. Get the interface handleinterface handle using get config_dbconfig_db,

if(!uvm_config_db # (virtual sync_fifo_ifsync_fifo_if)::get(this, "", "vif", vif))

`uvm_fatal ("NO_VIF", {"virtual interface must be set for:", get_full_name(),".vif"});

32

UVM TB Architecture: Driver (5)

4. Adding the get config_dbconfig_db in the build_phasebuild_phase,

function void build_phase(uvm_phase phase);

super.build_phase(phase);

if(!uvm_config_db#(virtual sync_fifo_ifsync_fifo_if)::get(this, "", "vif", vif))

`uvm_fatal("NO_VIF",{"virtual interface must be set for:", get_full_name(),".vif"});

endfunction: build_phase

33

UVM TB Architecture: Driver (6)

5. Add driving logic, get the seq_item and drive to DUT signals,

// run phase

virtual task run_phase(uvm_phase phase);

forever begin

seq_item_port.get_next_item(req);

//...

//.. driving logic ..here

//...

seq_item_port.item_done();

end

endtask : run_phase

34

MonitorMonitor

35

UVM TB Architecture: Monitor

•• MonitorMonitor’s responsibility is to observe communication on the DUT interface

• A Monitor can include a protocol checkerprotocol checker that can immediately find any
pin levelpin level violations of the communication protocol

• Monitor samples the DUT signals through the virtual interface and
converts the signal level activity to the transaction level.converts the signal level activity to the transaction level.

• UVM Monitor is responsible for creating a transactiontransaction based on the
activity on the interface

– This transaction is consumed by various testbench componentstestbench components for
checking and functional coveragefunctional coverage

–– MonitorMonitor communicates with other testbench componentstestbench components using UVM UVM
Analysis portsAnalysis ports

36

UVM TB Architecture: Monitor (2)

1. The MonitorMonitor is written by extending the uvm_monitoruvm_monitor,

class sync_fifo_monitorsync_fifo_monitor extends uvm_monitoruvm_monitor;

`uvm_component_utils(sync_fifo_monitorsync_fifo_monitor)

// new - constructor

function new (string name, uvm_component parent);

super.new(name, parent);super.new(name, parent);

endfunction : new

endclass : sync_fifo_monitorsync_fifo_monitor

37

UVM TB Architecture: Monitor (3)

2. Declare virtual interface,

// Virtual Interface

virtual sync_fifo_ifsync_fifo_if vif;

38

UVM TB Architecture: Monitor (4)

3. Connect interface to Virtual interfaceVirtual interface by using get method,

function void build_phase(uvm_phase phase);

super.build_phase(phase);

if(!uvm_config_db#(virtual sync_fifo_ifsync_fifo_if)::get(this, "", "vif", vif))

`uvm_fatal("NOVIF",{"virtual interface must be set for: ", get_full_name(),".vif"});

endfunction: build_phase

39

UVM TB Architecture: Monitor (5)

4. Declare Analysis port,

uvm_analysis_port #(sync_fifo_seq_itemsync_fifo_seq_item) item_collected_port;

40

UVM TB Architecture: Monitor (6)

5. Declare seq_item handle, Used as a place holder for sampled signal activity,

sync_fifo_seq_item sync_fifo_seq_item trans_collected;

41

UVM TB Architecture: Monitor (7)

6. Add Sampling logic in run_phase,
– sample the interface signal and assign to trans_collected handle

– sampling logic is placed in the forever loop

// run phase

virtual task run_phase(uvm_phase phase);

forever begin

//sampling logic

@(posedge vif.MONITOR.clk);

wait(vif.monitor_cb.wr_en || vif.monitor_cb.rd_en);

trans_collected.full = vif.monitor_cb.full;

trans_collected.empty = vif.monitor_cb.empty;trans_collected.empty = vif.monitor_cb.empty;

if(vif.monitor_cb.wr_en) begin

trans_collected.wr_en = vif.monitor_cb.wr_en;

trans_collected.wdata = vif.monitor_cb.wdata;

trans_collected.rd_en = 0;

@(posedge vif.MONITOR.clk);

end

if(vif.monitor_cb.rd_en) begin

trans_collected.rd_en = vif.monitor_cb.rd_en;

trans_collected.wr_en = 0;

@(posedge vif.MONITOR.clk);

@(posedge vif.MONITOR.clk);

trans_collected.rdata = vif.monitor_cb.rdata;

end

end

endtask : run_phase
42

UVM TB Architecture: Monitor (8)

7. After sampling, by using the write methodwrite method send the sampled transaction sampled transaction
packetpacket to the Scoreboard,

item_collected_port.write(trans_collected);

43

Agent

44

UVM TB Architecture: Agent

• An AgentAgent is a container classcontainer class contains a DriverDriver, a SequencerSequencer, and a
MonitorMonitor.

• UVM Agent is responsible for connecting the sequencer, driver and
the monitor

• It provides analysis ports for the monitor to send transactions to the• It provides analysis ports for the monitor to send transactions to the
scoreboard and coverage

• It provides the ability to disable the sequencer and driver; this will be
useful when an actual DUT is connected

45

Scoreboard

46

UVM TB Architecture: Scoreboard

•• ScoreboardScoreboard receives the transactiontransaction from the MonitorMonitor and compares it
with the reference values.

•• ScoreboardScoreboard is one of the trickiest and most important verification
components

•• ScoreboardScoreboard is an independent implementation of specification

– It takes in transactions from various monitors in the design, applies
the inputs to the independent model and generates an expected
output
the inputs to the independent model and generates an expected
output

– It then compares the actual and the expected outputs

• A typical ScoreboardScoreboard is a queue implementation of the modeled outputs
resulting in a pop of the latest result when the actual DUT output is
available

• A ScoreboardScoreboard also has to ensure that the timing of the inputs and outputs
is well managed to avoid false fails

47

Environment

48

UVM TB Architecture: Environment

• The EnvironmentEnvironment is the container classcontainer class,

– It contains one or more AgentsAgents, as well as other components such as
the ScoreboardScoreboard, top-level MonitorMonitor, and checkerchecker.

• It means that

– It instantiates and connects:

• all the AgentAgents

• all the ScoreboardScoreboards• all the ScoreboardScoreboards

• all the functional coverage modelfunctional coverage models

• And thus

– The EnvironmentEnvironment is responsible for managing various components in
the testbench

49

Test

50

UVM TB Architecture: Test

• The TestTest defines the test scenario for the testbench.

•• uvm_testuvm_test is responsible for

– creating the EnvironmentEnvironment

– controlling the type of test we want to run

– providing configuration information to all the componentsall the components through the
EnvironmentEnvironment

51

Thank YouThank You

52

	UVM (Universal Verification Methodology) For SW Engineers
	Challenges of verifying complex systems – An Example
	Challenges of verifying complex systems (2)
	Key Components of a UVM Testbench
	UVM Testbench Top
	UVM Testbench Top
	UVM - Simple Architecture w/ Single Agent
	Key Components of a UVM Testbench
	UVM tb top
	UVM TestBench Architecture
	UVM TB Architecture: Sequence Item/Transaction (2)
	UVM TB Architecture: Sequence Item/Transaction (5)
	UVM TB Architecture: Sequence
	Sequencer
	Driver
	UVM TB Architecture: Driver (3)
	UVM TB Architecture: Driver (6)
	UVM TB Architecture: Monitor (2)
	UVM TB Architecture: Monitor (5)
	UVM TB Architecture: Monitor (8)
	Scoreboard
	UVM TB Architecture: Environment
	Thank You

