
Digital / Logic Design Through Verilog HDL

Tuan Nguyen-viet

LOGIC GATES

Part 1

Synthesized NOT logic

Synthesized two-input OR logic

Synthesized two-input NOR logic

Synthesized two-input AND logic

Synthesized two-input NAND logic

Synthesized two-input XOR logic

Synthesized XNOR logic

Synthesized tri-state NOT logic

D Flip-Flop

• D flip-flop is very popular with digital electronics.

• They are commonly used for

– counters,

– shift registers,

– and input synchronization.

• In the D flip-flops, the output can only be changed at the clock edge, and if the input changes
at other times, the output will be unaffected.

– The change of state of the output is dependent on the rising edge of the clock. – The change of state of the output is dependent on the rising edge of the clock.

– The output (Q) is the same as the input and can only change at the rising edge of the
clock.

REF: https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d#d-flip-flop

D Flip-Flop Applications

Some of the applications of D flip flop in real-world includes:

• Shift registers: D flip-flops can be cascaded together to create shift registers, which
are used to store and shift data in digital systems.

– Shift registers are commonly used in serial communication protocols

• such as UART, SPI, and I2C.

• State machines: D flip-flops can be used to implement state machines, which are
used in digital systems to control sequences of events. used in digital systems to control sequences of events.

– State machines are commonly used in control systems, automotive
applications, and industrial automation.

• Counters: D flip-flops can be used in conjunction with other digital logic gates to
create binary counters that can count up or down depending on the design.

– This makes them useful in real-time applications such as timers and clocks.

• Data storage: D flip-flops can be used to store temporary data in digital systems.

– They are often used in conjunction with other memory elements to create
more complex storage systems.

REF: https://www.electronicsforu.com/technology-trends/learn-electronics/d-flip-flop-circuit-truth-table-limitations-applications

REF: https://unstop.com/blog/difference-between-combinational-and-sequential-circuit

Combinational Logic Design

• Combinational logic is implemented by using the logic gates

– and in the combinational logic,

• output is the function of

– present input.

Sequential Logic Design

• Sequential logic is defined as the digital logic

– whose output is a function of

• present input

• and past output.

VERILOG HDL - OVERVIEW

Part 2

Verilog HDL (and VHDL) => Hardware

• Verilog HDL is a Hardware Description Language

– Verilog HDL describes hardware

• Things happen simultaneously or in parallel

–whereas software is sequential

• So, • So,

– Verilog HDL is not a computer programming language

Signal Values in Verilog HDL

• Verilog signals can have 1 of 4 values: 0/1/x/z

• Actual hardware has levels 0 (điện áp thấp) and 1 (điện áp
cao).

• X and Z values might arise in simulation tools

– x is Unknown logical value

• May be a 0, 1, z, in transition, or don’t cares.

– z means High impedance (trở kháng cao/không dẫn điện),
floating (đầu dây không nối)

Combinational Logic

Continuous Assignment

• An assign statement represents

– continuously executing combinational logic.

• assign out = … ;

A

B

Combinational Logic with Continuous Assignment

Sel

inputs and output are wire variables by defaultby default.

assign is used to set values for wire variables:

– Left hand side (LHS) must be a wire type: ‘out’
– Right hand side (RHS) is recomputed when a value in the RHS changes
– The new value of the RHS is assigned to the LHS

Combinational Logic with Always Blocks

Conditional Conditional
StatementStatement

Register typeRegister type

A

B

Sel

Synthesis tool is able to infer a MUX based on Verilog code above

begin…end: Procedural Statement

Left hand side (out) inside the always block must be reg variable type

begin…end: Procedural Statement => similar to
conventional programming language statements

Logical Operators for Conditionals

&& logical AND

|| OR

! logical NOT

== logical equality== logical equality

!= logical inequality

> greater than

>= greater than or equal

< less than

<= less than or equal

Bitwise Boolean Operators

Concurrent Blocks and Other Elements in a Module

• An always block executes concurrently
with

– other always blocks,

– instance statements (other
gates/modules), and

– continuous assignment (assign)
statements

in a module.in a module.

Sensitivity List

Sensitivity List in Combinational Logic

• Includes every variable in an always block sensitivity list

always @ (signal list)

• Another simple alternative

always @ (*)always @ (*)

Sequential Logic

Sensitivity List in Sequential Logic

• Edge-triggered behavior

always @ (posedge/negedge SIGNAL_name)

• Clock

always @ (posedge/negedge CLOCK_name)always @ (posedge/negedge CLOCK_name)

Always Blocks

• Sequential logic can only be modeled using always blocks.

• Output must be declared as a “reg” variable type.

Asynchronous Reset and Synchronous Reset

q is flip-flop in actual hardware

Blocking Assignment (=)

• Simulation tool behavior:

– RHS is evaluated sequentially;

– assignment to LHS is immediate.

Y and Z are flip-flops in
actual hardware

Non-blocking Assignment (<=)

• Simulation tool behavior:

– RHS evaluated in parallel (the order does not matter);

– Assignment to LHS is delayed until end of always block.

Assignment Note

• Continuous assignments apply to Combinational logic only

• Always blocks contain a set of procedural assignments
(blocking or non-blocking)

– Can be used to model

• Either Combinational logic• Either Combinational logic

• Or Sequential logic.

Procedural Statement Note

• Procedural statement is similar to conventional programming language statements

– begin-end blocks

begin

procedural-statement …

procedural-statement

end

– If

if (condition)

procedural-statement procedural-statement

else

procedural-statement

– Case

case (sel-expr)

choice : procedural-statement …

endcase

– Blocking assignment

variable name = expression ;

– Non-blocking assignment

variable name <= expression ;

Combinational and Sequential Logic Note

• How to implement Combinational logic

– output as a function of input

– determined using logic gates

• Sequential logic

– storage elements like latches, flip-flops

VERILOG DESIGN DESCRIPTION

Part 3

Coding Styles

• Structure

• Behavioral

• RTL

Structural Design of Half Adder

Structural Code Style for “basic_verilog” module

Declarations

List of inputs and outputs

Declarations

Statements

Behavior Code Style

Behavior Code Style (2): Continuous Assignment

A

B

Sel

Combinational Logic

RTL Code Style

Declarations

• E.g., input [3:0] Bus;

– This would be a 4-bit bus,

• with individual wire names

– Bus[3] (MSB),

– Bus[2], – Bus[2],

– Bus[1],

– Bus[0] (LSB)

SHIFT REGISTER

Part 4

Shift Register

• A shift register is a sequential logic circuit

– that acts as a unit to store and transfer binary data.

• Basically shift registers are bidirectional FIFO circuit,

– that shifts every single bit of the data present in its input

• towards its output on each clock pulse.

REF: https://electronicscoach.com/shift-register.html

Operation of SISO Shift Register
• REF: https://electronicscoach.com/shift-register.html

FINITE STATE MACHINES (FSM)

Part 5

FSM Applications

• Most of the RTL design needs accurate timing and controlling algorithms.

• Finite state machines (FSM) are used to implement the control and timing
algorithms.

• Finite state machines can be coded by using different encoding styles.

– These encoding styles are

1. binary,

2. gray

3. and one-hot encoding.

Mealy and Moore State Machine

Difference b/w Moore and Mealy

Moore and Mealy

• Both Moore and Mealy FSMs have been successfully
implemented in digital designs.

• How the outputs are generated for these state machines is an
interesting topic.

– Outputs are sometimes generated by combinational logic – Outputs are sometimes generated by combinational logic
based on comparisons with a set of states,

– and sometimes outputs can be derived directly from
individual state bits.

Two-Always-Block FSM Style

• One of the Verilog coding styles is to code the FSM
design

– using two always blocks,

• one for the sequential state register

• and one for the combinational next-state and • and one for the combinational next-state and
combinational output logic.

Next state, combinational always block

State register, sequential always block

Next state, combinational always block

Continuous assignment outputs

State register, sequential always block

Next state & outputs, combinational always block

State register, sequential always block

Next state & outputs, combinational always block

Note (2)

• The combinational outputs generated by the two coding styles (last
slides) suffer two principal disadvantages:

– 1. Combinational outputs can glitch between states.

– 2. Combinational outputs consume part of the overall clock cycle

• that would have been available to the block of logic that is driven
by the FSM outputs.

Note
• In addition to disadvantages of FSM mentioned on the last slide:

– When module outputs are generated using combinational logic,

• there is less time for the receiving module

– to pass signals through inputs and additional combinational logic

» before they must be clocked.

• Solution:

Registering FSM Outputs

State register, sequential always block

Next state, combinational always block

Registered outputs, sequential always block

CODING NOTES

Part 6

Note for UUT and Test Bench

wire reg

reg wire

Rules

• Use blocking assignments (=) to model combinational logic
within an always block.

– or just implement combinational logic

• without an always block,

• using assign statements

• Use non-blocking assignments (<=) to implement sequential• Use non-blocking assignments (<=) to implement sequential
logic.

• Do not mix blocking and non-blocking assignments

– in the same always block.

• Do not make assignments to the same variable

– from more than one always block

Main Variable Types

• wire: represents a physical connection (net) between hardware elements

– Used for structural stylestructural style and continuous assignmentscontinuous assignments

–– DefaultDefault for input/output ports (if you do not specify a type as wire/reg)

– Can only be used to model combinational logic

– Cannot be used in the left-hand side (LHS) in an always block

• reg: a variable that can be used to store state (registers)

– Used in the procedural code (always blocks)

– May also be used to express combinational logic

– Can be used to model both combinational & sequential logic

– Cannot be used in the left-hand side of a continuous assignment
statement

Full_case / parallel_case

• case (case_expression (with 2n possible combinations))
case_item1 : <action #1>;
case_item2 : <action #2>;
case_item3 : <action #3>;
...
case_item2n-1: <action #2n-1>;
case_item2n: <action #2n>;
default: <default action>;

endcaseendcase

AN EXAMPLE OF DESIGN AND TESTBENCH/FUNCTIONAL VERIFICATION

Part 7

Logical Design Flow

Block
Diagram

HDL Coding

Compilation

FRONFRON--ENDEND

Simulation

Synthesis

Place &
Route

Timing
Verification

Physical Physical
DesignDesign

Functional Verification Extension

For specific device

For target technology,
e.g. FPGA, ASIC

BACKBACK--ENDEND

Simple Design Flow (for beginning) and EDA Tools

• The design process (e.g., starts from RTL) as follows:

– RTL (Register Transfer Level) Verilog HDL Coding

– Simulation (RTL): needed to develop a test bench (Verilog).

• Modelsim/Questasim, Cadence VerilogXL/NCSim/Xcelium,
Synopsys VCS, Open-sources EDA tools

– Synthesis (Gate level netlist)

• Although there are a variety of software tools available for • Although there are a variety of software tools available for
synthesis (such as LeonardoSpectrum, Synplify, Cadence Genus,
Synopsys Design Compiler),

– they all have generally

» similar approaches and design flows.

– Post-synthesis Simulation

– Timing Simulation (Cadence Tempus, Synopsys PrimeTime) to check
timing

– etc.

Cadence and Synopsys

• Both of them are used

• A lot of companies have mixed flows

• E.g.,

– Synopsys Design Compiler

– Then, Cadence Innovus for all the place and route.– Then, Cadence Innovus for all the place and route.

– Then, Primetime for STA signoff.

– Siemens/Mentor Calibre is almost always the LvS/DRC
signoff tool.

Test Bench

• Verilog test benches DO NOT describe hardware

• Verilog test benches look like a software program

a_in

b_in

sum_out

carry_out
Half Adder

UUT – Unit Under Test

(DUT/EUT)

b_in carry_out

Half Adder - UUT

General Items of a Test Bench

• Timescale

– Specifies the simulation granularity
• Syntax

• Module definition• Module definition

– A testbench is a module, but without inputs or outputs

• E.g., module cnt4bit_tb();

• UUT instantiation

• Stimulus generation

• Monitoring output

General Items of a Test Bench: Connection Declaration

• Declare input and output signals that will link/connect to the
UUT:

// feeding signals connected at inputs of UUT
reg a;
reg b;reg b;

// connecting to UUT outputs to monitoring
wire sum;

wire carry;

UUT Instantiation

Stimulus Generation: Clock

• // e.g., generate a 50MHz clock
always

begin
CLK50 = 1'b0;
CLK50 = #10000 1'b1;
#10000;#10000;

end

• #10000 means a delay i.e. wait
for 10000 time units before
changing the value of CLK50.
The total time period is 20000
time units

Test Bench using ‘initial‘ block

Test Bench with ‘always’ block

Test Bench with ‘always’ block (2)

BACKUP

Thank YouThank You

	Digital / Logic Design Through Verilog HDL
	Logic Gates
	Synthesized NOT logic
	Synthesized two-input OR logic
	Synthesized two-input NOR logic
	Synthesized two-input AND logic
	Synthesized two-input NAND logic
	Synthesized two-input XOR logic
	Synthesized XNOR logic
	Synthesized tri-state NOT logic
	D Flip-Flop
	D Flip-Flop Applications
	Combinational Logic Design
	Verilog HDL - Overview
	Signal Values in Verilog HDL
	Continuous Assignment
	Combinational Logic with Always Blocks
	Bitwise Boolean Operators
	Sensitivity List in Combinational Logic
	Sensitivity List in Sequential Logic
	Asynchronous Reset and Synchronous Reset
	Non-blocking Assignment (<=)
	Procedural Statement Note
	Verilog Design Description
	Structural Design of Half Adder
	Behavior Code Style
	RTL Code Style
	Shift Register
	Operation of SISO Shift Register
	FSM Applications
	Difference b/w Moore and Mealy
	Two-Always-Block FSM Style
	Note
	Main Variable Types
	Cadence and Synopsys
	UUT Instantiation
	Backup

