Digital / Logic Design Through Verilog HDL

Tuan Nguyen-viet

Part 1

LOGIC GATES

a_

in

Synthesized NOT logic

D—e

Synthesized NOT logic

> y_out

—out

bt

Synthesized two-input OR logic

a_in
- > y out
b_in %:’7 =

a_in b_in y_out
0 0 0
0 1 1
1 0 1
1 1 1

Synthesized two-input NOR logic

a_in
b in

a_in
b_in

> y_out

a_in b_in y_out
0 0 1
0 1 0
1 0 0
1 1 0

Synthesized two-input AND logic

ot > y_out
y_Ou

b_in|

a_in b_in y_out

0 0 0

0 1 0

1 0 0

1 1 1

Synthesized two-input NAND logic

a_in

b_in :> YOt
a_in b_in y_out
0 0 1
0 1 1
1 0 1
1 1 0

Synthesized two-input XOR logic

a_in
b_in

> y_out

£
=
=
I,
=

y_out

=
-

el el =N =
|
O | | -

Synthesized XNOR logic

a_in b_in y_out
0 0 1
0 1 0
1 0 0
1 1 1

Synthesized tri-state NOT logic

enable

data_in[3..0)

—&

> data_out[3..0]

enable data_in data_out
1 0000 0000

1 1111 1111

0 XXXX ZZZ7

D Flip-Flop

* D flip-flop is very popular with digital electronics.

 Theyare commonly used for D ————)0— Q
— counters, V
— shift registers, / -
— and input synchronization. CLK f Q

 Inthe D flip-flops, the output can only be changed at the clock edge, and if the input changes
at other times, the output will be unaffected.

— The change of state of the output is dependent on the rising edge of the clock.
— The output (Q) is the same as the input and can only change at the rising edge of the
clock.

Truth Table:

Clock

1»0

—_—

1»0 1

olo|o
= lo|lolo|o
-

Tel 1

\ WV,

REF: https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d#d-flip-flop

D Flip-Flop Applications

Some of the applications of D flip flop in real-world includes:

e Shift registers: D flip-flops can be cascaded together to create shift registers, which
are used to store and shift data in digital system:s.

— Shift registers are commonly used in serial communication protocols
* such as UART, SPI, and I2C.

e State machines: D flip-flops can be used to implement state machines, which are
used in digital systems to control sequences of events.

— State machines are commonly used in control systems, automotive
applications, and industrial automation.

 Counters: D flip-flops can be used in conjunction with other digital logic gates to
create binary counters that can count up or down depending on the design.

— This makes them useful in real-time applications such as timers and clocks.
» Data storage: D flip-flops can be used to store temporary data in digital systems.

— They are often used in conjunction with other memory elements to create
more complex storage systems.

REF: https://www.electronicsforu.com/technology-trends/learn-electronics/d-flip-flop-circuit-truth-table-limitations-applications

Combinational vs Sequential Circuits

Combinational Circuit Sequential Circuit

Output only depends on the present input ONIRUT Gepanda on pIEARAL i & pact

output
Memory element is absent Memory element is present
No clock signal is applied Clock signal is required
)) s Combinational >
Circuit
—»| Combinational ——» —»
Circuit
Memory 4—

Example - Half Adder, Full Adder,

Multiplexer Example - Flipflop, Counters, Registers

@@)stop

REF: https://unstop.com/blog/difference-between-combinational-and-sequential-circuit

Combinational Logic Design

 Combinational logic is implemented by using the logic gates
— and in the combinational logic,
e output is the function of

— present input.

Sequential Logic Design

* Sequential logic is defined as the digital logic
— whose output is a function of

* present input
* and past output.

combinational | Qn-1 D Q

Inputs logic

clock

V‘o

Part 2

VERILOG HDL - OVERVIEW

Verilog HDL (and VHDL) => Hardware

* Verilog HDL is a Hardware Description Language
— Verilog HDL describes hardware
* Things happen simultaneously or in parallel

— whereas software is sequential

* So,
— Verilog HDL is not a computer programming language

Signal Values in Verilog HDL

Verilog signals can have 1 of 4 values: 0/1/x/z

Actual hardware has levels 0 (dién dp thdap) and 1 (dién dp
cao).

X and Z values might arise in simulation tools
— x is Unknown logical value
* May be a0, 1, z, in transition, or don’t cares.

— z means High impedance (tr& khang cao/khéng dan dién),
floating (dau day khéng noi)

Combinational Logic

Continuous Assignment

* An assign statement represents

— continuously executing combinational logic.

assignout = ... ;

-
-

Combinational Logic with Continuous Assignment

1 module MUXZ2 1 (A, B, sel, out); A ?_

_ input &, B; j}_

s output out; 5 D— out
7 assign out = (~sel & &) | (sel & B); ﬁ

: endmodule

Sel

inputs and output are wire variables by default.

assign is used to set values for wire variables:

— Left hand side (LHS) must be a wire type: ‘out’

— Right hand side (RHS) is recomputed when a value in the RHS changes
— The new value of the RHS is assigned to the LHS

T

Combinational Logic with Always Blocks

medule MUX2 1 (A, B, sel, out);

input &, B;
input sel;
cutput reg out;

always E(A, B, sel)
begin
out = (~s21 & B) | (s=1 & B);
end
endmodule

begin...end: Procedural Statement

{mm Register type)

module MUXZ2 1 (A, B, sel, out);
input B, B;
input sel;

cutput reg out;

always G(A, B, sel)

N begi!}f (ool | Conditional
1 52 ==
out = A: Statement
else
out = B;
- end
endmodule

Left hand side (out) inside the always block must be reg variable type

begin...end: Procedural Statement => similar to
conventional programming language statements

Synthesis tool is able to infer a MUX based on Verilog code above B

out

Sel

Logical Operators for Conditionals

Operator
logical AND ~ *%%°
OR allb
logical NOT 1a

logical equality
logical inequality
greater than

greater than or equal
less than

less than or equal

Description

evaluates to true if a and b are true

evaluates to true if a or b are true

Conwverts non-zero value to zero, and vice versa

Bitwise Boolean Operators

L]

[}

L]

[}

1 b4
0 0
1 X
X X
X X
1 ¥
1 X
1 1
1 X
1 X

Concurrent Blocks and Other Elements in a Module

* An always block executes concurrently
with
— other always blocks,

module name of moduled (....): — instance statements (other
gates/modules), and
input ..; — continuous assignment (assign)
ocutput ..;
statements
assign .. = in @ module.
always @(..) Sensitivity List
? begin ..
end
always €@ (.)
% begin ..
end
name of modulel noml (...);

endmodule

Sensitivity List in Combinational Logic

* Includes every variable in an always block sensitivity list
always @ (signal list)

* Another simple alternative
always @ (*)

Sequential Logic

Sensitivity List in Sequential Logic

* Edge-triggered behavior
always @ (posedge/negedge SIGNAL_name)

* Clock
always @ (posedge/negedge CLOCK _name)

Clk

Always Blocks

e Sequential logic can only be modeled using always blocks.
* QOutput must be declared as a “reg” variable type.

reg Q;
always @(clk, D) —|D Q —
begin C
if (clk) — =
@ <=D;
end D latch
always @(posedge clk)
begin — D Q |
T Q@ <= D;
d
= —pCLK |-

DFF

Asynchronous Reset and Synchronous Reset

reg d.

always @ (posedge clk or posedge reset)
if (reset==
q <= _"bl;
else
q <= d;

Ip Ql
—DCLK

DFF

reg o,

always @ (posedge clk)
if (reset==
a <= 1"b0;
else
q <= d;

q is flip-flop in actual hardware

Blocking Assignment (=)

e Simulation tool behavior:
— RHS is evaluated sequentially;

— assignment to LHS is immediate.

reg Y, Z;

always @ (posedge clk)

begin
Yy =5A & B;
L = ~Y;
end

Simulator interpretation

Yot =A&B
Znext = ~(A & B)

Resulting circuit (post synthesis)

A__
B—| Do
Y and Z are flip-flops in D-L L

actual hardware

Non-blocking Assignment (<=)

* Simulation tool behavior:
— RHS evaluated in parallel (the order does not matter);

— Assignment to LHS is delayed until end of always block.
reg Y, Z;

always € (posedge clk)

begin
T <= AR & B;
7 <= ~Y;
end

Simulator interpretation

Z.ext =~Y /lreading the old Y
Yoext =A&B

Resulting circuit (post synthesis)

o

Assignment Note

e Continuous assignments apply to Combinational logic only

* Always blocks contain a set of procedural assignments
(blocking or non-blocking)

— Can be used to model
* Either Combinational logic
* Or Sequential logic.

Procedural Statement Note

Procedural statement is similar to conventional programming language statements
— begin-end blocks
begin
procedural-statement ...
procedural-statement
end
— If
if (condition)
procedural-statement
else
procedural-statement
— Case
case (sel-expr)
choice : procedural-statement ...
endcase
— Blocking assignment
variable name = expression ;
— Non-blocking assignment
variable name <= expression ;

Combinational and Sequential Logic Note

* How to implement Combinational logic
— output as a function of input
— determined using logic gates

e Sequential logic
— storage elements like latches, flip-flops

Part 3

VERILOG DESIGN DESCRIPTION

Coding Styles

 Structure
e Behavioral
e RTL

Structural Design of Half Adder

(a)

Inputs Outputs I————————————-___.;
A B| s C (b) : (‘2 XOR :
A — —S | ﬁé ,
0 o|o0 0 1 bit : B ¢ ;D— S :
1 o | 1 o half adder ! |
B - —C | AND I
0 111 0 I D_ C :

. |
Sch tic I
1 rje |¢ chemdt : Realization !

Truth table e e -

Fig. 1.4 Logic structure for “basic_Verilog”

Structural Code Style for “basic_verilog” module

// Verilog structural code style
module basic verilog (A,B,S,C) ;
input A; =
input B;
output S;

. Declarations

output C;

wire A, B;

wire S, C;, _
// Functionality of design

xor_gate U1 (.A(A), .B(B), .S(S));
and_gate U2 (.A(A), .B(B), .C(C));

endmodule

List of inputs and outputs

(—

(—

= Statements

>

Declare Verilog module

ports ‘A’, ‘B” and output
ports ‘'S, ‘C’

b

N

‘basic_verilog’ with input

A

[

components xor gate

nstantiation of

the\

and

and gate” . It is assumed

that the precompiled

xor_gate and and _gate is

available in the library.

\

/

Behavior Code Style

// Verilog behavior code style

module basic verilog (A,B.S,C);

input A, B;
output S, C;
reg 5, C
// Functionality of design
always@(A or B)
if (A==B)
5=1'b0;
else
S=1'b1;
always@{A or B)
if (A & B)

=1'b1;
else
C=1'b0;

endmodule

\is logical ‘1’
/I'he description using 'if—else'\

A

Declare verilog module
‘basic_verilog’ with input
ports ‘A’, ‘B’ and output
ports 'S, 'C’

Sensitive to 'a’ or 'b’ and

described in sensitivity list.

/The description using 'if—\

else’ statement describes
the output assignment to ‘S’
When both inputs ‘A", ‘B’ are
at same logic level output
assigned to 'S’ is logical ‘0’
else output assignment to ‘S’

w

statement describes the output
assignments to 'C. When both
‘A, 'B' are at logic '1' level then
output assigned to 'C' is logic '1'
else output assigned to 'C' is
logic'0'

/

= L [}

Behavior Code Style (2): Continuous Assignment

module MUXZ2 1 (A, B, sel, out); A j_

input &, B; D
cutput ot 5 D— out
assign out = (~sel & &) | (sel & B); ﬁ

endmodule

Sel

Combinational Logic

RTL Code Style

// Verilog synthesizable RTL code style

module basic_verilog (A,B,5,C) ;

input A; - ~
Declare Verilog module

input B; <:‘ ‘basic_verilog’ with input

e ports ‘A’, ‘B’ and output

ports ‘'S’, ‘C'.

output C;
reg S;

reg C;

// Functionality of design Description of outputs 'S’, 'C’

in the form of logical
always s@ (A or B) € expressions and used for less
i |
begin _cumple:-: designs! y
S5=A"B;

C=A&B;
end

endmodule

Declarations

 E.g., input [3:0] Bus;
— This would be a 4-bit bus,

e with individual wire names

— Bus

— Bus

— Bus|

3]
— Bus|[2]

47

2
1]
0

47

] (LSB)

(MSB),

Part 4
SHIFT REGISTER

Shift Register

* Ashift register is a sequential logic circuit
— that acts as a unit to store and transfer binary data.
e Basically shift registers are bidirectional FIFO circuit,
— that shifts every single bit of the data present in its input
* towards its output on each clock pulse.

Parallel
Output

Q

Serial D
Input

Q Serial
Output

>
1

-biII:
T
D,

Parallel
Input

Shift Register

REF: https://electronicscoach.com/shift-register.html Eledtionics tosch

Operation of SISO Shift Register

REF: https://electronicscoach.com/shift-register.html

D0 Qo

>FF-0

]

Din—D; Qs "D, @ Dy Q
|—0>FF-3 |—<> FF-2 |—<>FF-1
CLK
4-bit SISO Shift Register
CLK Q; Q; Q;
Initially 0 0 0
15t falling 0
edge
21d falling 1 1 0
edge
3 falling 1 1 1
edge
4 falling 1 1 1
edge

— Serial
output
2 3 B2
Clk * ‘l l’
D,
1 1 1
Q f
0 1 1
Q :
0 0 i 1
Q A
0 0 1
Qo
Waveform Representation of SISO
Shift Register

Electronics Coach

Part 5
FINITE STATE MACHINES (FSM)

FSM Applications

Most of the RTL design needs accurate timing and controlling algorithms.

Finite state machines (FSM) are used to implement the control and timing
algorithms.

Finite state machines can be coded by using different encoding styles.

— These encoding styles are START=0
1. Dbinary, L | J —
2. gray /
3. and one-hot encoding. I \

State | Encoding state0 ~ state2

idle | ae |

stateld | @1

statel | 1@

statel | 11

—— statel

el

HOLD=1

Mealy and Moore State Machine

clock

Inputs (Mealy State Machine Only)
e e e e e e e
combinational sequential : combinational
logic logic : logic
|
L |) B B 'l___ =)
— - —
Next next > Present state > Output
State State Logic
state Logic FF's
>

outputs

Difference b/w Moore and Mealy

Table 8.1 Differences between Moore and Mealy machines

Moore machine

Mealy machine

Outputs are function of current state
only

Outputs are function of the current state and inputs
also

As output is the function of current
state it 1s stable for one clock cycle

Output is the function of current state and inputs so

it may change during the state and hence may or
may not be stable for one clock cycle

Output is stable for one clock cycle and
not prone to glitches or spikes

Output may change multiple times depending on

changes in the input and hence prone to glitches or
hazards

It requires more number of states
compared to Mealy machine

Mealy machine needs at least one state less
compared to Moore machine

STA is easy as combinational paths
between the registers are shorter

STA is complex as combinational paths are
relatively larger area compared to Moore machine

Higher operating frequency compared
to Mealy machine

Less operating frequency compared to Moore
machine

Moore and Mealy

Both Moore and Mealy FSMs have been successfully
implemented in digital designs.

How the outputs are generated for these state machines is an
interesting topic.
— Outputs are sometimes generated by combinational logic
based on comparisons with a set of states,

— and sometimes outputs can be derived directly from
individual state bits.

Two-Always-Block FSM Style

* One of the Verilog coding styles is to code the FSM
design
— using two always blocks,
* one for the sequential state register

* and one for the combinational next-state and
combinational output logic.

Lode L

o}

ot ot

34

module fsmla (ds, rd, go, ws, clk, rst n);

output ds, rd;
input go, ws;
input clk, rst n;

parameter [] IDLE = .
RERD ,
DLY = ,
DONE = :

] state, next;

reg [

always @ (posedge clk or negedge rst n)
if (!'rst n) state <= IDLE;
else state <= next:;

Halways € (state or go or ws) begin
next = :
= case (state)
IDLE: if (go) next = READ;
else next = IDLE;
EEAD: next = DLY;
DLY: if (ws) next = EEAD;
else next = DONE;
DONE: next = IDLE;
- endcase

_end

assign rd {state==EERD ||
assign ds = (state==DCNE);

endmodule

state==D0LY) ;

State register, sequential always block

Next state, combinational always block

Continuous assignment outputs

{95 Y S % T

N

I I I
1 & Wi L [}

I
Jd oo L A R R T

P o o B - Y - Y Y N T S T S T W) N B
e =] (5 N

4

Lad
i

4
1 ¢ Wi W= L [}

module fsml (ds, rd, go, ws, clk, rst n);

output ds, rd;
input go, ws;
input clk, rst n;

reg ds, rd;

parameter [.:0] IDLE = .
RELAD = ,
DLY = ,
DONE = ;

reg [L:0] state, next;

always @ (posedge clk or negedge rst |

if (!'rst n) state <= IDLE;
else state <= next;

Halways @ (state or go or ws) begin

else next = DONE;

- end

= DONE: begin
ds = :
next = IDLE;

- end

- endcase

~end

endmodule

next = ;
ds = :
rd = :
El case (state)
IDLE: if (go) next = READ;
else next = IDLE;
= REERLD: begin
rd = :
next = DLY;
- end
= DLY: begin
rd = ;

if (ws) next = EERD;

n) State register, sequential always block

Next state & outputs, combinational always block

1 module fsm 4states (output reg gnt,

[

input dly, done, req, clk, rst n);

+0 always €(posedge clk or negedge rst n) Gtate register, sequential always block

Next state & outputs, combinational always block

4 parameter [:0] IDLE =
5 BBUSY =
€ BWAIT =
BFEEE =
reg [1:0] state, next;
11 if (!rst n) state <= IDLE;
12 el=ze state <= next;
14 always @ (state or dly or done or req)
15 H begin
1lg next = :
17 gnt = :
18 H case (state)

1 H BBUSY: begin

[

[e S N Y S B S Y % T S T e T I
Tall s Lnos 6 P BT]

gnt
if (!done) next = BBUSY;
else if (dly) next = BWLIT;
el=ze next = BFEEE;

IDLE : if (req) next = BBUSY;
else next

IDLE;

r

© - end
1T o BWAIT: begin
gnt ;
if (!'dly) next = BFREE;
3 el=ze next = BWARIT;
31 - end
32 BFREE: 4if (reqg) next = BBUSY;
33 el=e next IDLE;
34 - endcase
35 = end

(%]
(4

1

37 endmodule

Note (2)

The combinational outputs generated by the two coding styles (last
slides) suffer two principal disadvantages:

— 1. Combinational outputs can glitch between states.
— 2. Combinational outputs consume part of the overall clock cycle

* that would have been available to the block of logic that is driven
by the FSM outputs.

RSTI

CLK

BS

4 comb \ J

Psequ

Note

* In addition to disadvantages of FSM mentioned on the last slide:
— When module outputs are generated using combinational logic,
* there is less time for the receiving module
— to pass signals through inputs and additional combinational logic

» before they must be clocked. No combinational
logic on the outputs

module

* Solution: R GRGGC L EE LR CEEE

:D- registered
outputs

—|_>
Sequential
= logic
module . .
Fmm = mm e m e mm e mm e mmm e mm e m e mmmmmmmm e mmmmmm i mmmmmmmm mmm e No combinational
; : logic on the outputs
: |
P istered !
! outputs 1
:> 1 I
; Combinational Sequential Sequential i
H = logic
|
1
1
1

l—.> logic

1 &y LN = Ll

,
5 T BT =S P |

[
1 &y LN oW LD

L
[

4
1 ¢y LN b D [

medule fsmlb (ds, rd, go, ws, clk, rst n);

output ds, rd;
input go, ws;
input clk, rst n;

reg ds, rd;

parameter [:0] IDLE = ;
RELD = ,
DLY = ,
DONE = ;

reg [1:0] state, next;

always @ (posedge clk or negedge rst n)
if (!rst n) state <= IDLE;
else state <= next;

Halways € (state or go or ws) begin
next = :
= case (state)
IDLE: if (go) next = RERD;
else next = IDLE;
READ: next = DLY;
DLY: if (ws) next = RERD:;
else next = DCONE;
DONE: next = IDLE;
- endcase
~end

always @ (posedge clk or negedge rst n)
= if ('rst n) begin
ds <= ;
rd <= :
L end
= else begin
ds <= ;
rd <= ;
= case (state)
IDLE: if (go) rd <= :
READ: rd <= :
DLY: if (ws) rd <=
else ds <= ;
- endcase
L end
endmodule

Registering FSM Outputs

State register, sequential always block

Next state, combinational always block

Registered outputs, sequential always block

Part 6
CODING NOTES

Note for UUT and Test Bench

wire

reg

wire
a

Rules

Use blocking assignments (=) to model combinational logic
within an always block.

— or just implement combinational logic
* without an always block,
* using assign statements

Use non-blocking assignments (<=) to implement sequential
logic.

Do not mix blocking and non-blocking assignments

— in the same always block.

Do not make assignments to the same variable

— from more than one always block

Main Variable Types

° wire: represents a physical connection (net) between hardware elements

— Used for structural style and continuous assignments

— Default for input/output ports (if you do not specify a type as wire/reg)
— Can only be used to model combinational logic

— Cannot be used in the left-hand side (LHS) in an always block

® reg: a variable that can be used to store state (registers)

— Used in the procedural code (always blocks)
— May also be used to express combinational logic
— Can be used to model both combinational & sequential logic

— Cannot be used in the left-hand side of a continuous assignment
statement

Full _case / parallel_case

case (case_expression (with 2" possible combinations))
case_iteml : <action #1>;
case_item2 : <action #2>;
case_item3 : <action #3>;

case_item2n-1: <action #2n-1>;

case_item2n: <action #2n>;

default: <default action>;
endcase

Part 7
AN EXAMPLE OF DESIGN AND TESTBENCH/FUNCTIONAL VERIFICATION

FRON-END

For target technology,
e.g. FPGA, ASIC

BACK-END

} <

Block
Diagram

v €

Logical Design Flow

HDL Coding

&—

Compilation

v

Simulation

Functional Verification Extension

> v

[~ Synthesis ~

—>\1,

Place &
Route

For specific device

v

Timing
Verification

v

Physical
Design

Simple Design Flow (for beginning) and EDA Tools

* The design process (e.g., starts from RTL) as follows:
— RTL (Register Transfer Level) Verilog HDL Coding
— Simulation (RTL): needed to develop a test bench (Verilog).
* Modelsim/Questasim, Cadence VerilogXL/NCSim/Xcelium,
Synopsys VCS, Open-sources EDA tools

— Synthesis (Gate level netlist)
* Although there are a variety of software tools available for
synthesis (such as LeonardoSpectrum, Synplify, Cadence Genus,

Synopsys Design Compiler),
— they all have generally
» similar approaches and design flows.
— Post-synthesis Simulation
— Timing Simulation (Cadence Tempus, Synopsys PrimeTime) to check
timing
— etc.

Cadence and Synopsys

* Both of them are used

* Alot of companies have mixed flows

 Eg,
— Synopsys Design Compiler
— Then, Cadence Innovus for all the place and route.
— Then, Primetime for STA signoff.

— Siemens/Mentor Calibre is almost always the LvS/DRC
signoff tool.

Test Bench

* Verilog test benches DO NOT describe hardware
* Verilog test benches look like a software program

a_in sum_out

- Half Adder
b in carry_out

UuT =y Verllog s Ut

Stimulus uuT Monitor
UUT — Unit Under Test
(DUT/EUT)

Half Adder - UUT

//Verilog RTL code for half adder

module half adder (o _in, b_in, sum out,carry_out);

input a_in;

input b_in;

output sum_out;

output carry_out;

wire sum_out;

wire carry_out;

assign sum_out=a_in * b _in;
assign carry_out=a_in & b_in;

endmodule

]

l//lr-Jutput sum_out is

assigned as XOR of ‘a_in’,
‘b_in". XOR is summation

operation.

Output carry_out is
assigned as AND of
‘a_in’, 'b_in". Carry logic
is AND operation.

b

N

4

a_in b_in sum_out carry_out
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

General Items of a Test Bench

Timescale

— Specifies the simulation granularity

e Syntax
timescale time unit base / precision base

unit of delays for fractional delay
“timescale 1 ps / 1 ps
Module definition

— A testbench is a module, but without inputs or outputs
e E.g., module cntdbit_tb();
UUT instantiation
Stimulus generation

Monitoring output

General Items of a Test Bench: Connection Declaration

* Declare input and output signals that will link/connect to the
UUT:

// feeding signals connected at inputs of UUT
reg a;
reg b;

// connecting to UUT outputs to monitoring
wire sum;

wire carry;

UUT Instantiation

Hhalf adder UUT (// module instantiation
.a_in(a),
.b in(b),
.sum out (sum) ,
.carry out(carry)
-) ;

Stimulus Generation: Clock

“timescale 1 ps / 1 ps
* //e.g., generate a 50MHz clock

always
begin
CLK50 = 1'b0;
CLK50 = #10000 1'b1;
#10000;
end

 #10000 means a delay i.e. wait
for 10000 time units before
changing the value of CLK50.
The total time period is 20000
time units

“timescale 1 ns /10 ps // time unit =

module half adder tb;

reqg a, b;
wire sum, carry;

Test Bench using ‘initial‘ block

// duration for each bit =

localparam periocd = 20;

half adder UUT (.a in(a),

1 ns, precision = 10 ps
20 * timescale = 20 * 1 ns = 20ns
.b in(b), .sum out(sum), .carry out(carry)); // module instantiation

initial // initial block executes only once
begin
// walues for a and b

end

a = 0;
b=10;
$period;

a = 1;
b= 1;

b = 1;

$period;

endmodule

// wait for period

Hhalf adder UUT (// module instantiation
.a_in(a),

.b_in{b},

.5um out (sum) ,

.carry out(carry)

-)

=1 @ Wl g B

b
S S Y S S R o M e Wl

[S N gy

o oo

20

Test Bench with ‘always’ block

// half adder procedural tb.v
*timescale 1 nsfl10 ps // time-unit = 1 ns, precision = 10 ps
module half adder procedural tb;

reg a, b;
wire sum, carry;

// duration for each bit = 20 * timescale = 20 * 1 ns = 20ns
localparam period = 20;

half_adder T (.af{a), .b{b), .sum({sum), .carry{carrv)):;
reg clk;

B// note that sensitive list i1s omitted in always block
// therefore always-block run forever

L// clock period = 2 ns

always

= begin

clk = 1'b1;

#$20; // high for 20 * timescale = 20 ns

clk = 1'b0;
#20; // low for 20 * timescale = 20 ns
L end

2 Lp

o TGN Wl Rl

Jo\D oo

1 S ST O ' T T %

[1 S - =

o O S = W

Co o N R O Y

0 00

L

o WO o O O RO O R A YRR A

[A

Test Bench with ‘always’ block (2)

always @ (posedge clk)
= begin
S/ walues for a and b
a i
b 5
#period; // wait for period
// display message if output not matched
if{(sum '= 0 || carrcy = 0}
Sdisplay({"test failed for input combination 00")

a D :
b i B
fperiod; // w
if({sum '= 1 |
Sdisplay({"tes

ait for period
| carxry 1= 0}
t fail input combination 01"} ;

a = 1

b= {;

fperiod; // wait for period

if{sum '= 1 || carry = 0}

Sdisplav{"test failed for input combination 10") ;

cl L

b ==

fperiod; // wait for period

if{sum '= 0 || carry != 1}

Sdisplay{"test failed for input combination 11"™)

a L=

b 1;

ffiperiod; // wait for period

if{sum '= 1 || carry 1= 1}

Sdisplay({"test failed for input combination 01"™)

Sstop,; // end of simalation
- end
endmodule

BACKUP

Thank You

	Digital / Logic Design Through Verilog HDL
	Logic Gates
	Synthesized NOT logic
	Synthesized two-input OR logic
	Synthesized two-input NOR logic
	Synthesized two-input AND logic
	Synthesized two-input NAND logic
	Synthesized two-input XOR logic
	Synthesized XNOR logic
	Synthesized tri-state NOT logic
	D Flip-Flop
	D Flip-Flop Applications
	Combinational Logic Design
	Verilog HDL - Overview
	Signal Values in Verilog HDL
	Continuous Assignment
	Combinational Logic with Always Blocks
	Bitwise Boolean Operators
	Sensitivity List in Combinational Logic
	Sensitivity List in Sequential Logic
	Asynchronous Reset and Synchronous Reset
	Non-blocking Assignment (<=)
	Procedural Statement Note
	Verilog Design Description
	Structural Design of Half Adder
	Behavior Code Style
	RTL Code Style
	Shift Register
	Operation of SISO Shift Register
	FSM Applications
	Difference b/w Moore and Mealy
	Two-Always-Block FSM Style
	Note
	Main Variable Types
	Cadence and Synopsys
	UUT Instantiation
	Backup

