FV Note 1



Verification Completeness — Coverage

_ Code Coverage

Low High
Low Startofthe Is design
project? complete?
Try formal

Functional tools
1Tl High Add Good

functional coverage:

coverage: check bug

include corner rate
cases



Formal Verification — State Space

Legal state space
I—b Complete state space

a) Simulation b) Formal (ideal) C) Formal (real)



Constraints in Formal Property Verification (FPV)

* Constraints play a central role in FPV.
— They define what is legal stimulus to the DUT,
* i.e., what state space can be reached.
e Assertions define the desired behavior of the DUT for the legal stimulus.

* Constraints describe how inputs to the DUT are allowed to behave, what values
should be taken, and temporal relationships between inputs.

— Constraints can be thought of as the stimulus in simulation.
* In constrained random simulation,

— the constraint solver generates an input vector for the next cycle that satisfies
all constraints.

* It will continue to generate cycle after cycle of stimulus
— until the end of simulation,
— oruntil it reaches a situation
* where no legal stimulus can be generated.
=» |n contrast, constraints for formal verification can describe,
— for example, how to legally communicate within a given protocol.

REF: https://www.edn.com/dont-over-constrain-in-formal-property-verification-fpv-flows/




Over and Under-constraining

* Writing constraints that exactly describe all legal stimuli
— is difficult and often undesirable.

e This means that the formal environment is
— either under- constrained
— or over-constrained.

e Under-constrained means that
— there are fewer constraints than required to exactly model the stimulus.

=>» This means that some potentially illegal inputs will be driven to the DUT.

* Over-constrained means that there are more constraints than required,
— and not all legal behaviors will be allowed.

REF: https://www.edn.com/dont-over-constrain-in-formal-property-verification-fpv-flows/




An Example of Under-constrained

Having a slightly under-constrained environment
— is usually the best approach.

Many designs can handle inputs and behaviors not defined in the specification,
— and a larger state space in the design will be verified
 if fewer constraints are used.
An under-constrained environment may lead to failing assertions,
— and if this is the case, additional constraints need to be added.

For example, let’s say we have a 4-bit multiplier to verify:

4 bit Cl4:0]

multiplier




An Example of Under-constrained (2)

The specification says it can multiply positive integers A and B > 0,
— but the verification engineer assumes A and B >= 0.
The constraints and the assertion to check the multiplier is simply:

assume property (@posedge clk) A >= 0;
assume property (@posedge clk) B >= 0;
assert property (@posedge clk) C== A * B;

If the property is proven in this case —
— for either or both A and B being zero
— as well as for positive integers — then obviously
* it will hold for A and B only being greater than zero.

The constraints allowed for additional behaviors, which means the environment is
under-constrained.

Having fewer constraints usually also improves run time of formal tools.

If the properties pass, we don’t have to worry about the under constraining case
anymore.



An Example of Over-constrained

Over-constraining the formal environment is a much bigger problem
— as it may hide bugs in the design.
In effect you are not verifying as much as you think you are.

For example,

— assume the case of a multiplier that can multiply both positive and negative
numbers,

— but the verification engineer
* misinterprets the specification
e and writes constraints to restrict Aand B to >=0.
Assuming the multiplier works,
— the property above will pass,
* and you think verification is done because all properties pass.



An Example of Over-constrained (2)

Over-constraining is only a problem when it is un-intentional.

Intentional over-constraining is a useful method to break up verification of a
design into cases.

One example is verification of a memory controller.
— First constrain the stimulus to do only write transactions,
e and then constrain it to do only read transactions.
— Each of these cases is clearly over-constrained.

— In the first case, read transactions, which are legal transactions, are not
allowed,

* and in the second case, write transactions are not allowed.
— This is not a problem because the two cases together cover all legal stimulus.

It is the case where only one of the cases is exercised and not the other,
— leading the verification engineer to think that verification is done.
A risk with intentionally over-constraining is that legal input values are missed,

— and sequences such as read followed by write (in the case of the memory
controller) are not verified.



Conflicting Constraints

Constraints limit the set of inputs and the state space explored in formal property
verification (FPV).

If the verification environment has constraints that conflict with each other or with
statements in the design,

— no legal inputs may be possible, and none of the state space in the design will be
reachable.

For example,
— the two constraints below can be satisfied individually,
— but together they produce a conflict:
equal: assume property (@ posedge clk) (wb_stb_i == wb_cyc_i)
not_equal: assume property (@ posedge clk) (wb_stb_i !=wb_cyc_i)

Conflicting constraints can be seen as the most extreme form of an over-constrained
environment that is so constrained that there are no legal inputs.

— This means that no assertions can fail, in effect because no checking is done.

It is analogous to saying that none of my test cases fail in simulation when the reason is that
you have not executed any test cases.

The statement is true, but it is misleading in terms of verification completeness.



MAST ER

INTIER CONN

)

Asynchronous cycle termination path

SoC Wishbone Bus

ADR_I() 777 N
S1B | {

CLK_I 4

$

$

t

}

t

N

ACK O

N 7/

}

1

CLK_ 14 | 4

ADR_I() 774

N

Ne1X77

STB_| /

ACK O

(-

/

[

Advanced synchronous terminated burst

WISHBONE Classic synchronous

cycle terminated burst

-



Conflicting Constraints (2)

Most formal tools detect conflicting constraints before attempting to run proofs of
properties.

Manually determining which properties conflict is difficult, and it is better to rely
on tools to report it.



Detection of an Over-constrained Environment



Detection of an Over-constrained Environment

* Having an unintentionally over-constrained environment may hide bugs in
the DUT,

— so it is important to have a methodology to detect it.
* Methods described below to detect over-constraint include:
1. Cover properties
2. Vacuity checks
3. Formal coverage analysis



Cover Properties

Cover properties describe expected behaviors in the design.
— If they fail, it may indicate an over-constrained environment.
* Cover properties are unique to each design
— and are written by design or verification engineers
* to ensure sequences of events can happen.
 For example: (exercise on an FIFO RTL design)
cover property @(posedge clk) empty ##4 full;

— The cover property ensures that it is possible to fill a four-deep FIFO in the
design.

— This means that some write logic must be working.
— If the property fails,
* it could be caused by

— a design bug

— or a constraint that prevents four data values from being written to
the FIFO.

Cover properties are a useful tool to detect an over-constrained environment,
— but the main drawback is that the designer must write them.

* If a cover property is missing, nothing is detected.



Vacuity Checks

Vacuity checks are a type of cover property automatically generated by formal
tools.

The tool creates a check on the antecedent expression of an assertion with an
implication — where the left-hand side of an assertion implies that

— the right-hand side must hold true at some point.
For example:
assert property @(posedge clk) REQ && ACTIVE |-> ##2 DONE;
— The vacuity check for the property above would be equivalent to:
cover property @(posedge clk) REQ && ACTIVE;
— If the vacuity check (cover property above) fails,

* it means that the property can never fail because the antecedent is never
true.

The vacuity check may fail because of a design bug or because of a constraint.
For example:
assume property @(posedge clk) ACTIVE |-> !REQ;



Vacuity Checks (2)

 As we have seen in the example above,

— vacuity checks can also be useful in detecting an over-constrained
environment.

* Their main advantage over cover properties is that
— they are generated automatically by formal tools,
— but they rely on the existence of properties with implications

e and do not check areas of the design where properties are sparse or
missing.



Formal Coverage Analysis (FCA)

* The most effective method to detect an over-constrained environment
— is to use formal coverage analysis (FCA).
* FCA uses simulation-type coverage goals
— such as line, expression, toggle, and FSM coverage
e to determine which parts of the design are reachable.

e Thisis similar to the use of coverage in simulation,

— where you track and measure which lines and expressions have been executed
or reached by the set of test cases.

— If aline of code is not reached in simulation,
* it may be because
— atest has not yet been written,
— or constrained-random simulation didn’t run long enough to reach it.
— Or, it may simply be impossible to reach a particular line of code.



Formal Coverage Analysis (2)

Some parts of the design may be unreachable
— regardless of the constraints.
The structure of the RTL may prevent some lines from being reached.
For example:
— if (A && B) data
— if (!B) data
The assignment data will never be executed in simulation and is unreachable in
formal analysis because it is impossible to reach it.
If (A && B) is true, !B cannot be true at the same time.

This means that it is necessary to first find the coverage goals that are structurally
unreachable

— so they can be distinguished from goals that are unreachable because of
constraints.

If a design is over-constrained, it means part of it is structurally reachable, yet still
unreachable because of the constraints.

— This can be detected by FCA.



Formal Coverage Analysis (3)

Any line, expression, toggle, or FSM coverage goal that is unreachable in the presence of
constraints

— butis reachable when no constraints are applied is a potential problem due to over-
constraining.

The designer needs to determine if the over-constraining in each case is intended or
harmless, or if it needs to be addressed and constraints changed.

For example, if we have the constraint and finite-state machine:
assume always @(posedge clk) B

case (state)
IDLE: begin if (B == 0) next_state end

ACTIVE: begin
if B
else next_state end
END: begin next_state end
endcase

The state END will never be reached because of the constraint,
— and we have an over-constrained environment.
The FSM coverage and line coverage goal will fail for the state END.



Thank You



	FV Note 1
	Verification Completeness – Coverage 
	Formal Verification – State Space
	Constraints in Formal Property Verification (FPV)
	Over and Under-constraining
	An Example of Under-constrained
	An Example of Under-constrained (2)
	An Example of Over-constrained
	An Example of Over-constrained (2)
	Conflicting Constraints
	SoC Wishbone Bus
	Conflicting Constraints (2)
	Detection of an Over-constrained Environment
	Detection of an Over-constrained Environment
	Cover Properties
	Vacuity Checks
	Vacuity Checks (2)
	Formal Coverage Analysis (FCA)
	Formal Coverage Analysis (2)
	Formal Coverage Analysis (3)
	Thank You



