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Constraints in Formal Property Verification (FPV)

• Constraints play a central role in FPV. 

– They define what is legal stimulus to the DUT, 

• i.e., what state space can be reached. 

• Assertions define the desired behavior of the DUT for the legal stimulus.

• Constraints describe how inputs to the DUT are allowed to behave, what values 
should be taken, and temporal relationships between inputs. 

– Constraints can be thought of as the stimulus in simulation. 

• In constrained random simulation, 

– the constraint solver generates an input vector for the next cycle that satisfies 
all constraints. 

• It will continue to generate cycle after cycle of stimulus 

– until the end of simulation, 

– or until it reaches a situation 

• where no legal stimulus can be generated.

 In contrast, constraints for formal verification can describe, 

– for example, how to legally communicatelegally communicate within a given protocolgiven protocol.

REF: https://www.edn.com/dont-over-constrain-in-formal-property-verification-fpv-flows/



Over and Under-constraining

• Writing constraints that exactly describe all legal stimuli

– is difficult and often undesirable. 

• This means that the formal environment is 

– either under- constrained

– or over-constrained.

• Under-constrained means that • Under-constrained means that 

– there are fewer constraints than required to exactly model the stimulus. 

 This means that some potentially illegal inputs will be driven to the DUT.

• Over-constrained means that there are more constraints than required, 

– and not all legal behaviors will be allowed.

REF: https://www.edn.com/dont-over-constrain-in-formal-property-verification-fpv-flows/



An Example of Under-constrained

• Having a slightlyslightly under-constrained environment 

– is usually the best approach. 

• Many designs can handle inputs and behaviors not definednot defined in the specification, 

– and a largerlarger state space in the design will be verified 

• if fewerfewer constraints are used. 

• An under-constrained environment may lead to failing assertions, 

– and if this is the case, additional constraints need to be addedneed to be added. 

• For example, let’s say we have a 4-bit multiplier to verify:



An Example of Under-constrained (2)

• The specification says it can multiply positivepositive integers A and B > 0, 

– but the verification engineerverification engineer assumes A and B >= 0.

• The constraints and the assertion to check the multiplier is simply:

assume property (@posedge clk) A >= 0;

assume property (@posedge clk) B >= 0;

assert property (@posedge clk) C == A * B;

• If the property is proven in this case –

– for either or both A and B being zero 

– as well as for positivepositive integers – then obviously 

• it will hold for A and B only being greater than zerogreater than zero. 

• The constraints allowed for additional behaviors, which means the environment is 
under-constrained. 

• Having fewerfewer constraints usually also improves run time of formal tools. 

• If the properties pass, we don’t have to worry about the under constraining case 
anymore.



An Example of Over-constrained

• Over-constraining the formal environment is a much bigger problembigger problem

– as it may hide bugs in the design. 

• In effect you are not verifying as much as you think you are. 

• For example, 

– assume the case of a multiplier that can multiply both positivepositive and negativenegative
numbers, 

– but the verification engineerverification engineer

• misinterprets the specification

• and writes constraints to restrict A and B to >= 0. 

• Assuming the multiplier works, 

– the property above will pass, 

• and you think verification is done because all properties pass.



An Example of Over-constrained (2)

• Over-constraining is only a problem when it is un-intentional. 

• Intentional over-constraining is a useful method to break up verification of a 
design into cases. 

• One example is verification of a memory controller. 

– First constrain the stimulus to do only write transactions, 

• and then constrain it to do only read transactions. 

– Each of these cases is clearly over-constrained.

– In the first case, read transactions, which are legal transactions, are not – In the first case, read transactions, which are legal transactions, are not 
allowed, 

• and in the second case, write transactions are not allowed. 

– This is not a problem because the two cases together cover all legal stimulus. 

• It is the case where only one of the cases is exercised and not the other, 

– leading the verification engineerverification engineer to think that verification is done. 

• A risk with intentionally over-constraining is that legal input values are missed, 

– and sequences such as read followed by write (in the case of the memory 
controller) are not verified.



Conflicting Constraints

• Constraints limit the set of inputs and the state space explored in formal property 
verification (FPV). 

• If the verification environment has constraints that conflict with each other or with 
statements in the design, 

– no legal inputs may be possible, and none of the state space in the design will be 
reachable. 

• For example, 

– the two constraints below can be satisfied individually, 

– but together they produce a conflict:

equal: assume property (@ posedge clk) (wb_stb_i == wb_cyc_i)equal: assume property (@ posedge clk) (wb_stb_i == wb_cyc_i)

not_equal: assume property (@ posedge clk) (wb_stb_i != wb_cyc_i)

• Conflicting constraints can be seen as the most extreme form of an over-constrained 
environment that is so constrained that there are no legal inputs. 

– This means that no assertions can fail, in effect because no checking is done. 

• It is analogous to saying that none of my test cases fail in simulation when the reason is that 
you have not executed any test cases. 

• The statement is true, but it is misleading in terms of verification completeness.
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Conflicting Constraints (2)

• Most formal tools detect conflicting constraints before attempting to run proofs of 
properties. 

• Manually determining which properties conflict is difficult, and it is better to rely 
on tools to report it. 



Detection of an Over-constrained Environment



Detection of an Over-constrained Environment

• Having an unintentionally over-constrained environment may hide bugs in 
the DUT, 

– so it is important to have a methodology to detect it. 

• Methods described below to detect over-constraint include:

1. Cover properties

2. Vacuity checks2. Vacuity checks

3. Formal coverage analysis



Cover Properties

• Cover properties describe expected behaviors in the design. 

– If they fail, it may indicate an over-constrained environment. 

• Cover properties are unique to each design 

– and are written by design or verification engineers

• to ensure sequences of events can happen. 

• For example: (exercise on an FIFO RTL design)

cover property @(posedge clk) empty ##4 full;

– The cover property ensures that it is possible to fill a four-deep FIFO in the 
design. design. 

– This means that some write logic must be working. 

– If the property fails, 

• it could be caused by 

– a design bug

– or a constraint that prevents four data values from being written to 
the FIFO.

• Cover properties are a useful tool to detect an over-constrained environment, 

– but the main drawback is that the designer must write them. 

• If a cover property is missing, nothing is detected.



Vacuity Checks

• Vacuity checks are a type of cover property automatically generated by formal 
tools. 

• The tool creates a check on the antecedent expression of an assertion with an 
implication – where the left-hand side of an assertion implies that 

– the right-hand side must hold true at some point. 

• For example:

assert property @(posedge clk) REQ && ACTIVE |-> ##2 DONE;

– The vacuity check for the property above would be equivalent to:

cover property @(posedge clk) REQ && ACTIVE;cover property @(posedge clk) REQ && ACTIVE;

– If the vacuity check (cover property aboveabove) fails, 

• it means that the property can never fail because the antecedent is never 
true.

• The vacuity check may fail because of a design bug or because of a constraint. 

• For example:

assume property @(posedge clk) ACTIVE |-> !REQ;



Vacuity Checks (2)

• As we have seen in the example above, 

– vacuity checks can also be useful in detecting an over-constrained 
environment. 

• Their main advantage over cover properties is that 

– they are generated automatically by formal tools, 

– but they rely on the existence of properties with implications 

• and do not check areas of the design where properties are sparse or 
missing.



Formal Coverage Analysis (FCA)

• The most effective method to detect an over-constrained environment 

– is to use formal coverage analysis (FCA).

• FCA uses simulation-type coverage goals 

– such as lineline, expressionexpression, toggletoggle, and FSM coverageFSM coverage

• to determine which parts of the design are reachable. 

• This is similar to the use of coverage in simulation, • This is similar to the use of coverage in simulation, 

– where you track and measure which lines and expressions have been executed 
or reached by the set of test cases. 

– If a line of code is not reached in simulation, 

• it may be because 

– a test has not yet been written, 

– or constrained-random simulation didn’t run long enough to reach it. 

– Or, it may simply be impossible to reach a particular line of code.



Formal Coverage Analysis (2)

• Some parts of the design may be unreachable 

– regardless of the constraints. 

• The structure of the RTL may prevent some lines from being reached. 

• For example:

– if (A && B)  data

– if (!B) data

• The assignment data will never be executed in simulation and is unreachable in 
formal analysis because it is impossible to reach it. 

• If (A && B) is true, !B cannot be true at the same time. 

• This means that it is necessary to first find the coverage goals that are structurally 
unreachable 

– so they can be distinguished from goals that are unreachable because of 
constraints.

• If a design is over-constrained, it means part of it is structurally reachable, yet still 
unreachable because of the constraints. 

– This can be detected by FCA.



Formal Coverage Analysis (3)

• Any line, expression, toggle, or FSM coverage goal that is unreachable in the presence of 
constraints 

– but is reachable when no constraints are applied is a potential problem due to over-
constraining. 

• The designer needs to determine if the over-constraining in each case is intended or 
harmless, or if it needs to be addressed and constraints changed.

• For example, if we have the constraint and finite-state machine:

assume always @(posedge clk) B 

case (state)
IDLE: begin if (B == 0) next_state endIDLE: begin if (B == 0) next_state end
ACTIVE: begin

if B 
else next_state end

END: begin next_state end
endcase

• The state END will never be reached because of the constraint, 

– and we have an over-constrained environment. 

• The FSM coverage and line coverage goal will fail for the state END.



Thank You
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