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Abstract— Traditionally, validation at the ASIC block level relies 
primarily upon simulation based verification. Specific 
components that are “hot spots” are then considered as 
candidates for Formal Verification. Under this usage model, the 
hurdles to Formal Verification are intractability and poor 
specifications. In this paper, we outline an alternate approach, 
where we used Formal Verification as the “first line of defense” 
in the course of validating a Packet Switch. This block had 
several components that were complex and hard to verify, 
including components that required liveness guarantees, where 
responses are event bound, and not cycle bound. To surmount 
typical hurdles, an early collaboration was formed between 
design and verification engineer, both to influence the design as 
well as to identify relevant manual abstraction techniques 
upfront. All significant components were formally verified at the 
module level. 

This approach was successful in identifying most bugs during the 
design phase itself and drastically minimized bugs during 
verification/emulation phases of the project. This paper 
illustrates the strengths of such an approach. It describes our 
overall methodology and the proof techniques utilized. The 
overall effort yielded a total of 55 bugs found (52 during the 
design phase and only 3 bugs during the verification phase). No 
bugs were found subsequently during emulation. As a result, this 
block was deemed “tape out ready” 2 months prior to other 
blocks of similar complexity. 

I. INTRODUCTION  

The complexity of modern designs has been increasing at a 
rapid pace. Modern design blocks are made up of modules that 
have very complex behaviors and interactions. Verification of 
such blocks poses a serious challenge. The conventional 
approach is to verify through simulations at the block level. 
However, simulation has the inherent limitation that one can 
simulate only a limited set of patterns in any reasonable 
amount of time. As design sizes grow, it is becoming 
increasingly difficult to maintain a high level of confidence 
purely based on simulation coverage. A possible solution is to 
use Formal Verification to verify some of complex modules in 
your design. Formal Verification performs exhaustive 
verification by exploring the entire state space of the design.  
 
In this paper, the design block under consideration is a switch 
with around 650k gates and with multiple ports. Most of the 
modules inside this design block have high complexity both in 
terms of the control oriented behavior and data path 
operations. Based on previous experiences, it was estimated 
that simulation based verification techniques of such designs 

would require more than a year for a dedicated engineer to 
fully verify. 
 
In addition, the design in question also had several 
components for which liveness guarantees were required, 
which were not possible to validate using simulation based 
verification. Thus, it was therefore concluded that the most 
cost-effective approach would be to utilize Formal    
Verification techniques to prove correctness of all significant 
components of the design at the module level. Conventional 
simulation based design verification (DV) was also done, but 
at the block level. 
 
Our overall approach was inspired by the following quotation 
from “Mythical Man Month” [1]:  
  
  “The use of clean, debugged components saves much more 
time in system testing than that spent on scaffolding and 
thorough component test." 
 
Our FV efforts commenced very early during the design phase 
and consisted of the following methodology (which took place 
alongside conventional DV efforts at the block level): 
 
1) Partition the design into minimally sized pieces and generate 
specifications at the module level. Use the compositional 
verification technique of proving properties of a system by 
checking the properties of its components, using “assume-
guarantee” style reasoning. 

2) Aim to prove “black-box” (end-to-end module level) 
properties and use the tractability results to both influence 
design re-partitioning as well as to gain insights about RTL 
complexity. 

3) Study cones of influence in order to deduce possibilities for 
manual abstractions. Once identified, these abstractions were 
then used to replace stateful RTL components within the 
design. 

In a few cases where all other options failed, we resorted to 
proving “white-box” properties (based on RTL internal state). 
We used this approach as a last resort since rigorous 
specifications of RTL internals are hard to come by, and 
further, such specifications often change in the course of the 
design cycle. 

This paper will focus on the techniques used to verify two of 
the modules in the design, namely the Synchronizer and the 
Page Manager modules. The first case study is a control & 



datapath block that consists of 20k gates and the second is a 
datapath block that consists of 25k gates. 
 
In subsequent sections, we describe each module, the Device 
Under Test (DUT) operational details, the Formal Verification 
strategy utilized in each case as well as the verification results. 
Later, we also present our overall results (number of bugs 
found etc.) and our high level conclusions. The model 
checkers  Incisive Formal Verifier (IFV)[2] and SMV[5] were 
used over the course of this project. 

II. DESCRIPTION OF  THE PACKET SWITCH 

The design block under consideration was a packet switch 
with multiple ports that accepted packets, stored them in 
memory, and later forwarded them to various output ports, 
allowing for the possibilities of switching and replicating 
packets. 
 
In order to accomplish this functionality, the block had various 
types of complex components, components that were 
responsible for storing incoming packets to memories, 
components that were responsible for  managing pages in 
memory over which packets were stored, components that 
maintained caches, etc.  
 
The goal here was to a) design specifically with Formal 
Verification in mind (keep modules small, keep interfaces 
crisp) as well as to b) formally verify as many elements of the 
design as possible. In total, 14 modules of the design were 
formally verified. The design consisted of 18 modules in its 
entirety. 

 
The following design principles were utilized to ensure FV 
tractability: 

 
• Careful design partitioning with exhaustive invariants 

of module interfaces. 
• Isolation of modules that exhibit FIFO-ness. 
• Significant parameterization of modules, to allow 

abstraction/reduction of bus widths, etc. 
• Significant reuse of common modules, e.g., arbiters, 

aligners, etc. 
• Decomposition of all architectural invariants into 

micro-architectural invariants. 

III. FORMAL VERIFICATION OF THE SYNCHRONIZER  

 
The synchronizer module has two inputs, a) packet data is sent 
across in_{valid,sop,eop,data[63:0]} , where sop and eop are 
start/end packet delimitors and b) address of a valid page is 
specified across in_addr, in_addr_valid. Its purpose is to place 
the arriving data, which arrives in units of 8 bytes, into various 
slots within the specified page. The interface for this module is 
shown in Fig 1. 
 
The input packet data bus adheres to the following protocol: 
in_valid is asserted whenever there is new data presented 

across the input. During the first 8 byte data chunk within a 
packet, in_sop will be asserted, and during the last 8 byte 
chunk, in_eop will be asserted. 
 
Each page is of size 128 bytes, which is broken down into 16 x 
8 byte slots. This module receives an input, sync_cnt[3:0], 
which is an external counter that increments every cycle. The 
output consists of: rf_write, rf_write_sop, rf_write_eop, 
rf_write_data[63:0].  If, at any point in time, we see 
rf_write==1 and sync_cnt==i (where i:=0...15), then it means 
that rf_write_data[63:0] is being written into slot i within the 
page. 
 
The rules determining when/what data is written into a 
particular slot in a page are described in the Operational 
Details section. All data arriving over in_data goes into an 
internal skid_fifo. The data that is at the head of the skid_fifo is 
written out into a page only when various design rules are 
satisfied. 
 
This module is called the synchronizer because it synchronizes 
when and where an incoming data segment is written into a 
page. It is part of a larger system that  is responsible for 
accumulating various 8 byte chunks of data within a register 
file so that it can later generate an atomic memory write 
operation for a half page worth of data. 
 

 

Figure 1 – Block Diagram of the Synchronizer 

IV. OPERATIONAL DETAILS OF THE SYNCHRONIZER  

 
Following are rules governing the Synchronizer module: 
 
• Across the datapath between in_{valid,sop,eop,data} & 

rf_write,rf_write_{sop,eop,data},  FIFO-ness needs to 
hold. Note that the input bus has no backpressure 



capability (i.e., the input interface should always be able 
to sink data and cannot throttle the input bus). 

 
• For a given page (presented on: in_addr), rf_writes should 

occur to slot=0....15 in a monotonically increasing 
fashion. 

 
• For a given page, if a non-EOP data word was written into 

slot=i, then the next data word for this packet must be 
written into slot=i+1. 

 
• If we are at the lower half of a page (slot=7) and a) 

there’s an rf_write or b) we are not within a packet and 
have seen an rf_write in the past to the lower half of this 
page, then at the next cycle hpage_wr will be asserted and 
not otherwise. 

 
• If we are at the upper half of a page (slot=15) and a) 

there’s an rf_write or b) we are not within a packet and 
have seen an rf_write in the past to the upper half of this 
page, then at the next cycle hpage_wr will be asserted and 
not otherwise. 

V. DESIGNER’S INVARIANTS FOR THE SYNCHRONIZER 

Apart from the rules that were identified by the verification 
engineer, we also proceeded to prove the following invariants 
put forth by the designer. The intent here was to prove 
invariants that emerged after interface study by the verification 
engineer, as well as those that were deemed important by the 
designer. 

 
• If there is an rf_write to some slot x (where x=0…15), 

then there will be no write to slot y (y<=x) until there is 
an assertion of output signal hpage_wr. 

 

VI. SYNCHRONIZER VERIFICATION STRATEGY 

We could visually establish that this module demonstrated 
data independence. The circuit accepted data and shuffled it 
around, but no control signals were derived from data. This 
could be done relatively easily, by examining the fan-out cone 
associated with the data-path elements. 
 
Further, the design also dealt exclusively in terms of 8 byte 
(64 bit chunks) and didn't reorder data bytes within each 
incoming double word. In order to prove that the unit fulfilled 
the specification of a FIFO, it was possible to utilize Wolper’s 
Theorem [3], abstract the data width to just 2 bits, inject a 
regular expression consisting of A*BA*CA* over the input 
data interface and expect that the data showing up at the 
output also conformed to this regular expression. 

 
A packet generator was written to inject packets that a) 
conformed to SPI4 framing conventions and b) had a 
minimum length of 64 bytes, over the input bus: 
in_{valid,sop,eop,data}. This packet generator data words 
consisting of just 4 types: {A,B,C,D}, where A=64'h0, 

B=64'h1, C=64'h2, D=64’h3. A auxiliary fsm was written to 
monitor the outputs: rf_write,rf_write_{sop,eop,data}.  
 
Three critical proofs, pertaining to packet data-integrity and 
framing, were then cast  using the packet generator and 
auxiliary FSM. 

 
Proof Obligation1:  To prove data integrity across the FIFO’s 
data-path.  
 
This proof asserted that if we injected packets conforming to 
the regular expression A*BA*CA* over in_data[1:0],  then we 
are guaranteed to see outputs that also conform to the regular 
expression A*BA*CA* over rf_write[1:0]. Note that this 
regular expression is injected and expected across all valid 
input and output data words This proves that no input data 
word is dropped, duplicated or reordered.  
 
Proof Obligation2: To prove that SOPs are preserved intact 
across the internal FIFO. 
 
For this proof, the regular expression A*BA*CA* was injected 
into in_data[1:0] for SOP input words, and D was injected 
into in_data[1:0] for non-SOP input words. The expectation 
was that the regular expression A*BA*CA* will always be 
seen on  rf_write[1:0], for SOP output words and D will 
always be seen on rf_write[1:0], for non SOP output words. 
 
Any corruption of an input SOP word (with data values: 
{A,B,C})  into an output non-SOP word, would result in an 
output non-SOP with a value of {A,B,C}, which will be 
detected as a violation of Proof Obligation2. 
 
Any corruption of an input non-SOP word (with data value: D) 
into an output SOP word, would result in an output SOP word 
with a value of  D, which will be detected as a violation of 
Proof Obligation2. 

 
Proof Obligation3: To prove that EOPs are preserved intact 
across the internal FIFO. 
 
For this proof, the regular expression A*BA*CA* was injected 
into in_data[1:0] for EOP input words, and D was injected 
into in_data[1:0] for non-EOP input words. The expectation 
was that the regular expression A*BA*CA* will always be 
seen on  rf_write[1:0], for EOP output words and D will 
always be seen on rf_write[1:0], for non EOP output words. 
 
Any corruption of an input EOP word (with data values: 
{A,B,C})  into an output non-EOP word, would result in an 
output non-EOP with a value of {A,B,C}, which will be 
detected as a violation of Proof Obligation3. 
 
Any corruption of an input non-EOP word (with data value: 
D) into an output EOP word, would result in an output EOP 
word with a value of  D, which will be detected as a violation 
of Proof Obligation3. 



In order to prove that writes within a page were to 
monotonically increasing slots, a tracking FSM was written. 
This FSM did the following: Every time a new page was 
presented over in_addr, in_addr_valid, it recorded the slot into 
which it first saw an rf_write, storing both the value of 
sync_cnt into last_wr_ptr as well as rf_write_{sop,eop} into 
last_wr_{sop,eop}.  
 
Properties were then written to monitor the behavior of 
rf_write. The two most important assertions were: 

 
1. If we are performing an rf_write to some slot=sync_cnt 

and if this is not the first write to the page, then sync_cnt 
will be greater than last_wr_ptr. 

 
2. If we are performing an rf_write and if this is not the first 

write to the page and if the previous write was a non-EOP 
data word (i.e., last_wr_ptr=i && last_wr_eop=0), then 
this write will be to slot=(i+1). 

 
This tracking FSM also monitored writes to upper/lower 
halves of a page such that later, when sync_cnt={7,15} (i.e., 
write pointer is at the upper/lower half boundaries), if any 
writes had occurred to a half, the output hpage_wr would be 
asserted. 

VII. SYNCHRONIZER VERIFICATION RESULTS 

A critical bug was found in the implementation of hpage_wr. 
The failing counterexample consisted of a scenario where 
there was a write to the upper half of a page for which there 
was a valid hpage_wr assertion. However, this signal 
continued to be asserted for 8 extra cycles indicating a write to 
the lower half of the page inspite of the fact that the lower half 
was not written into. This was found very early in the design 
stage. 
 
Another critical bug was found in the FIFO size required. The 
property corresponding to Proof Obligation1 failed. Our 
analysis showed us that the minimum FIFO depth should have 
been 18 and not 16. The depth had to account for the internal 
FIFO latency. This bug was found very early in the design 
stage. While sync_cnt is a primary input to this module, it is an 
internal signal within the larger block. Since conventional 
simulation based DV was being performed at the block level, 
precise control over this signal is difficult to realize in 
simulation, making this bug an improbable event within block 
level DV. The designer estimates that debugging  this issue 
would have required ~ 2 hours within a block level 
verification test failure, but within the module level FV 
framework, this debugging took just a few minutes. 

VIII. FORMAL VERIFICATION OF THE PAGE MANAGER MODULE 

The Page Manager module’s block diagram is shown in 
Figure 2. It is responsible for managing all pages on the 
receive path of our Ethernet Switch. This module’s interface 
supports four types of requests: Allocate, Enqueue, Dequeue 
and Dealloc. It also has an output bus, Page Free. 

IX. PAGE MANAGER OPERATIONAL DETAILS 

Data passing through the switch from input to output ports is 
stored in pages. A list of pages defines a packet. The Page 
Manager maintains the state of the page, from the time it is 
allocated until the time it is relinquished. Internally, the Page 
Manager consists of a) Free List Manager and b) Life Count 
Memory. These two sub-units together maintain the state of a 
page, which consists of its allocation state as well its reference 
count (i.e., the number of packets utilizing that page). 

 

 
 

 Figure 2 – Block Diagram of Page Manager 
 
The Free List Manager sub-unit maintains a list of free pages 
and its interface allows pages to be allocated and freed. The 
Life Count Memory sub-unit maintains a reference count (also 
called Life count or lcnt) on a per-page basis, representing the 
number of packets present on a single page. The legal lcnt 
values are: 0...3. 
 
The life cycle of any page consists of the following event 
sequence: 
• The unit first receives a Page Allocate. This request is 

fielded by the Free List Manager, and a free page is 
handed to out to the requestor. Coincident with that, the 
page’s lcnt is initialized to 0 in the Life Count Memory.. 
 

• Once a page has been successfully allocated, an Enqueue 
request will be received along with a specified initial lcnt. 
The legal values for lcnt are: {0,1,2,3}. This information 
is then stored alongside the page within the LCNT 
complex. 

 
• After a page has been Enqueue’ed, it will then receive (at 

arbitrary points in time), various Page Dealloc requests. 



During each Dealloc request, this page’s lcnt, will be 
decremented in the Life Count Memory complex.  
 

• The design assumes that once a page has been  
Enqueue’ed with some lcnt (1,2 or 3), it will only field 
those many Dealloc requests.  After the last Dealloc 
request (in the course of which a particular page’s lcnt 
goes from 1 to 0), the Free List Manager should free the 
relevant page and thePage Free output signal will be 
asserted. 
 

• Between the time a particular page has been  Enqueue’ed, 
and the time it is freed up, its lcnt can be read any number 
of times over the Page  Dequeue interface. Each Dequeue 
request extracts the lcnt and return this value in the 
Dequeue response. 

X. PAGE MANAGER VERIFICATION STRATEGY 

The design was responsible for managing a total of 1024 
pages.  When an attempt was made to cast proofs against the 
DUT, it was found that the proofs did not converge due to 
state space explosion. The biggest contributor to the state 
space was the Free List Manager (with 1024 state bits). 
  
The Free List Manager’s interface definition is shown in 
Table I. This module has a page allocation interface 
alloc_{srdy,drdy,num} as well as a page free interface 
dlloc_{srdy,drdy,num}.  
 
 Table I (Free List Manager Interface) 
 

 
                 
 

Our abstraction reasoning hinged on a single observation: If 
you focus on the life of a single page, every other page’s 
activity (and state) should be orthogonal to this page’s life.  
We utilized this observation in constructing a manual 
abstraction for the Free List Manager that maintains state only 
for a single page of interest thereby cutting down the size of 
the cone-of-influence significantly. This technique is based on 
the Refinement strategy described in [4].  
 
The Free List Manager abstraction had the following 
characteristics: 
 
• It was aware of the address of a magic page and 

maintained state only for that page. 
 
• It operates in two modes, depending upon whether this 

magic page is allocated or not: 
• If the magic page was already allocated, during 

subsequent allocation requests, it would non-
deterministically allocate a page whose address!= 
magic page. 

 
• If the magic page wasn’t already allocated, during 

subsequent allocation requests, it would non-
deterministically allocate any page (including one 
whose address == magic page). 

           
This Free List Manager abstraction SMV code is shown in 
Table II.  This abstraction was coded in both SMV (for 
abstraction soundness proofs) as well as in verilog  (for the 
Page Manager proofs,  which were run within IFV). 
 
As can be seen in the abstraction’s code, a single state 
variable, magicPageAllocated, was used to record whether or 
not the magic page was allocated, and this state is then used in 
determining the page handed out during allocation requests. 
 
Aside from this state, the notion of magic page was 
maintained within a rigid variable that was set non-
deterministically by the external environment at the time of 
reset, and kept constant during each path. By virtue of 
maintaining just 1 bit of state (magic page’s allocation state), 
the number of bits of state was reduced by 1023 bits within the 
cone of influence. This abstraction was then used to replace 
the Free List Manager instance within the DUT. 
 
The intent here, in the construction of the Free List Manager 
abstraction, was to provide ourselves with a light-weight stub 
that allowed completely non-deterministic allocation and 
freeing of pages, with arbitrary latencies, with a single 
restriction that it would never reallocate the magic page, if 
someone else already have it allocated – which are 
characteristics required for this abstraction to be “sound”. 
 
 
 
 

/* 
*       alloc_srdy => alloc page available 
*       alloc_drdy => alloc page consumed by client 
*       alloc_num => alloc page number 
*       dlloc_srdy => dlloc page requested by client 
*       dlloc_drdy => dlloc page request accepted 
*       dlloc_num => dlloc page number 
*/ 

module fl_mgr( 
   Clk, 
   Rst_, 
   alloc_srdy,             
   alloc_drdy,             
   alloc_num,             
   dlloc_srdy,             
   dlloc_drdy,             
   dlloc_num             
); 
input            Clk; 
input            Rst_; 
output           alloc_srdy; 
input            alloc_drdy; 
output [9:0]     alloc_num; 
input            dlloc_srdy; 
output           dlloc_drdy; 
input [9:0]      dlloc_num; 
... 
endmodule 
 



 Table II (Free List Manager Abstraction) 

 
 The FV framework additionally maintained an auxiliary non-
deterministic “tracking state” FSM (trkState) to both 
exhaustively generate requests sequences while tracking the 
life of the magic page as well as to help predict the DUT’s 
responses.  This FSM’s state diagram is shown in Figure 3 
 
The trkState FSM starts off in IDLE state and transitions into 
ALCD state if magic page is allocated.  Once it is in ALCD 
state, it non-deterministically generates an Enqueue request 
with lcnt={1,2,3} and transitions to states LCNT1, LCNT2, 
LCNT3 respectively. After it moves into an LCNT state, it 

then non-deterministically generates as many Dealloc requests 
as is permissable.  
 
During the last Dealloc request generation (which occurs 
while in LCNT1) state, this FSM expects to see a Page Free 
event for the magic page. If this event occurs, the FSM 
transitions to IDLE. On the other hand, during this last 
Dealloc, a Page Free event is not observed for the magic 
page, it transitions to and forever remains in ERROR state. In 
addition, any unexpected output event also caused a transition 
to ERROR state. 
 

 
             Figure 3 – trkState FSM state diagram 
 
There are two modes of operation within the FV framework, 
based on whether or not magicPageAllocated is set: 
 

1. If magicPageAllocated is 0, the trkState FSM will be in 
IDLE and the FV framework will non-deterministically 
generate requests (for any page), to the DUT. 

 
2. If magicPageAllocated is 1, the trkState FSM will 

generate legal/exhaustive requests (for magic page) 
while other input constraints non-deterministically 
generate requests (for any page other than magic page). 

 
In addition to generating exhaustive and legal inputs, the 
purpose of the FSM’s state variable was to predict the DUT’s 
responses while in various states.   
 
We now describe some important assertions governing the 
DUT’s behavior  (These were coded in System Verilog): 
 
• While in non-IDLE states (i.e., magic page has already 

allocated), the DUT should not reallocate magic page to 
any other requesting agent. 

 

    
   layer abstract : { 
      alcVld                               : boolean; 
      dlcVld                             : boolean; 
      magicPageAllocated        : boolean; 
      magicPageAllocatedNxt  : boolean; 
 
      alcVld := (alloc_srdy & alloc_drdy); 
      dlcVld := (dlloc_srdy & dlloc_drdy); 
 
      init  (magicPageAllocated) := 0; 
      next (magicPageAllocated) := magicPageAllocatedNxt; 
 
      /* magicPageAllocatedNxt generation */ 
      default { 
         magicPageAllocatedNxt := magicPageAllocated; 
      } in { 
         if (~Rst_) 
            magicPageAllocatedNxt := 0; 
         else { 
            if (alcVld & ~dlcVld){  
               /* Only Alloc */ 
               if ((alloc_num=magicPage) | magicPageAllocated) 
                  magicPageAllocatedNxt := 1; 
            } 
            else 
            if (~alcVld & dlcVld){   
               /* Only Dlloc */ 
               if (magicPageAllocated & dlloc_num=magicPage) 
                  magicPageAllocatedNxt := 0; 
            } 
            else 
            if (alcVld & dlcVld){    
               /* Both Alloc & Dlloc */ 
               if (alloc_num=magicPage) 
                  magicPageAllocatedNxt := 1; 
               else 
               if (dlloc_num=magicPage) 
                  magicPageAllocatedNxt := 0; 
            } 
         } 
      } 
 
      /* alloc_num generation */ 
      default { 
         /* any page whatsoever */ 
         alloc_num := {0..MAX_NPAGES-1}; 
      } in { 
         if (alloc_drdy & magicPageAllocated){ 
            /* any page other than magicPage */ 
            alloc_num := { i : i=0..MAX_NPAGES-1, i~=magic Page }; 
         } 
      }    



• After the Allocate phase, during the  Enqueue phase for 
the magic page, the specified lcnt  should be initialized. 

 
• After the  Enqueue phase for the magic page, during each 

Dealloc phase, its lcnt should be properly decremented in 
the LCNT memory. 

 
• The output Page Free should be generated for the magic 

page if and only if the last Dealloc request has been 
issued for this page. 

 
• While in non-IDLE states, for any  Dequeue request, the 

response lcnt should match what we expect based on the 
FSM state (0 if in ALCD, 1 if in LCNT1, 2 if in LCNT2, 
3 if in LCNT3). 

 
                  Table III (Example SV Assertions) 
 

                     
We provide some example SV assertions in Table III. The first 
property, assert_page_no_realloc, asserts that if trkState is not 
IDLE, that is if the magic page is already allocated, it will not 
be reallocated to any other requestor. 
 
The second and third properties that are shown here, 
assert_page_free_{valid,invalid}, describe the necessary and 
sufficient condition required for the magic page to be freed 

(“magic page should be freed if and only if trkState is in 
LCNT1 and magic page is deallocated”). 
 
By maintaining a rigid variable that determined magic page 
and by having a Free List Manager abstraction that 
maintained state for just this one page, the design was 
rendered tractable. The properties outlined earlier were all 
proven against the life of this single magic page, and since this 
page address was non-deterministically generated (to have any 
page address), the proofs hold for all pages. 
 
In the interest of completeness, the Free List Manager was 
separately formally verified within an SMV framework. Two 
properties were proven against the actual Free List Manager: 
 
• A page, once allocated, will never be reallocated until it is 

deallocated (safety property) 
• All page allocation requests will eventually be fulfilled 

(liveness property) 
 
It is worth noting that the last property mentioned above 
required the following fairness constraint: “Every allocated 
page will always eventually be relinquished” in order to 
eliminate invalid counter-examples.  
 
In addition, the soundness of (an SMV version of) the Free 
List Manager abstraction was also proven within this 
framework. 

XI. OVERALL VERIFICATION RESULTS 

During this project, 14 modules within this block were 
formally verified by a single FV engineer, over a period of 6 
months. A total of 55 bugs were found during this effort; 52 
bugs were found in the design phase and 3 bugs were  found in 
the verification phase. It is also worth noting that during the 
verification phase, 3 other bugs slipped through FV and were 
found in block level simulation (2 were due to missing 
properties and 1 was due to an overly tight constraint).    
 
The 3 bugs found in simulation were recreated within FV by 
adding new properties and correcting an overly constrained 
input.  In addition, the fixes were formally verified. 
 
During emulation, this formally verified block was the first to 
successfully withstand data integrity type testing. As a 
consequence, this block was deemed tape-out ready two 
months prior to other blocks, of similar complexity that 
exclusively underwent simulation based verification. 
 
During ASIC “bring-up”, no issues were found in any of the 
design components that were formally verified. 
 

XII. CONCLUSIONS 

Based on our experience, we come to the conclusion that it is 
possible to significantly address block level verification needs 

 
/*   
 *  If we’re in non-IDLE state, magic page is already in use and  
 * should not be reallocated to any other requestor  
 */ 
assert_page_no_realloc: assert property( 
   @(posedge Clk) disable iff  (!Rst_)( 
      (trkState!=IDLE) |-> !(page_alloc_req && page_alloc_rsp 
&& page_alloc_pgnum==magic_page) 
   ) 
); 
 
/* 
 *  If  in LCNT1 state and there is a dealloc of the magic page,  
 * then we should see a freeing of the magic page  
 */ 
assert_page_free_valid: assert property( 
   @(posedge Clk) disable iff  (!Rst_)( 
      (trkState==LCNT1 && page_dealloc_req &&  
page_dealloc_rsp && page_dealloc_pgnum==magic_page) |-> 
      (page_free_req && page_free_pgnum==magic_page 
   ) 
); 
 
/*  
 * If  in !(LCNT1 state and there is a dealloc of the magic page), 
 * then we should not see a freeing of the magic page  
 */ 
assert_page_free_invalid: assert property( 
   @(posedge Clk) disable iff  (!Rst_)( 
     ! (trkState==LCNT1 && page_dealloc_req &&  
page_dealloc_rsp && page_dealloc_pgnum==magic_page) |-> 
     ! (page_free_req && page_free_pgnum==magic_page 
   ) 
); 
 



by breaking down the design into minimally sized modules and 
then formally verifying each of them. 

Our methodology also helped yield the following benefits over 
the course of this project: 

• Overcoming state space explosion during proof runs 
within the model checker. 

• Generating rigorous specifications upfront at the module 
level, something that is often overlooked while embarking 
on “block level” DV. 

• Providing SVA assertions and assumptions which could 
also be used in simulation. 

• Creating FV frameworks within which we could verify 
design changes/bug fixes with a high degree of confidence 
alleviating the need to rerun all simulation tests. 

While re-partitioning of design based on FV tractability can 
sometimes lead to added design latency, this tradeoff was 
worthwhile overall because the more minimally sized design 
modules were easier to maintain. 

We also observed that debugging of counter-examples was 
very efficient since we specified a large number of module 
level invariants that helped isolate root-causes fairly quickly. 

We believe there is value in some amount of overlap between 
FV efforts and conventional simulation based verification. 
Such a parallel/overlapping approach reduces the risks posed 
by overly tight constraints and inadequate (or missing) 
properties. This overlapping effort is justified by the fact that 
almost all bugs were found in the design phase itself and the 
FV proof frameworks provided us with a vehicle within which 
the fixes could be formally verified. 

While the techniques outlined here, to render modules tractable 
under FV, are well known in the research world, they are 
seldom applied in the course of ASIC formal verification 
efforts and are hence worth emphasizing. 

XIII. LIMITATIONS AND FUTURE WORK 

Our approach relies on the verification engineer using design 
insights to come up with the right manual abstractions. This 
approach does risk bias particularly in light of the fact that  
commercial model checkers (that we know of) lack the means 

to prove soundness of abstractions or the means to express 
refinement maps (as can be done with SMV[5]).  

To alleviate this risk, we made a deliberate attempt to keep our 
abstractions very simple (less than half a screen worth of 
verilog code per abstraction), and as a result have a high degree 
of confidence in our abstractions’ soundness. 

For the specific case of the Free List Manager abstraction, we 
reimplemented this abstraction within an SMV “layer” and 
proved its soundness, ensuring that for every path taken within 
the RTL component replaced, there exists at least one identical 
path within the abstract definition. 

Most commercial model checkers do not possess the ability to 
verify data-independence in any automated way. We look 
forward to such features so that we can utilize them in the 
interest of completeness. 

However, to put these concerns into practical perspective, we 
observe that these risks are no worse than other concerns, such 
as ensuring that DUT inputs are not over-constrained, ensuring 
that assertions correctly capture the specification’s intent, etc. 
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