Rochester Institute of Technology

RIT Digital Institutional Repository

Theses

8-2018

Design and Verification of a Round-Robin Arbiter

Aung Toe
axt1937@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation
Toe, Aung, "Design and Verification of a Round-Robin Arbiter" (2018). Thesis. Rochester Institute of
Technology. Accessed from

This Master's Project is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9826?utm_source=repository.rit.edu%2Ftheses%2F9826&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

DESIGN AND VERIFICATION OF A ROUND-ROBIN ARBITER

by
Aung Toe

GRADUATE PAPER
Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE
in Electrical Engineering

Approved by:

Mr. Mark A. Indovina, Lecturer
Graduate Research Advisor, Department of Electrical and Microelectronic Engineering

Dr. Sohail A. Dianat, Professor
Department Head, Department of Electrical and Microelectronic Engineering

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING
KATE GLEASON COLLEGE OF ENGINEERING
ROCHESTER INSTITUTE OF TECHNOLOGY
ROCHESTER, NEW YORK
AvugusT 2018

To my family and friends, for all of their endless love, support, and encouragement.

Abstract

As the number of bus masters increases in chip, the performance of a system largely depends
on the arbitration scheme. The throughput of the system is affected by the arbiter circuit
which controls the grant for various requestors. An arbitration scheme is usually chosen
based on the application. A memory arbiter decides which CPU will get access for each
cycle. A packet switch uses an arbiter to decide which input packet will be scheduled to
the output. This paper introduces a Round-robin arbitration with adjustable weight of
resource access time. The Round-robin arbiter mechanism is useful when no starvation
of grants is allowed. The arbiter quantizes time shares each requestor is allowed to have.
A minimal fairness is guaranteed by granting requestors in Round-robin manner. The
requestors can prioritize their time shares by the weight. For example, if requestor A has
a weight of two and requestor B has a weight of four, arbiter will allocate requestor B with
time slice two times longer than that of requestor A’s. The verification of the design is
carried out using SystemVerilog. The inputs of the arbiter are randomized, outputs are
predicted in a software model and verification coverage is collected. The work in this paper

includes design and verification of a weighted Round-robin arbiter.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this paper are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other University. This
paper is the result of my own work and includes nothing which is the outcome of work

done in collaboration, except where specifically indicated in the text.

Aung Toe
August 2018

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor/mentor, Mark A.
Indovina, for the continuous support throughout the project. Under his mentor-ship, not
only did I learn to love complex digital systems but also to become a good engineer.

I would also like to thank my professor, Dorin Patru, for introducing me to various prac-
tical design concepts during my coursework at Rochester Institute of Technology (RIT).

My sincere thanks to all my friends who shared my journey at RIT for the sleepless
nights working together before deadlines.

Last but not least, I want to thank David Coumou, Aaron Radomski and Daniel Gill

for their patience and guidance in my career development.

Contents

Abstract

Declaration

Acknowledgements

Contents

List of Figures

List of Listings

List of Tables

1

Introduction
1.1 Organization

Background Research

2.1 Fixed Priority Arbitration
2.2 Lottery Arbiter
2.3 Matrix Arbiter
Weighted Round-Robin Arbiter

3.1 Weight Decoder
3.2 Next Grant Precalculator
3.3 Grant State Machine Lo

SystemVerilog Verification Design

4.1 Requestor
4.2 Generator
4.3 Agent ..o
4.4 Driver

4.5 Monitor

ii

iii

iv

vii

viii

ix

[N

Contents vi
4.6 Checker 21
4.7 Scoreboard 22
4.8 DeterminiSm 22

5 Tests and Results 23
5.1 Simulation 23

5.1.1 Weight Decodero 23
5.1.2 Next Grant PreCalculator 24
5.1.3 Round-Robin Top Level/Grant State Machine 24
5.2 SystemVerilog Verification Results 24
5.2.1 Scoreboard scores 24
5.3 System Overhead 25
5.3.1 Area Overhead 25
5.3.2 Power Overhead 25

6 Conclusions 28
6.1 Future Work 29

References 30

I Arbiter Source Code I-1

IT Test Bench Source Code I1-35

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2
5.3

Lottery Manager [1] 6
Priority Matrix[2] 7
Matrix Transition 8
Packet Switching Architecture oL 10
Weight Bus Sizeo 11
One-hot Index Flowchart 12
Next Grant PreCalculator 13
NGPRC Calculation Steps 14
Grant State Machine oo 15
SystemVerilog Environmento 18
Function Coverage Loop [3] 19
Weight Decoder 23
Next Grant PreCalculator 24
Top Level Simulation 24

List of Listings

[.1 Weight Decoder Module I-1
[.2 Weight Decoder Test Module I-4
[.3 Next Grant Precalculator Module I-8
[.4 Next Grant Precalculator Test Module 1-13
.5 Grant Module I-21
[.6 Round Robin Arbiter Module [-27
I.7 Round Robin Arbiter Test Module [-31
IT.1 Requestor Module 11-35
I1.2 Generator Module 11-37
II.3 Agent Module [1-39
II.4 Driver Module e 11-42
II.5 Monitor Module 11-45
II.6 Checker Module 11-49
I1.7 Scoreboard Module 11-52
I1.8 Assertion Module 11-53
I1.9 Interface Module o 1I-54
I1.10 Environment Module 1I-55
I1.11 TopLevel Module [1-56

I1.12 TestCase Module

List of Tables

5.1 SystemVerilog Verification Hit Scores
5.2 Area Overhead
5.3 Power Overhead

Chapter 1

Introduction

Scheduling algorithms are required when multiple requestors require access to a shared
resource. In a System on Chip (SoC), multiple devices in the chip are needed to work
together. As a result, an SoC may have multiple bus masters. A fast and powerful arbiter
becomes important to service all the bus masters. Another example of arbitration system
application is network switches. In a network switch, packets from multiple input ports
need to go through a single output port[4, 5]. As the number of parallel processes increases,
accessing a shared resource becomes the bottleneck in performance[6]. One of the goals
of a scheduler is to maximize throughput. The throughput of a system can be maximized
by minimizing wait time for each request. The advantages of utilizing arbiters include
access fairness for the requestors to the resources, utilization without wasting cycles, re-
usability, arbitration speed, power and resource overhead[7, 8]. Different types of Round-
robin arbiters such as baseline arbiters, time speculative arbiters, acyclic arbiters, parallel
prefix arbiters, priority based arbiters, etc... are used in various applications|[9].

In the case of multiple bus masters, all masters require access to a shared resource

at the same or similar level of priority. A Round-robin arbitration mechanism fits the

1.1 Organization 2

application of fairness without starving the requestors. A Round-robin arbiter allocates
fixed time slices for the masters for each Round-robin turn. This time slice limitation
allows the predictability of worst-case time when the grant will get granted[10).

In this paper, a Round-robin arbiter is designed using weight decoder, next grant pre-
calculate logic and granting logic. The weight of each granted requestor is decoded using a
weight decoder logic. Based on the current grant, the next possible grant is precalculated in
Round-robin mechanism. Finally, the granting logic checks for requests and precalculated
next grant mask to select a single grant.

Weight decoder, next grant precalculator and grant state-machine are designed to be
configurable. The number of requestors and the bit width of the weight can be set before
synthesis. The request inputs and grant outputs are in one-hot format. The weights
requested by requestors are concatenated in a weight bus. The weight decoder logic dictates
the grant logic how long each grant is needed for each request. The next grant calculator
algorithm enforces the grant logic to be in Round-robin order. The calculator acts like a
record book to keep track of current grant and next possible grants. Every clock cycle, the
grant logic state-machine services appropriate grant by checking the weight, current grant,

requests and precalculated next grant.

1.1 Organization

This paper is organized as follows:
o Chapter 2 discusses different arbitration algorithms.
o Chapter 3 discusses the design and implementation of weighted Round-robin arbiter.

o Chapter 4 discusses the design and implementation of SystemVerilog verification.

1.1 Organization

o Chapter 5 discusses the test results and statistics of 8 port arbiter.

o Chapter 6 is the conclusion and possible future work.

Chapter 2

Background Research

Arbiters play an important role when multiple requests are sent to access a single resource.
In a network switching router, the packets received on input ports are sent out to the
respective output ports. The arbiter acts a middle man to direct which input gets to send
its packet to the designated output. The arbitration speed of the arbiter has a large factor
in determining the speed of switching performance. Of the many metrics to benchmark
an arbiter, fairness is a good unit to measure the performance, and there are a few types

typically utilized:
o Weak Fairness
o Weighted Fairness
« Last Served Lowest Priority (LSLP)

Weak Fairness means a request may have to wait indefinitely until it gets served. There
may be higher priority requestors holding on to the grant. Section 2.1 discusses a Fixed
Priority Arbiter that demonstrates the weak fairness metric. The Lottery Arbiter discussed

in Section 2.2 updates the weight of the lottery ticket as it arbitrates. The weight of the

2.1 Fixed Priority Arbitration 5

ticket increases the chances of winning the grant. This algorithm has the property of
Weighted Fairness. The Matrix Arbiter in Section 2.3 has the property of LSLP. The last

served requestor will have the lowest priority in the arbiter.

2.1 Fixed Priority Arbitration

Fixed priority arbiter is the simplest form of arbiter. It is also known as per-emptive arbiter
due to the nature of its scheduling algorithm. Each master is given a priority from high to
low. As shown in Eqn 2.1, master ¢ — 1 has higher priority than master (7, 9]. For master
7 to get the grant, all the masters higher priority than master ¢ must not be requesting to

the arbiter.

grant; = Teqy - Te€q; - Teqy - + - TEg;—_1 * T'eq; (2.1)

For example, if there are 3 masters, master 0 is given priority 0, master 1 priority 1 and
master 2 priority 2. Grant is given to the master that has the highest priority. If master
0 and master 1 request at the same time, master 0 will get the grant since it has higher
priority. As a result, a higher priority master can starve other masters by monopolizing
the bus. However, due to the simplicity of the design, fixed priority arbiters are very useful
in applications where high priority tasks need immediate servicing and low priority tasks

can wait indefinitely to get grant.

2.2 Lottery Arbiter

Lottery arbitration scheduling is based on the weighted probabilistic distributions. The

algorithm utilizes a lottery manager to mange the drawing of grants. As in Figure 2.1,

2.2 Lottery Arbiter 6

lottery manger gives a numbered ticket/request to each master. The weight of the ticket

number is increased each time a specific master requests.

Ticket 1 le Ticket 3

Lott
—— ottery manager bk

G”p/'GntZ / \
Y/ Gnt3 Sk \

Bus I/F Bus I/F Bus I/F Bus I/F

Master 1 Master 2 Master 3 Master 4

I N |

Shared bus

Figure 2.1: Lottery Manager [1]

Assuming a non-empty set of weights {wy,ws,...,w,}, the probability of winning a

ticket can be calculated as in Eqn 2.2.

w;

- 2.2
S (2.2)

Di

The manager draws the highest numbered ticket as a winner. The ticket count of the
granted master is reset on winning the lottery. The reset makes the current winner less
likely to be chosen on the next draw. In case of a tie, the manager may choose any master.
If there is only one master requesting, the manger will choose the trivial solution. As a
result of this pseudo-randomization, the masters get a fair share of bus time dictated by

the weight of the lottery ticket.

2.3 Matrix Arbiter 7

2.3 Matrix Arbiter

Matrix arbiters are designed to enforce last served master to have the lowest priority on
the shared resources. It keeps track of the priority in a square matrix form. The rows and
columns of the matrix represents the requestors. The i row can be linked to requestor i

and j"column requestor j. Figure 2.2 shows the 4 requestors mapping in a 4 by 4 matrix.

— —

X PI{Z I/VIB le,él
X W, W
1 WZ X mél

3
W,

N
N

-

)
i)

SN NN

Figure 2.2: Priority Matrix[2]

" row and j¥ column, requestor i

The rule of the matrix arbiter is if there is a 1 in ¢
has priority over requestor j. As in Figure 2.3, if requestor 2 sends a request, the grant
will be issued to requestor 2. The elements in row 2 are set to zero. It forces requestor 2
to have the lowest priority. At the same time the elements in column 2 are set to 1. It
makes other requestors beat requestor 2 in the next iteration. Matrix arbiters are useful

when the number of inputs are small. If the number of requests increases, the structure of

the arbiter increases leading to larger area overhead[11].

2.3 Matrix Arbiter

2 I O O e |
B g e e |
[0 | x4
D[(D|0]| x
X[k | 3
D (x|(0]0
5 A S
D1 (0] x

Figure 2.3: Matrix Transition

Chapter 3

Weighted Round-Robin Arbiter

Round-robin arbitration has multiple flavors to fit the desired application. In some applica-
tions two-pick Round-robin arbiters are used instead of one pick arbiters[12]. However, the
final goal, starvation prevention and statistical fairness, is the same[13]. The algorithms
introduced in Chapter 2 give the grant to the master that has the higher priority. It means
a master has the ability to monopolize the bus for a long time. This causes bus starvation
to the masters with lower priorities. Weighted Round-robin arbiter design is based on the
algorithm that the scheduling of grants must go on in a Round-robin manner. This work
is based on a two-step approach. The arbiter monitors the requests and give them grants
in the next clock. In best case condition, the request at time ¢; will get serviced at time
ti11[14]. This scheduling algorithm makes sure each master gets its share of time slice in
a fair amount of time. A good analogy would be if there are 4 masters in x cycle arbiter,
each master will get a quantized time slice of x/4 cycles. However, in some applications,
one bus master may require more bus time than others. Figure 3.1 shows top level view of

Round-robin arbiter in a network packet switching system.

3.1 Weight Decoder 10

Reqint .4
Gnc:Int E: Round Robin _» RegDnStr
Arbiter |, | FullDnStr
Packet 0 . { sel
o 1= Mux. PacketOut
Packet 2 s
Packet 3 =p—

Figure 3.1: Packet Switching Architecture

This paper introduces another configurable variable called weight. The weight of each
master can be defined as the grant time slice that the master can configure in the arbiter.
If all the masters have the same amount of weight, each master will get an equal time
share of the pie. If master A requests 20 cycles and master B requests 10 cycles, master
A will get grant 2 times longer than master B. One disadvantage of letting the masters to
configure the weight is a master may configure a very large weight. To reduce this large
weight monopoly, another global configurable maximum allowed weight is added. A master
may request a very large weight value, but the arbiter will only grant up to the maximum

allowed weight if there are other masters waiting.

3.1 Weight Decoder

Weight decoder decodes one-hot grant to decode the correct weight of the granted master.
As shown in Figure 3.2, the weight of the masters are concatenated to form a weight bus.
As in Eqn 3.1, the width of the bus can be calculated by the width of a single weight and

the total number of masters in the arbiter.

3.1 Weight Decoder 11

w4 w3 w2 wl wO
bitWidth
y N\
N\ 7
Bus Size = bitWidth*number of masters
Figure 3.2: Weight Bus Size
busWidth = weightWidth * numO f Masters (3.1)

Weight decoder takes current grant as an one-hot input. The input grant is decoded
to produce an index for correct bit slice positions of the weight bus. Figure 3.3 shows
the flowchart to produce the correct index. For example, if the grant is 6’0010, the index
output is 1. Index of 1 stands for the master no. 1. The weight of master 1 is decoded as
an output. If the grant is 0100, index output is 2. The weight of master 2 is decoded as

an output.

3.2 Next Grant Precalculator 12

-
-
-
-
.
-

yes

Output =i Output =i

L |

i=i+1

i< CHANMELS?

(End

Figure 3.3: One-hot Index Flowchart

3.2 Next Grant Precalculator

Next Grant PReCalculator(NGPRC) calculates the next possible grants mask based on
current grant. By precalculating the next possible grants, NGPRC dictates the Round-

robin arbitration of the arbiter. As in Figure 3.4, if all 4 masters in the arbiter are

3.2 Next Grant Precalculator 13

requesting and current grant is master 1, next possible grant is restricted to be in the order
of master 2, master 3 and master 0. The arbiter cannot skip master 2 to grant master 3.
It would violate Round-robin scheme and it is not allowed. By giving next possible grant

priority to the Grant State-machine, it forces the grant to be in strict Round-robin order.

Mext Possible Grant Priority 3

1
1

Next Possible Grant Priority 2 oy | 3 1 | === Current Grant

Mext Possible Grant Priority 1

Figure 3.4: Next Grant PreCalculator

Figure 3.5 shows the calculation steps NGPRC takes to compute the next possible grant
priority. For example, if current grant is 0010, rotate left gives 4'0100. After inversion,
the bits become 0/1011. After increment by 1, the next possible grant becomes 5'1100. It

means the leftmost 2 bits are in line in priority.

3.3 Grant State Machine 14

/ - N
)
[start |
.
Y
Rotate left

h 4

Invert

Y

Increment by 1

Figure 3.5: NGPRC Calculation Steps

3.3 Grant State Machine

Grant state machine is the logic to calculate which master gets the grant and for how long
based on the weight. The grant logic is based on the requests and next grant priority
mask created by NGPRC. Figure 3.6 shows the state flow diagram of grant state machine.
“Grant Process” state masks requests using precalculated mask to grant the next requesting
master. After the grant is decided, it moves to “Get Weight” state to fetch the weight of
the grant from Weight Decoder. After that, it moves to “Count” state to count the clock

cycles until local counter reaches the desired weight.

3.3 Grant State Machine

15

Reset ==

(Start

Reset

Reset ==

Grant Process

[———Counter >= weight————

Count

Grant == J———Jp Get Weight

Reset==1

Figure 3.6: Grant State Machine

Chapter 4

SystemVerilog Verification Design

As the sizes and complexity of electronic design increases, faster integration of design and
verification of complex systems become mandatory[15]. The beginning of a new feature
starts with architectural exploration and ends with functional verification. The studies
find that the verification of a design occupies the most amount of time in a project life-
cycle[16]. The time required to verify a design from the end of a design life-cycle can
be defined as a verification gap. As engineers reuse Intellectual Property (IP) cores, de-
sign engineers can produce complex features in short time. However, these new features
are still needed to be verified. As a result, the verification gap increases as the product
cycle rotates between debugging and verification. To reduce the gap, design engineers
and verification engineers have to come to an agreement of having a universal verification
process[17]. SystemVerilog language is introduced as a common language to design verifi-
cation environment as a Universal Verification Methodology (UVM). A unified verification
methodology is important because about 70% of the design cycle time is used to develop
verification environment[18]. The re-usability of the verification environment shortens the

verification gap. A general verification includes multiple layers that can be re-used with

17

minimal change to the design[19]. As in Figure 4.1:
o Test Layer : Different test cases with constraint random and/or direct stimulus.
e Scenario Layer : Generates random stimulus based on the test cases.

« Functional Layer : This layer predicts possible Device Under Test (DUT) outputs
(golden test vectors) based on the random inputs using a reference mode[20]. It may

also contain a scoreboard to keep track of the results.

o Command Layer : Command layer is a pin-level layer. On the input side, it receives
stimulus from functional layer and drives the DUT. DUT output is also monitored

to be compared with golden test vectors.

SystemVerilog is used to verify the proposed Round-robin arbiter. SystemVerilog verifica-
tion can be designed in an object oriented way to allow classes, inheritance, class routine
sharing (polymorphism). It has the ability to randomize inputs and set constraints on the
randomness. Assertions are used to check for undesired behavior. The functional con-
verge sampling bins can be obtained through the defined coverage points. Mailboxes and
event triggers can be used to control synchronization between the modules. One of the
main advantages of developing SystemVerilog environment is it allows engineers to reuse
the classes and modules for a different project. The proposed SystemVerilog environment
contains requestor, generator, agent, driver, monitor, checker and scoreboard. Figure 4.1

shows the top level view of proposed SystemVerilog test environment.

4.1 Requestor 18

TEST Constraint random, directed stimulus
Environment
Scenario Generator
High Level Transactions —
- systemVerilog T @
Functional Reference E— 5 &

Model

Atomic Transactions

m -

Figure 4.1: SystemVerilog Environment

4.1 Requestor

Requestor class is designed to behave like a master that would request access to the shared
resource from the arbiter. Requestor class contains two members, request and weight. The
members are of the type “rand”. It allows the calling class to be able to randomize to
provide random stimuli to the DUT. Having random test cases is important because the
verification engineers might not be able to consider many combinations of test cases for
complex systems. However, randomization can produce test cases not applicable to DUT.
Adding constraints to the random variable makes the random stimuli applicable to the
target DUT verification. Verification engineers spend most of the time on iterating runs

by adding constraints and various random seeds. To achieve full coverage, some direct test

4.2 Generator 19

cases may be required to fully close the loop. Figure 4.2 shows the functional coverage

loop.

Constrained =————m—
random tests

Many runs,
different seeds

“_.' Directed --lunu...“.“
o testcase

Add
constraints

* Functional
Coverage

-

aly
* e

dentify

*
‘ - -
Minimal code " " =

modifications —

Figure 4.2: Function Coverage Loop [3]

4.2 Generator

Generator is a part of Scenario Layer. The purpose of the generator is to create different
test stimuli based on scenarios. For example, the verification of a TV remote have many test
scenarios. One of the test scenarios could be pressing mute button. A different test scenario
could be changing channels or adjust volumes. In case of Round-robin arbiter, random
requests/non-request could be simulated with different weights. The requestor class is
instantiated in generator. The generator class generates different requests by randomizing
the requestor class. Generator module can be used to generate different random stimuli

according to the different test case scenarios.

4.3 Agent 20

4.3 Agent

Agent is located in functional level. As in Figure 4.1, agent acts as a mediator between
Scenario Layer and Command Layer. At functional level, agent class is responsible to
receive stimuli and predict output of DUT according to that stimuli. To achieve that,
agent class usually has a functional model of Device Under Test. The input stimuli and
predicted output test vectors can be called “golden” test vectors. Engineers can analyze
the input test vector set to predict the expected output results.

In this verification environment, the agent class instantiates the generator class. The
stimuli generated by the generator are used to convert to golden test vectors by predicting
the expected outcome of the given stimuli. Each randomization contains a bit representing
request or no-request accompanied by the weight. The model checks for the bit and if the
bit is request bit, the weight value is recoded as the number of clock cycles the bit should
be granted. If the bit is no-request the the output is recorded as no request with zero
cycles. The test vectors are passed onto the driver module and expected golden vectors to

checker module.

4.4 Driver

The driver located in Command Layer is closest to hardware. Driver class connects the
input of DUT to the rest of the verification environment. It is responsible to drive signals
synchronously to DUT. It can contains functions such as reset conditions. The test vectors
from agent are driven to DUT by the driver in synchronous with system clock. In this
verification environment, request bits and weights are driven to DUT using DUT system
clock. Because driver controls the input of DUT, Monitor class described in the following

section needs to know when the driver finished driving a particular test vector. The

4.5 Monitor 21

synchronization between class modules is done using event triggering. After driver finished
sending a set of test vector to DUT, it raises an event for monitor class to catch. Monitor
class uses this event to know the respective DUT output. By having synchronization,
driver can insure that all the input test vectors are aligned correctly with the expected

golden test vectors.

4.5 Monitor

Similar to driver class, monitor class resides in Command Layer. Monitor class is connected
to the output of DUT to capture data from DUT output ports synchronously. The purpose
of monitor is to record DUT output for each input driven by driver. The recorded data
can be transferred to checker module to check for errors.

In this verification environment, monitor module starts counting once it sees a grant
signal of a request. The number of cycles or the amount of time a request is granted can be
determined by the counter value of the monitor. For example, if a requestor 1 is granted
for 5 clock cycles, monitor will get a count of 5 for requestor 1. In other words, monitor
collects the grants and their respective granted cycles. The collected data is sent to the

check to be matched with the golden test vectors.

4.6 Checker

Like Agent class, Checker class is located in Functional Layer. Checker class is responsible
to match the output of DUT collected by monitor and the golden test vectors predicted by
reference model. In this verification environment, checker class receives grants and grant

time (cycles) from monitor module. It also receives the expected output of golden test

4.7 Scoreboard 22

vectors. For each test data set, checker verifies DUT output against golden test vectors.

It also records the verification statistics in scoreboard.

4.7 Scoreboard

As the name stands, Scoreboard module contains the statistics of current verification.
Checker module calls the “record” member function of scoreboard after each test vector.
The function records which requestor (master) is granted by updating member variables.

Using the recorded data, statistical analysis can be performed.

4.8 Determinism

If a bug were found during the verification process, it is important for the design and
verification engineers to be able to reproduce easily. Knowing the sets of test vectors
caused the failure is crucial for debugging purposes. Therefore, when the requestor module
is instantiated in Generator module, the seed of the requestor’s random variables can be
set. Each “randomize” function call is based on a different seed. If a failure occurs, the
seed of the failure test vectors can be extracted for the design engineers to debug. It
allows verification engineers to reproduce the failing inputs easily without restarting the
whole verification process. This approach of seeding makes the randomization process to

be deterministic every iteration in every run.

Chapter 5

Tests and Results

This section discusses the simulation results of the arbiter, as well as the area and power

overhead of the top level design.

5.1 Simulation

5.1.1 Weight Decoder

Cursor

o

Figure 5.1: Weight Decoder

Figure 5.1 shows the simulation of weight decoder. Input datalnBus contains the weights
of the channels preconfigured. Input selOneHot port/grant the input used to decode the

weight of current grant. The decoded weight is outputted to the dataOut port.

5.2 SystemVerilog Verification Results 24

5.1.2 Next Grant PreCalculator

&+ | Cursor gl

IRy next Grant 0] ‘b 00000000

Figure 5.2: Next Grant PreCalculator

Figure 5.2 shows the simulation waveform of Next Grant PreCalculator. Based on the input
request and grant, next grant mask is created to dictate Round-robin order to restrict the

grant order.

5.1.3 Round-Robin Top Level/Grant State Machine

Figure 5.3: Top Level Simulation

The Figure 5.3 shows the simulation top level Round-Robin Arbiter. Grant is serviced
based on the requests and precalculated mask from NGPRC. The grant is given the access

time for the number of weight cycles before servicing the next request.

5.2 SystemVerilog Verification Results

5.2.1 Scoreboard scores

Table 5.1 shows the results of SystemVerilog verification of 20,000 iterations. As seen in
the table, the hit score distribution is fairly uniform since the randomization of test vector

generation is based on uniform probability distribution.

5.3 System Overhead 25

Table 5.1: SystemVerilog Verification Hit Scores

’ \ Score ‘

Channel 0 | 1021
Channel 1 | 972
Channel 2 | 1036
Channel 3 | 980
Channel 4 | 1048
Channel 5 | 995
Channel 6 | 1009
Channel 7 | 971

5.3 System Overhead

5.3.1 Area Overhead

The arbiter is synthesized using a TSMC 65 nm technology library and Synopsis Design
Compiler using a two step process. The first step, RTL synthesis, performs logic synthesis
and produces what is called a pre-scan netlist. In the second step, test synthesis, Design
For Test (DFT) structures for full scan testing are added to the design and optimized
producing what is called a post-scan netlist. The top level design is targeted at 8 channels
to be able to arbitrate 8 different requestors. Table 5.2 shows the pre-scan and post-scan

area overhead for Weight Decoder, Next Grant PreCalculator and Grant Statemachine.

5.3.2 Power Overhead

Similarly, Table 5.3 shows power overhead for Weight Decoder, Next Grant PreCalculator

and Grant state machine.

5.3 System Overhead

26

Table 5.2: Area Overhead

Module Pre-Scan
Combinational Non- Percent Total (um?)
(nm?) Combinational — Total (%)
(nm?)
Weight Decoder 612.0576 0.0000 13.4 612.0576
(MUX)
Next Grant 755.0928 691.8912 31.8 1446.9840
PreCalculator
(NGPRC)
Grant 1167.5664 1327.2336 54.8 2494.8000
Statemachine
(Grant)
Top Level Arbiter 2534.7168 2019.1248 100 4553.8416
Module (8
Channels)
Post-Scan
Weight Decoder 612.0576 0.0000 12.4 612.0576
(MUX)
Next Grant 755.0928 828.2736 32.0 1583.3664
PreCalculator
(NGPRC)
Grant 1167.5664 1580.0401 55.6 2747.6065
Statemachine
(Grant)
Top Level Arbiter | 2534.7168 2408.3137 100.0 4943.0305
Module (8
Channels)

27

% 00T MW 68LT°0 MU F9TLTC MW 20=L0EL'E MU ITYT0 [®30],
w
% 99°CC ->> . MU L2886 MW 209C808°C | MW ¢OO[T9L'T |[BRUOTIRUIGUION SN
¢0=0TLEY weog-180]
% V'L MU ZEET 0 MU L8R TT MU €0-204¢¢°6 MW 0710 19SS
% 00T MW 29ET0 MU €288°6T MW Z0-2686°¢ MW TTTT0 [®30],
w
% 04°€¢ ->> . MU LL83'6 MW 2027990°¢ | MW COPECET'T |[BUOIRUIqUIOT IST9N
¢0-9L661°€ weog-o1g
% 05°9. MU 7010 MU 96666 MW €0OTGCET | MW ZO2ECR6'6 19)SIIN]
a8ejuadId ©10 adexeo Surgoyim eUIOU dnoux odAT,
d [e10L qeo] Mg [I D 1SI[1ON]

5.3 System Overhead

pesIoA() I0MOJ €°G d[qR],

Chapter 6

Conclusions

This work discussed the design and verification of Round-Robin Arbitration. As the num-
ber of masters requires access the shared resources increases, a good arbitration system
becomes essential. This work focused on the fairness metric to measure the performance
of an arbiter. However, it is important to not overlook the area overhead and power con-
sumption. A complex system may have good fairness at the trade-off of large overhead.
Therefore, the design preference is based on the application of the arbiter. Round-robin ar-
biter is chosen because of its fairness in granting access. Bus grant time quantization allows
the requestors to be able to predict the maximum amount of time to get grant. However,
in some applications, one requestor might require to have the grant twice as long. This
work introduced the weight or the number of clock cycle that the requestor can configure
during synthesis. This makes the fairness adjustable (more fair or less fair). At the same
time, increasing or decreasing the weights allows the time quantization adjustable.
SystemVerilog is used as a verification environment for the design. By having a verifi-
cation environment, engineers can have a higher confidence on the release of the product.

Code maintenance is easier for each time the design changes due to bugs or feature intro-

6.1 Future Work 29

duction as the verification can filter out issues before reaching to the customers. This work
discussed that design process from the aspect of customer requirements and applications.

To summarize, although fairness is used as a performance measurement, fairness is
only good when a particular application requires it. This Round-Robin Arbiter design
is customized to be more fair or less fair. The design trade-off between fairness and/or

overhead remains at the process of the intended design application.

6.1 Future Work

Since the arbiter are application specific, for future work, this implementation of Round-
robin arbiter can be modified to suit the intended usage. Omne of the applications of
Round-robin arbiter is system-on-chip shared memory. In this application, two independent
Round-robin arbiters are used, one for address and one for data. For read access, the two
arbiters can operate independently([21]. However, for write back operations, both the data
and address needs to go together[22]. It might be beneficial to implement a modified
version that is aware of the condition when address or data arbiter needs to freeze in order
to write back.

Another applications is communication arbiter for Network-On-Chip (NOC), where
communication between IP cores are usually non-uniform or hot-spot in traffic[22, 23].
The arbiter in this work only allow a fixed time slice preconfigured. It would be beneficial
to implement logic to detect the load of the inputs and adjust priority dynamically. By
adjusting priority or grant time based on the traffic would make sure that busy master/re-

questor traffic is well balanced and not starved.

References

1]

[4]

[6]

K. Warathe, D. Padole, and P. Bajaj, “A Design Approach to AMBA (Advanced
Microcontroller Bus Architecture) Bus Architecture with Dynamic Lottery Arbiter,”
in 2009 Annual IEEE India Conference, Dec 2009, pp. 1-4.

Z. Fu and X. Ling, “The design and implementation of arbiters for Network-on-chips,”
in 2010 2nd International Conference on Industrial and Information Systems, vol. 1,

July 2010, pp. 292-295.

C. Spear, System Verilog for Verification: A Guide to Learning the Testbench Language
Features. New York NY: Springer, 2006.

Y. Li, N. Zeng, W. N. N. Hung, and X. Song, “Enhanced symbolic simulation of
a round-robin arbiter,” in 2011 IEEE 29th International Conference on Computer
Design (ICCD), Oct 2011, pp. 102-107.

S. Q. Zheng and M. Yang, “Algorithm-Hardware Codesign of Fast Parallel Round-
Robin Arbiters,” IEEE Transactions on Parallel and Distributed Systems, vol. 18,
no. 1, pp. 84-95, Jan 2007.

M. Abdelrasoul, M. Ragab, and V. Goulart, “Impact of Round Robin Arbiters on

References 31

[11]

router’s performance for NoCs on FPGAs,” in 2013 IEEFE International Conference

on Circuits and Systems (ICCAS), Sept 2013, pp. 59-64.

Y. Yang, R. Wu, L. Zhang, and D. Zhou, “An Asynchronous Adaptive Priority Round-
Robin Arbiter Based on Four-Phase Dual-rail Protocol,” Chinese Journal of Electron-

ics, vol. 24, no. 1, pp. 1-7, 2015.

K. A. Helal, S. Attia, T. Ismail, and H. Mostafa, “Priority-select arbiter: An efficient
round-robin arbiter,” in 2015 IEEE 15th International New Circuits and Systems

Conference (NEWCAS), June 2015, pp. 1-4.

R. Kamal and J. M. M. Arostegui, “RTL implementation and analysis of fixed pri-
ority, round robin, and matrix arbiters for the NoC’s routers,” in 2016 International
Conference on Computing, Communication and Automation (ICCCA), April 2016,
pp. 1454-1459.

E. S. Shin, V. J. Mooney, and G. F. Riley, “Round-robin Arbiter Design and Gener-

Y

ation,” in 15th International Symposium on System Synthesis, 2002., Oct 2002, pp.

243-248.

M. Oveis-Gharan and G. N. Khan, “Index-Based Round-Robin Arbiter for NoC
Routers,” in 2015 IEEE Computer Society Annual Symposium on VLSI, July 2015,
pp. 62-67.

H. F. Ugurdag, F. Temizkan, O. Baskirt, and B. Yuce, “Fast two-pick n2n round-robin

arbiter circuit,” Electronics Letters, vol. 48, no. 13, pp. 759-760, June 2012.

K. C. Lee, “A variable round-robin arbiter for high speed buses and statistical mul-

Y

tiplexers,” in [1991 Proceedings] Tenth Annual International Phoeniz Conference on

Computers and Communications, Mar 1991, pp. 23-29.

References 32

[14]

[15]

[16]

[17]

[18]

[19]

K. Yoghigoe, K. J. Christensen, and A. Roginsky, “Design of a high-speed overlapped
round robin (ORR) arbiter,” in Local Computer Networks, 2003. LCN °03. Proceed-
ings. 28th Annual IEEE International Conference on Local Computer Networks, Oct
2003, pp. 638-639.

S. Marconi, E. Conti, J. Christiansen, and P. Placidi, “Reusable SystemVerilog-UVM
design framework with constrained stimuli modeling for High Energy Physics applica-

tions,” in 2015 IEEE International Symposium on Systems Engineering (ISSE), Sept
2015, pp. 391-397.

D. Rich, “The unique challenges of debugging design and verification code jointly in

Y

SystemVerilog,” in Proceedings of the 2013 Forum on specification and Design Lan-

guages (FDL), Sept 2013, pp. 1-7.

M. Rashid, M. W. Anwar, and F. Azam, “Expressing embedded systems verification
aspects at higher abstraction level - SystemVerilog in Object Constraint Language

(SVOCL),” in 2016 Annual IEEE Systems Conference (SysCon), April 2016, pp. 1-7.

P. Gurha and R. R. Khandelwal, “SystemVerilog Assertion Based Verification of
AMBA-AHB,” in 2016 International Conference on Micro-FElectronics and Telecom-

munication Engineering (ICMETE), Sept 2016, pp. 641-645.

R. Sethulekshmi, S. Jazir, R. A. Rahiman, R. Karthik, S. Abdulla M, and
S. Sree Swathy, “Verification of a RISC processor IP core using SystemVerilog,” in

2016 International Conference on Wireless Communications, Signal Processing and

Networking (WiSPNET), March 2016, pp. 1490-1493.

[20] Y. Zhu, T. Li, J. Guo, H. Zhou, and F. Fu, “A novel low-cost interface design for Sys-

References 33

[21]

[22]

23]

[24]

[25]

temC and SystemVerilog Co-simulation,” in 2015 IEEE 11th International Conference
on ASIC (ASICON), Nov 2015, pp. 1-4.

R. Bhaktavatchalu, B. S. Rekha, G. A. Divya, and V. U. S. Jyothi, “Design of AXI bus
interface modules on FPGA,” in 2016 International Conference on Advanced Commu-

nication Control and Computing Technologies (ICACCCT), May 2016, pp. 141-146.

J. Reed and N. Manjikian, “A dual round-robin arbiter for split-transaction buses
in system-on-chip implementations,” in Canadian Conference on FElectrical and Com-
puter Engineering 2004 (IEEE Cat. No.04CHS37513), vol. 2, May 2004, pp. 835-840
Vol.2.

A. A. Khan, R. N. Mir, and N. ud din, “Buffer aware arbiter design to achieve improved
QoS for NoC,” in TENCON 2017 - 2017 IEEE Region 10 Conference, Nov 2017, pp.
2494-2499.

J. Bromley, “If SystemVerilog is so good, why do we need the UVM? Sharing respon-
sibilities between libraries and the core language,” in Proceedings of the 2013 Forum

on specification and Design Languages (FDL), Sept 2013, pp. 1-7.

J. Wang, Y. Li, Q. Peng, and T. Tan, “A dynamic priority arbiter for Network-on-
Chip,” in 2009 IEEE International Symposium on Industrial Embedded Systems, July
2009, pp. 253-256.

Appendix 1

Arbiter Source Code

Listing I.1: Weight Decoder Module

// MUX module
// This module selects one of the inputs according to the input select
signal

// Combinational Logic

// Input : selOneHot — signal ONE HOT STYLE

// : daatalnBus — input data bus for all channels concat from
ch0 to

// chN

// Output : dataOut — output data according to select signal

//

module MUX
#(
parameter WIDTH = 32, // width of each channel
parameter CHANNELS = 8 // number of channels

reset ,

clk ,
scan__in0
scan_inl |
scan_in2
scan_in3,
scan_in4 ,
scan__enable ,

I-2

)
input
reset ,

clk;

input

test__mode
scan_ outO ,
scan_outl ,
scan_ out2
scan_ out3d
scan_ outd ,
selOneHot ,
datalnBus ,
dataOut

scan__in0 ,
scan__inl
scan_in2
scan__ind ,
scan__in4 ,
scan__enable
test _mode;

output

scan_ outO
scan_ outl
scan_out2
scan_outd ,
scan_out4;

input [(CHANNELS-1)
input [(CHANNELS«WIDTH)—1
output reg

[(WIDTH-1) 0] dataOut;

//reg [(CHANNELS+*WIDTH)—1

// generate wvariable

genvar gv;

// one hot select input

// input bus
// output data

// system reset
system clock

//

//
//
//
//
//
//
//

//
//
//
//
//

0] selOneHot;
0] datalnBus;

test
test
test
test
test
test
test

test
test
test
test
test

scan
scan
scan
scan
scan
scan
mode

scan
scan
scan
scan
scan

mode
mode
mode
mode
mode
mode

mode
mode
mode
mode
mode

data
data
data
data
data

input
input
input
input
input

enable

data
data
data
data
data

output
output
output
output
output

// one hot select input

// input data bus

// output data after select

0] tempData;

I-3

/ /—— COMBINATIONAL SECTION ———//

// temporary array to hold input channels

wire [(WIDTH-1) : 0] inputArray [0 : (CHANNELS-1)];

generate
// generate statement to assign input channels to temp array
for(gv = 0; gv < CHANNELS; gv = gv+1) begin : arrayAssignments

assign inputArray|[gv]| = datalnBus|[((gv+1)*WIDTH)—1 : (gv=x
WIDTH) |;

end // arrayAssignments
endgenerate

// function to convert one hot to decimal
function integer decimal;
input [CHANNELS-1 : 0] oneHotInput;
integer 1ij;
for (i = 0; i<CHANNELS; i = i+1)
if (oneHotInput|[i])
decimal = i ;

endfunction

// select the output according to input oneHot
always@x
begin

dataOut = inputArray[decimal (selOneHot)];
end // end always

endmodule // MUX

I-4

Listing 1.2: Weight Decoder Test Module

module test;
localparam WIDTH = 32;
localparam CHANNELS = 8;

// clock period
localparam CLOCK PERIOD = 20; //20ns (50Mhz)

wire scan_outO, scan_outl, scan_out2,
reg clk, reset;
reg scan_in0O, scan_inl, scan_in2, scan_in3,

test__mode;

// inputs
reg [(CHANNELS-1) 0] test_selOneHot;
reg [(CHANNELS«WIDTH)—1 0] test_datalnBus;

//output

wire [(WIDTH-1) 0] test_dataOut;
control flags

integer testDoneFlag = 0;

integer i = 1;

integer j = 0;

integer k = 0;

integer waveCounter = 1;

// flow

// temp reg/variables
reg [(WIDTH-1) 0] tempDataln;

reg [(WIDTH-1):0] dataArray [(CHANNELS-1)
output
MUX top (
.reset (reset),
.clk(clk),
.scan__in0O(scan__in0

()
.scan_inl (scan_inl)
.scan_in2(scan_in2),
.scan_in3(scan_in3)
.scan_in4 (scan_in4)

scan_ out3d,

scan_out4;

scan_in4 ,

0]; // array to check

scan__enable ,

.scan__enable(scan_enable) ,
.test_ mode (test__mode) ,
.scan_out0 (scan_out0),
.scan_outl(scan_outl),
.scan_out2(scan_out2)
.scan_out3(scan_out3)
.scan_out4 (scan_outd),
.selOneHot (test_selOneHot) ,
.datalnBus(test__datalnBus),
.dataOut (test_dataOut)

)

)

o~~~ S~~~

) ;

initial
begin

$timeformat(—9,2,"ns", 16);
“ifdef SDFSCAN

$sdf_annotate ("sdf/ADDC_tsmcl8 scan.sdf", test.top);
“endif

clk = 1'b0;

reset = 1'b0;

scan_in0 = 1'b0;

scan_inl = 1'b0;

scan_in2 = 1'b0;

scan_in3 = 1'b0;

scan_ind = 1'b0;

scan__enable = 1'b0;
test__mode = 1'b0;

// initialize input to 1
test__selOneHot = 1;

// set the wvery first weight to 2 (channel 0)
test _datalnBus = 2;

tempDataln = 2;

dataArray [0] = 2;

// input weight data bus generation
for(j = 1; j < CHANNELS; j = j+1)
begin
// manipulate test data for each channel (increment by 2 in
this case)
tempDataln = tempDataln + 2;

I-6

// set weight data bus by shifting and bitwise or
test__dataIlnBus = test_datalnBus | (tempDataln << WIDTHxj) ;

// save data to output checker array as well
dataArray[j] = tempDataln;

end

while (! testDoneFlag)

begin
@(posedge clk)
begin
// assign i to sel input as test wvector
test__selOneHot = i;
// i=1 will be shifted by 1 from bit 0 to bit (WIDTH-1)
i =1 << 1;
// reset if we overflow
if (test_selOneHot =— 0)
i=1;
end
end

end

// check output in parallel on negative edge
always @(negedge clk)

begin
for (k = 0; k < CHANNELS; k = k+1)
begin
// make sure input is wvalid (one hot)
if (test_selOneHot = 1 << k)
// check if DUT output matches expected output
if (test_dataOut !== dataArray[k])
begin
// display useful information if the outputs don't
match

$display ("Wrong output at %0t", $time);

I-7

$display ("Expected, %H, Actual %H", dataArray[k],
test__dataOut) ;

// stop if we see error
//8finish ;

end
end

// count waves
waveCounter = waveCounter + 1;

// stop if we looped through all channel values (*2 to see some
extra
// length)
if (waveCounter >= CHANNELSx2)
$finish ;
end

// clock generation
always #(CLOCK_PERIOD/2)
clk = ~clk;

endmodule

Listing [.3: Next Grant Precalculator Module

// NGPRC module
// Next Grant PReCalculate

//
//

// This module precalculate the mask for the Grant Process
// The mask is shfted left to dictate round robin manner
// Input : request , grant

// Output : nextGrant mask

//
module NGPRC

##(

)
(

parameter CHANNELS = 8 // total number of requestors

reset ,

clk ,
scan__in0
scan_inl
scan_in2
scan_ind
scan_in4 ,
scan__enable ,
test__mode,
scan_ outO ,
scan_outl
scan_out2,
scan_outd,
scan_ out4

// inputs
request , // request input
grant , // grant input

// outputs
nextGrant // mext grant output

) ;

input
reset , // system reset
clk; // system clock

I-9

input
scan_in0 , // test
scan_inl , // test
scan_in2 , // test
scan_in3 , // test
scan_in4 , // test
scan__enable , // test
test__mode; // test

output
scan_out0, // test
scan_outl, // test
scan_out2, // test
scan_outd, // test
scan_out4; // test

input [(CHANNELS-1) : 0] request;
input [(CHANNELS—-1) : 0] grant;

output reg [(CHANNELS-1) : 0] nextGrant;

reg [(CHANNELS—-1) : 0] priorityMask;

//—— Internal Constants ———//
localparam SIZE = 2;

// STATES
reg [(SIZE—1) : 0] state;

localparam RESET = 'b01; // 36001
localparam NEXT GRANT = 'bl0; // 3'b010

//—— Code Starts ——//

// always block for state transition
always@ (posedge clk, posedge reset)
begin : preCalStateTransition

if (reset = 1'bl)
begin

scan
scan
scan
scan
scan
scan
mode

scan
scan
scan
scan
scan

mode
mode
mode
mode
mode
mode

mode
mode
mode
mode
mode

data
data
data
data
data

input
input
input
input
input

enable

data
data
data
data
data

output
output
output
output
output

I-10

state = RESET;

end
else
// state transition
case(state)
// check if we are out of reset
RESET
begin
// transition right away once NOT in reset
state = NEXT GRANT;
end
NEXT GRANT :
begin
//go back to reset if there is reset
state = state;
end
default
begin
// stay in the same state
state = RESET;
end
endcase

end

// output logic
always @Q(posedge clk, posedge reset)
begin : preCalOutputLogic

if(reset = 1'b1)

begin

nextGrant = 0;
priorityMask = 0;
end
else

I-11

case (state)

// reset signals in reset state
RESET
begin

end

nextGrant = 0;
priorityMask = ~0;

// set mext grant and priorityMask
// Handle wrap around case

NEXT GRANT :

begin

end

// calculate priorityMask
// Rotate left, invert and add 1

priorityMask = ~{grant [CHANNELS-2 : 0], grant [CHANNELS—1]}

+ 1;

// if grant somehow becomes zero, set priorityMask to all

1
if (priorityMask = 0)
priorityMask = ~0;
else

priorityMask = priorityMask;

// calculate nextGrant
nextGrant = request & priorityMask;
//nextGrant = priorityMask ;

// if we see a request but nextGrant is zero

// it means we wrap around

if ((nextGrant = 0) && (request != 0))
nextGrant = request;

// if statemachine never goes oult of wack
// we should NOT reach to this case
default

begin

// keep all the signals the same

I-12

priorityMask = priorityMask;
nextGrant = nextGrant;

end

endcase
end

endmodule //NGPRC

I-13

Listing I.4: Next Grant Precalculator Test Module

module test;
localparam WIDTH = 32;
localparam CHANNELS = 8;

// clock period
localparam CLOCK PERIOD = 100; //20ns (50Mhz)

wire scan_outO, scan_outl, scan_out2, scan_outd, scan_outd;

reg clk, reset;

reg scan_inO, scan_inl, scan_in2, scan_in3, scan_in4, scan_ enable,
test__mode;

// inputs
reg [(CHANNELS—-1) : 0] test_request;
reg [(CHANNELS-1) : 0] test_grant;

// flow control
reg [(CHANNELS-1) : 0] expectedNextGrant;
reg sticky;

//output
wire [(CHANNELS—1) : 0] test nextGrant;
wire [4 : 0] test_debugPreCal;

NGPRC top (
.reset (reset),
.clk(clk),
.scan__in0(scan_in0),
.scan_inl (scan_inl),
.scan_in2(scan_in2),
.scan_in3(scan_in3),

.scan_in4 (scan_in4)
.scan__enable(scan_enable) ,
.test_mode (test_mode) ,
.scan_outO(scan_out0),
.scan_outl(scan_outl),

1-14

.scan_out2 (scan_out2),

.scan_out3(scan_out3),

.scan_out4 (scan_out4),
// input

.request (test__request),

.grant (test__grant)

// output
.nextGrant (test__nextGrant)
// .debugPreCal(test debugPreCal)

) ;

initial
begin

$timeformat(—9,2,"ns", 16);
“ifdef SDFSCAN

$sdf_annotate ("sdf/ADDC_tsmcl8 scan.sdf", test.top);
“endif

clk = 1'b0;

reset = 1'bl;

scan_in0 = 1'b0;

scan_inl = 1'b0;

scan_in2 = 1'b0;

scan_in3 = 1'b0;

scan_ind = 1'b0;

scan__enable = 1'b0;
test__mode = 1'b0;

sticky = 0;
test_request = 0;
test__grant = 0;
// release reset
@(posedge clk);
reset = 1'b0;

// test case 1
// request = 0000_000

// grant = don't care

// nextGrant = 0000_0000
@(posedge clk);
test_request = 0;
test__grant = 0;

I-15

expectedNextGrant = 0;

$display (" Test, case 1l————);
$display ("Request, = %b", test request);
$display ("grant = %b", test_grant);
@(negedge clk);

if (test_nextGrant != expectedNextGrant)
begin
sticky = 1;

$display ("Expected next,grant, = %b, Actual = %b",
expectedNextGrant , test_nextGrant);
end
else
$display ("next grant, = %b", test_nextGrant);

// test case 2

// request = 1111_1111
// grant = 0001
// mextGrant =
@(posedge clk);
test_request = 8'hFF;

test__grant = 1;

expectedNextGrant = 8'b1111_1110;
$display (" Test case 2———— ")
$display ("Request, = %b", test_request);
$display ("grant, = %b", test_ grant);
@(negedge clk);

1111 1110

if (test_nextGrant != expectedNextGrant)
begin
sticky = 1;

$display ("Expected, next grant, = %b, Actual = %b",

expectedNextGrant , test_ nextGrant);
end
else
$display ("next grant, = %b", test_nextGrant);

// test case 3

// request = 1111_1111
// grant = 0010

// mextGrant = 1111_1100
@(posedge clk);

I-16

test_request = 8'hFF;

test__grant = 8'b0000_0010;
expectedNextGrant = 8'b1111_1100;
$display (" Test, case 3———");
$display ("Request, = %b", test_request);
$display ("grant = %b", test_grant);
@(negedge clk);

if (test_nextGrant != expectedNextGrant)
begin
sticky = 1;

$display ("Expected next,grant = %b, Actual = %b",
expectedNextGrant , test_nextGrant);
end
else
$display ("next grant = %b", test_nextGrant);

// test case 4

// request = 1111_1111

// grant = 0000_0100

// mextGrant = 1111 1000

@(posedge clk);

test_request = 8'hFF;

test__grant = 8'b0000_0100;
expectedNextGrant = 8'b1111_1000;
$display (" Test, case 4———— ")
$display ("Request, = %b", test request);
$display ("grant = %b", test_grant);
@(negedge clk);

if (test_nextGrant != expectedNextGrant)
begin
sticky = 1;

$display ("Expected next,grant, = %b, Actual = %b",
expectedNextGrant , test_nextGrant);
end
else
$display ("next grant = %b", test_nextGrant);

// test case &

// request = 1111_1111
// grant = 1000_0000
// mextGrant = 1111_1111
@(posedge clk);

I-17

test_request = 8'hFF;

test__grant = 8'b1000_0000;
expectedNextGrant = 8'b1111_1111;
$display (" Test, case 5——");
$display ("Request, = %b", test_request);
$display ("grant = %b", test_grant);
@(negedge clk);

if (test_nextGrant != expectedNextGrant)
begin
sticky = 1;

$display ("Expected next,grant = %b, Actual = %b",
expectedNextGrant , test_nextGrant);
end
else
$display ("next grant = %b", test_nextGrant);

// test case 6

// request = 0000_0000

// grant = don't care

// mextGrant = 0000_0000

@(posedge clk);

test_request = 8'h00;

test__grant = 8'bl;
expectedNextGrant = 8'b0;

$display (" Test, case 6———");
$display ("Request, = %b", test request);
$display ("grant = %b", test_grant);
@(negedge clk);

if (test_nextGrant != expectedNextGrant)
begin
sticky = 1;

$display ("Expected next.grant, = %b, Actual = %b",
expectedNextGrant , test_nextGrant);
end
else
$display ("next grant = %b", test_nextGrant);

// test case 7
// request = 0000_0010
// grant = 0000_0010

I-18

// mextGrant = 0000_0010
// mextGrant = 1111_1100 ?? maybe?
@(posedge clk)

test_request = 8'b0000_0010;

test__grant = 8'b0000_0010;
expectedNextGrant = 8'b0000_0010;
$display (" Test, case T———— ")
$display ("Request, = %b", test_request);
$display ("grant, = %b", test_grant);
@(negedge clk);

if (test nextGrant != expectedNextGrant)
begin
sticky = 1;

$display ("Expected, next, grant, = %b, Actual = %b",

expectedNextGrant , test_nextGrant);
end
else
$display ("next grant, = %b", test_nextGrant);

// test case 8

// request = 0000_0010

// grant = 0

// mextGrant = 0000_0010

@(posedge clk)

test__grant = 8'b0000_0010;
test__grant = 8'b0;
expectedNextGrant = 8'b0000_0010;
$display (" Test, case 8&——");
$display ("Request, = %b", test_request);
$display ("grant = %b", test_grant);
@(negedge clk);

if (test_nextGrant != expectedNextGrant)
begin
sticky = 1;

$display ("Expected next, grant, = %b, Actual = %b",
expectedNextGrant , test_nextGrant);
end
else
$display ("next grant, = %b", test_nextGrant);

@(posedge clk)
reset = 1'bl;

I-19

@(posedge clk)
reset = 1'b0;

@(posedge clk);
@(posedge clk);
@(posedge clk);

if (sticky = 1)

$display ("Test, failed");
else

$display ("Test, passed");

$finish ;
end

// check output in parallel on negative edge
//always @(negedge clk)

//begin
// for(k = 0; k < CHANNELS; k = k+1)

// begin
// make sure input is wvalid (one hot)

// if (test _selOneHot == 1 << k)

// check if DUT output matches expected output
// if (test_dataOut !== dataArray[k])
// begin

// display wuseful information if the outputs don't
match

// $display ("Wrong output at %0t", S$time);
// $display ("Expected %H, Actual %H", dataArray[k],

test__dataOut);
// stop if we see error
J/$finish ;
// end

// end

// count waves

I-20

// waveCounter = waveCounter + 1;

// stop if we looped through all channel values (*2 to see some
extra
// length)
// if (waveCounter >= CHANNELSx2)
// $finish ;
//end

// clock generation
always #(CLOCK_PERIOD/2)
clk = ~clk;

endmodule

I-21

Listing 1.5: Grant Module

// GRANT module

//
//
module GRANT
#(
parameter CHANNELS = 8, // total number of requestors
parameter WIDTH = 32, // the width of each requestor 's
wetght
parameter WEIGHTLIMIT = 16

reset ,

clk ,
scan__in0 ,
scan_inl ,
scan__in2
scan__ind ,
scan__in4 ,
scan__enable ,
test__mode
scan_ outO ,
scan_outl ,
scan_out2 ,
scan_ out3d
scan_ out4

// input

request , // request input
nextGrant , // mextGrant from NGPRC
weight | // weight of current grant
// output
grant // grant output
) ;
input
reset , // system reset
clk; // system clock
input

scan_ in0 , // test scan mode data input

1-22

scan_inl
scan_ in2
scan_ind,
scan_in4 ,
scan__enable ,
test__mode;

output
scan_ outO,
scan_outl,
scan_out2
scan_outd ,
scan_ out4;

// input

input [(CHANNELS-1)
input [(CHANNELS-1)
input [(WIDTH-1) 0] weight;

// output
output reg [(CHANNELS-1)

// internal registers

reg [(WIDTH-1) 0] s_counter;
reg [(CHANNELS-1)
reg [(WIDTH-1)
//reg update;
//—— Internal Constants ——//
localparam SIZE = 4;

0] s_weight;

// STATES
reg [(SIZE—1) : 0] state;
localparam RESET = 'b0001;

//
//
//
//
//
//

//
//
//
//
//

0] request;
0] nextGrant;

0] s_request;

test
test
test
test
test
test

test
test
test
test
test

0] grant;

//

localparam GRANT PROCESS = 'b0010; //

localparam COUNT = 'b0100;
localparam GETWEIGHT = 'b1000;

//—— Code Starts ——//

// registeri/delay request

always@ (posedge clk, posedge reset)

begin : requestDelay

//
//

scan
scan
scan
scan
scan
mode

scan
scan
scan
scan
scan

mode
mode
mode
mode
mode

mode
mode
mode
mode
mode

"b00001
"b00100
601000
'b10000

data
data
data
data

input
input
input
input

enable

data
data
data
data
data

output
output
output
output
output

I-23

end

if(reset = 1'b1)
s_request = 0;

else
S_request = request;

// always block for state transition
always@ (posedge clk, posedge reset)
begin : grantStateTransition

// reset condition
if (reset == 1'bl)
begin

state = 0;
end

// out of reset
else
begin
// state transisiton
case(state)
// grant process this output grant
GRANT _PROCESS
begin
// if there is request
// go to COUNT state to count
if (grant != 0)
state = GETWEIGHT;

// just stay here and process next

else
state = state;
end
GETWEIGHT :
begin
state = COUNT;
end

// count clock cycle according to weight

COUNT :
begin
// if counter is up

1-24

// move to grant next
if (s_counter >= s_ weight)
state = GRANT PROCESS;

// fairness limit set by user

// default is 16

else if(s_counter >= WEIGHTLIMIT)
state = GRANT PROCESS;

// else
// keep counting
else

state = state;

end

// if statemachine never goes out of wack
default
begin
state = GRANT PROCESS;
end
endcase

end

end

// output logic
always@ (posedge clk, posedge reset)
begin:grantStateMachineOutputLogic
if (reset = 1'bl)
begin
grant = 0;
s_counter = 0;
s_weight = 0;
end
else
case(state)
RESET
begin
// reset everything in reset state

grant = 0;

I-25

s_counter = 0;
//s_mask = ~0;
end

GRANT PROCESS :
begin
// update mask
//s_mask = nextGrant & (~nextGrant + 1);

ranting logic
/9 g log
grant = request & nextGrant & (~nextGrant + 1);

// it takes 38 cycle to look back here
// so set the counter for when weight >= 2

s_counter = 2;

end

GETWEIGHT:

begin
s_weight = weight;

end

COUNT :

begin
// count up until weight is reached account for clock

cycle

s_counter = s_counter + 1;
// no change to grant
grant = grant;

end

// if statemachine never goes out of wack

default
begin
grant = grant;
S_ counter = s_ counter;
end
endcase

end

I-26

endmodule // GRANT

I-27

Listing 1.6: Round Robin Arbiter Module

// RRBTOP module

// Top level of Round Robin Arbiter

// This module connects MUX, Next Grant Precalculator and Grant
statemachine

// Input : request, weight bus

// Output : grant

“include "include/RRB_ verification.h"

module RRBTOP
#(
parameter CHANNELS = *CHANNELS,
parameter WIDTH = "WIDTH,
parameter WEIGHTLIMIT = *WEIGHTLIMIT

reset ,
clk ,

// input to RRB
request ,
weight , // weight bus each having bit size of WIDTH for
each channel
// output from RRB
grant ,

scan__in0,
scan_inl
scan_in2
scan__ind ,
scan_in4 ,
scan__enable ,
test__mode
scan_ outO ,
scan_outl ,
scan_out2 ,
scan_ out3d
scan_out4

input

I-28

reset , //

clk; //
input
scan_in0 , //
scan_inl , //
scan_in2 , //
scan_in3 , //
scan__in4 , //
scan__enable , //
test__mode; //
output
scan_out0, //
scan_outl , //
scan_out2, //
scan_out3, //
scan_out4; //

input [(CHANNELS—-1) : 0] request;

system reset

system

test
test
test
test
test
test
test

test
test
test
test
test

input [(CHANNELS*WIDTH)—1 : 0] weight;

output wire [(CHANNELS-1) : 0] grant;

wire [(CHANNELS—-1) : 0] s_selOneHot;

wire [(WIDTH-1) : 0] s_weight;

wire [(CHANNELS—1) : 0] s_nextGrant

// COMBINATIONAL SECTION //

assign grant = s_selOneHot;
// MUX
MUX #(
.WIDTH(WIDTH) ,
.CHANNELS (CHANNELS)
)
MUX(

.reset (reset),
.clk (clk),

)

scan
scan
scan
scan
scan
scan
mode

scan
scan
scan
scan
scan

clock

mode
mode
mode
mode
mode
mode

mode
mode
mode
mode
mode

data
data
data
data
data

input
input
input
input
input

enable

data
data
data
data
data

output
output
output
outpul
output

I-29

.scan__in0 (scan__i
.scan__inl (scan_ i
.scan_in2(scan__
.scan__in3 (scan__

in2
in3

)
)
)
)

)

I

)

)

.scan__in4 (scan_in4)

.scan__enable(scan_enable) ,

.test_mode (test_mode) ,

.scan_outO
.scan_outl

.scan_out3

(scan__out0
(scan_outl
.scan_out2 (scan_out2
(scan_ out3
(

.scan_out4d (scan_out4

// input

.selOneHot (s_selOneHot) ,

.dataInBus(weight) ,

// output

.dataOut (s_ weight)

) ;

NGPRC #(

.CHANNELS (CHANNELS)
)

NGPRC(

.reset (reset),
.clk(clk),
.scan__in0(scan_in0)
.scan_inl (scan_inl)
.scan_in2(scan_in2)
.scan_in3 (scan_in3)

Y

)

Y

)

.scan_in4 (scan in4),

.scan__enable(scan_enable) ,

)
)
)
)
)

)

)

)

i

)

.test_ mode (test__mode) ,

.scan_out0
.scan_outl

.scan_outd

// input

.request (request),

(scan_out0
(scan_outl
.scan_out2(scan_out2
(scan_out3
.scan_out4 (scan_out4

)
)
)
)
)

)

i

)

)

)

I-30

.grant (s_selOneHot) ,

// output
.nextGrant (s_nextGrant)

) ;

GRANT #(
.CHANNELS (CHANNELS)
WIDTH(WIDTH) ,
.WEIGHTLIMIT (WEIGHTLIMIT)
)

GRANT(

.reset (reset),
.clk(clk),
.scan__in0(scan_in0) ,
.scan_inl (scan_inl),
.scan_in2(scan_in2),
.scan_in3(scan_in3),

.scan_in4 (scan_ind),
.scan__enable(scan_enable) ,
.test_ mode (test__mode) ,
.scan_out0(scan_out0),
.scan_outl (scan_outl),
.scan_out2 (scan_out2),
()
()

.scan_out3(scan_out3
.scan_outd (scan_out4

)

)

// input

.request (request),
.nextGrant (s_nextGrant) ,
.weight (s__weight) ,

// output
.grant (s_selOneHot)

)i
endmodule // RRB

I-31

Listing I.7: Round Robin Arbiter Test Module

module test;

localparam WIDTH = 32;
localparam CHANNELS = 4;
localparam WEIGHTLIMIT = 100;

// clock period
localparam CLOCK_ PERIOD = 20; // 20ns(500MHZ)

wire scan_outO, scan_outl, scan_out2, scan_outd, scan_outd;

reg clk, reset;

reg scan_in0O, scan_inl, scan_in2, scan_in3, scan_in4, scan_enable,
test__mode;

//inputs

reg [(CHANNELS«*WIDTH-1) : 0] test_weight;
reg [(CHANNELS—-1) : 0] test_request;
//reg test_ack;

// output
wire [(CHANNELS—1) : 0] test_ grant;

//
reg [(WIDTH-1) : 0] tempData;

// flow control flags
integer j = 0;

RRBTOP #(
.CHANNELS (CHANNELS) ,
.WIDTH(WIDTH) ,
.WEIGHTLIMIT (WEIGHTLIMIT)
)
top (

.reset (reset),

.clk (clk),
.scan_in0(scan_in0),
.scan_inl(scan_inl),
.scan_in2(scan_in2)
.scan__in3(scan_in3)

)

I

1-32

.scan_in4 (scan_in4),
.scan__enable(scan_enable) ,
.test__mode (test__mode) ,
.scan_out0 (scan_out0),
.scan_outl (scan_outl),
.scan_out2(scan_out2),
()
()

.scan_out3(scan_out3
.scan_out4d(scan_out4

)

)

// input

//

.request (test__request),

.weight (test__weight) ,
// .ack(test_ack),

// output
.grant (test__grant)

) ;

initial
begin

$timeformat(—9,2,"ns", 16);
“ifdef SDFSCAN

$sdf annotate("sdf/ADDC tsmcl8 scan.sdf", test.top);
“endif

clk = 1'b0;

reset = 1'bl;

scan_in0 = 1'b0;

scan_inl = 1'b0;

scan_in2 = 1'b0;

scan_in3 = 1'b0;

scan_in4 = 1'b0;

scan__enable = 1'b0;
test__mode = 1'b0;

// test _ack = 1'b0;
test_request = 0;

// set the wvery first weight to 2 (channel 0)
tempData = 3;

I-33

test__weight = 3;

input weight data bus generation
// 9 9
for(j = 1; j < CHANNELS; j = j+1)
begin
// manipulate test data for each channel (increment by 2 in
this

// case)

tempData = tempData + 2;

// set weight data bus by shifting and bitwise or
test weight = test weight | (tempData << WIDTHxj);

end

// pull reset high
@(posedge clk);
@(posedge clk);
reset = 1'b0;

@(posedge clk);
test_request = 'b1001;

#100

@(posedge clk);
// test_ack = 1'b1;
test_request = 'b0010;

@(posedge clk);
// test_ack = 1'b0;

#160

@(posedge clk);

// test_ack = 1'b1;
test__request = 'b0001;

@(posedge clk);
// test_ack = 1'b0;

#500
$finish;

I-34

end

// clock generation
always #(CLOCK PERIOD/2)
clk = ~clk;

endmodule

Appendix II

Test Bench Source Code

Listing II.1: Requestor Module

// requestor.sv

// requestor module

// this module generates
// random request (0 or 1)
// weight (0 to 2732—1)

class requestor;
rand bit request; // request
rand bit [31:0] weight; // weight

int seed;
int weightLow;
int weightHigh;

// constraint weight between the limits
constraint weight_range {

weight inside {[weightLow : weightHigh]};
}

// constructor

function new(int seed = 1, int weightLow = 2, int weightHigh =
100);
this.request = 0;
this.weight = weightLow;

11-36

this.seed = seed;
this.weightLow = weightLow;
this.weightHigh = weightHigh;

// initialize random seed
this.srandom (seed) ;

endfunction : new

endclass

11-37

Listing I1.2: Generator Module

// generator. sv

// generator class

// This class generates random stimulus

// in this case, it instantiates multiple requestors

“include "include/RRB_ verification.h"

class generator;
requestor req;

// constructor method

function new(requestor req);
this.req = req;

endfunction : new

// generate random requests
extern function void generate_ requestor;

// get request
extern function bit get_request;

// get weight
extern function bit [WIDTH-1 : 0] get_weight;

endclass : generator
//—————— FExternal Methods———————//

// generate function

// mo arg input

// randomize the requestor

function void generator :: generate_requestor;
begin : randomize_requestor

//generate random request/weight in requestor
assert (req.randomize ());

if ("DEBUG_GENERATOR)
$display ("generated requestor.: %p\n', req);

end : randomize_requestor

I1-38

endfunction : generate_requestor

!

// get method for requestor's request
function bit generator::get_request;

begin
return req.request;
end
endfunction : get_request

// get method for requestor's weight
function bit ['WIDTH-1 : 0] generator::get_weight;
begin
return req.weight;
end
endfunction : get_weight

11-39

Listing I1.3: Agent Module

// agent.sv

// agent class

// agent instantiates generator module

// using that generator to generate random requests

“include "include/RRB_ verification.h"

class agent;
generator gen;
bit ['CHANNELS-1 : 0] requests;
bit [("CHANNELS«WIDTH)—1 : 0] weights;

bit ['CHANNELS-1 : 0] golden grants;
int golden_grant_weights ['CHANNELS| = '{default:0};
int temp_weights ['CHANNELS] = '{default:0};

// constructor method

function new(generator gen);
this.gen = gen;
this.requests = 0;
this.weights = 0;

this.golden_grants = 0;

this.golden_grant_weights = '"{default:0};

this.temp_weights = '{default:0};
endfunction : new

// generate new requests
extern function void generate_requests;

endclass : agent

//——— External Methods———————//

// generate__requests function

// mo arg input

// generate n number of requestors

function void agent:: generate_requests;
begin : generateNewRequests

// only get golden wvector if requests are not zero

11-40

// by getting golden wvector at the start of this routine
// we are essentially delaying the update by one test wvector

set
// this allows golden wvectors to be in sync with checker/
monitor /DUT
if (requests != 0)
begin
// golden test data to check DUT
golden_ grants = requests;

golden_ grant_weights = temp_ weights;

$display ("request at update %b", requests);
$display ("weight, at update %h", weights);
$display ("golden update at %g", $time);

end

// reset weights
weights = 0;

// loop through to generate n random requests
for (int 1 = 0; i < "CHANNELS; i++)
begin

gen.generate_requestor () ;

// random request data

requests [i] = gen.get_request () ;

weights = weights | gen.get weight() << (i = "WIDTH);
temp_ weights[i] = gen.get_ weight () ;

// display if debug agent flag is set

// debug only

if (‘"DEBUG_AGENT)

begin

// $display ("i = %d", i);

// $display ("request = %d", gen.get_request());
// $display ("weight = %d", gen.get_weight());
end

end

// debug
i f ("DEBUG_AGENT)

I1-41

begin

end

$display ("requests, = %b", requests);
$display ("weights, = %h", weights);

$display ("golden grants, = %b", golden_grants);

for(int i = 0; i < "CHANNELS; i++)
begin
$display ("golden grant weights %d, = %h", i,
golden_grant_weights[i]);
end

end : generateNewRequests

endfunction

generate_requests

11-42

Listing I1.4: Driver Module

// driver. sv
// driver class
“include "include/RRB_ verification.h"

class driver;

// handle for interface
virtual intf_rrb intf;

// handle for agent
agent agt;

// event handle
event e_ start;
event e_drv_done;

// constructor method

function new(virtual intf_rrb intf, agent agt, event e_drv_done);
this.intf = intf;
this.agt = agt;
this.e_drv_done = e_drv_done;

endfunction : new

// reset method
extern task reset();

// drive new data
extern task drive_new_data();

// event logic
extern task event_logic();
endclass : driver

//——— FExternal Methods——————— //
// drive new data
task driver::drive_new_data();
// we need to know how long to wait to know when drive new data
// so wait for weight cycles before sending new data
bit [("CHANNELS+x'WIDTH)—-1 : 0] waitCycles, temp;
waitCycles = 0;

11-43

temp = 0;

// get the sum of all the weights
for (int i = 0; i < "CHANNELS; i++)
begin
temp = agt.weights >> (ix"WIDTH) ;
waitCycles = waitCycles + temp ['WIDTH-1 : 0] % (agt.requests]|i
1) ;

end

// debug only
if (‘"DEBUG_DRIVER)
begin
$display ("agt %p\n", agt);
$display ("waitCycles %d\n", waitCycles);
end

// send request to DUT synchronously
// only need to wait if waitCycle is not zero
if (waitCycles > 0)
begin
// wait for waitCyclesi for DUT to perform arbiteration
for(int i = 0; i < (waitCycles); i++)
begin
@Q(posedge intf.DRIVER. clk);
intf .DRIVER. request = agt.requests;
intf .DRIVER. weight = agt.weights;

end

// after wait cycle is done, tell event logic to start counter

—> e_ start;
//8display ("start at %g", $time);
end
endtask : drive new_ data

// Ewvent logic

// to wait 2 cycles after driver is done driving
// to sync up with end of DUT output

task driver::event_logic();

forever
begin
//@(posedge intf.DRIVER. clk);

11-44

Q@Q(e_start);
//$display ("caught at %g", $time);

//repeat (2)
//@(posedge intf.DRIVER. clk);

—> e_drv_done;
//8display ("driver done issued");
end
endtask : event__logic

// Reset Method

task driver::reset();
// initialize everything
intf .DRIVER. reset = 1'b0;
intf .DRIVER. request = 0;
intf .DRIVER. weight = 0;

// reset on mnegative edge
@(negedge intf .DRIVER. clk);
intf .DRIVER.reset = 1'bl;

// wait for a few cycles
@(negedge intf.DRIVER. clk);
@(negedge intf .DRIVER. clk);

intf .DRIVER. reset = 1'b0;
// wait for a few cycles
@(negedge intf .DRIVER. clk);
@(negedge intf.DRIVER. clk);

endtask : reset

11-45

Listing II.5: Monitor Module

// monitor. sv
// monitor class
// Monitor captures DU output

“include "include/RRB_ verification.h"

class monitor;

// handle for interface
virtual intf_rrb intf;

// DUT output wvectors
bit ['CHANNELS-1 : 0] dut_grants;
int dut_weight_array ['CHANNELS] = '{default:0};

// data to be sent to checker
bit ['CHANNELS-1 : 0] mon_ grants;
int mon_weight array ['CHANNELS] = '{default:0};

// event handles
event e_drv_done;
event e mon_done;

// bit to indicate data mneeds to be cleared
bit clearData;

// constructor method

function new(virtual intf_ rrb intf, event e_drv_done, event

e_mon_done) ;
this.intf = intf;

this.dut_grants = 0;

this.dut__weight_array = '{default:0};
this.mon_ grants = 0;
this.dut__weight_array = '{default:0};

this.e_drv_done = e_drv_done;
this.e mon done = e mon done;

this.clearData = 0;
endfunction : new

11-46

// monitor the output
extern task run;

// event logic
extern task event_logic;
endclass : monitor

//——— External Methods——————— //
// run method

task monitor::run;
// wait time for driver

forever
begin

// capture data on positive edge of clock
@(posedge intf .MONITOR. clk);

if (intf .MONITOR. grant != 0)

begin

// if we need to clear counters, do it first before
couting again
if (clearData)
begin
dut_ grants = 0;
dut__weight_array = '{default:0};
clearData = 0;
end

dut_grants|[$clog2 (intf .MONITOR. grant)] = 1;
dut__weight__array[$clog2 (intf .MONITOR. grant)| =
dut_weight array[$clog2 (intf .MONITOR. grant)| + 1;

end

end

endtask : run

11-47

// event logic
// when driver is done driving, it means one test wvector is done
// we need to register data for monitor to be read
// at the same time set clear bit to clear out counters
task monitor::event_logic;
forever
begin
//@(posedge intf.MONITOR. clk) ;
//wait(e_drv_done. triggered);
@(e_drv_done);
$display ("eventtriggered at %g", $time);

repeat (2)
@(posedge intf .MONITOR. clk);

// driver /DUT finished one set of test wvectors
// register/copy output for monitor

mon_ grants = dut__grants;

mon_ weight_array = dut__weight_array;

// indicate monitor is ready for checker
—> e_mon_ done;

// if we finished one set of test wvectors
// we need to clear counters
clearData = 1;

if ("DEBUG_MONITOR)

begin
$display ("—");
$display ("dut,grant, = %b at %g", dut_grants, $time);
$display ("mon, grant, = %b at %g", mon_grants, $time);

//$display ("weight = %h", dut_weight_array[$clog2(intf.
MONITOR. grant)]) ;
for(int i = 0; i < ‘CHANNELS; i++)
begin
$display ("dut weight %d. = %h", i, dut weight array[i])

$display ("mon weight %d, = %h", i, mon_ weight array[i])

9

end

11-48

end
end
endtask : event_logic

11-49

Listing I1.6: Checker Module

//check . sv

// check class

// get output of DUT and agent data

// and compare and recored in scoreboard

“include "include/RRB_ verification.h"

class check;
// class handles
scoreboard sb;
agent agt;
monitor mon;

// event handles
event e _mon_ done;
event e_drv_done;

// golden test wvectors
bit ['CHANNELS-1 : 0] chk_golden_grants;
int chk golden grant weights ['CHANNELS] = '{default:0};

// constructor method
function new(scoreboard sb, agent agt, monitor mon, event
e_mon_done, event e_drv_done);
this.sb = sb;
this.agt = agt;
this.mon = mon;

this.e_mon_done = e_mon_done;
this.e drv_done = e_drv_done;

this.chk golden_ grants = 0;
this.chk golden_grant weights = '{default:0};
endfunction : new

// task to check the output of DUT
extern task check_output;

// test to update the golden data
// it is always running but in sync with end of driver done

event

I1-50

extern task update_golden_data;

endclass

check

External Methods———————— //

// check the output of DUT and Agent golden data
task check::check_output () ;

forever

begin

@(e_mon_done) ;

if (‘DEBUG_CHECKER)

begin
$display ("local golden grant = %b", chk golden grants);
$display ("mon, DUT grant, = %b at %g", mon.mon_grants, $time

)

for (int i = 0; i < "CHANNELS; i++)
begin
$display ("mon DUT ,weight %d. = %h", i, mon.
mon_ weight__array[i]) ;
$display ("local golden weight %d = %h", i,
chk_golden_ grant_weights[i]) ;
end
end

// loop through all the channels and check the output
for (int i = 0; i < "CHANNELS; i++)

begin
// if the request is 1, check the weight
if (chk golden grants[i] = 1)
begin

//8display ("golden index position = %h", i);
//8display ("dut bit output = %h", mon.mon_grants[i]);

// check DUT and golden and record

if ((mon.mon_grants[i] = 1) & chk_golden_grant_weights
[i] = mon.mon_ weight_array[i])

begin
sb.record (i);

end

else

begin

I1-51

// if the test fails, display some helpful
information

$display (" failure at %g, index %h, expected weight
= %h, actual weight = %h", $time, i,
chk_golden_grant_weights[i], mon.
mon__ weight_array[i]) ;

$finish ;

end

end
end

sb.display ();
//8display ("cov %e", $get_coverage());

end
endtask : check_output

// update golden test wectors when driver is done driving

// it is always runnig — forever
task check::update_golden_data();
forever
begin

@(e_drv_done)
chk_golden_ grants = agt.golden_grants;
chk_golden_grant_weights = agt.golden_grant__weights;

//8display ("local golden grant = %b", chk_golden__grants);

for (int i = 0; i < "CHANNELS; i++)
begin
//8display ("local golden weight %d = %h", i,
chk__golden__grant__weights[i]);
end
end
endtask : update_golden_data

11-52

Listing I1.7: Scoreboard Module

// scoreboard. sv
// scoreboard class
// records the number of hits

class scoreboard;
int score_array [CHANNELS];

// default construction
function new();

this.score_array = '{default:0};
endfunction : new

// record score
extern function void record(int reqlndex);

// display score
extern function void display;
endclass : scoreboard

//————— FExternal Methods———————//

// record function

// update the requestor channel count

function void scoreboard::record (int reqlndex);
// increment

score__array [reqIlndex| = score_array[reqlndex]| + 1;

endfunction : record

// display current score

function void scoreboard:: display();
for (int i = 0; i < ‘CHANNELS; i++)
begin

$display ("CHANNEL %d, score = %d", i, score_array|[i]);

end

endfunction : display

I1-53

Listing I1.8: Assertion Module

// assertion . sv
// This module defines the assertion properties

module assertion (intf rcc intf);
// reset sequence
sequence reset_seq;
(intf.reset = 1) ##1 (intf.grant = 0);
endsequence

// reset condition
property reset_property;
@(posedge intf.clk)
(intf.reset = 1) |—> reset_seq;
endproperty
endmodule

11-54

Listing I1.9: Interface Module

// interface. sv
// interface module
// this class declares and defines interface between wvarious blocks

interface intf_ rrb(input bit clk);

bit reset; // system reset
bit test_mode = 0; // DFT test_mode

bit ['CHANNELS-1 : 0] request; // request input to RRB
logic ['CHANNELS+'WIDTH — 1 : 0] weight; // weight input to RRB

bit ['CHANNELS-1 : 0] grant; // grant output from RRB
// modport for RRB module
modport RRB (input reset , clk, request, weight,

output grant);
// modport for driver class
modport DRIVER (input clk,

output reset , request, weight);

// modport for monitor class

modport MONITOR (input clk, grant);

// reset condition assert
property reset_state;

@(posedge clk) reset |—> grant==0;
endproperty

resetAssert : assert property(reset_state);

endinterface

I1-55

// environment. sv
// environment class

// Defines all modules

class environment;

Listing I1.10: Environment Module

to create a test environment

// single requestor
requestor req;

// class instances
virtual intf rrb intf;
generator gen;

agent agt;

driver drv;

monitor mon;
scoreboard scb;

check chk;

// events

event e_drv_done;
event e_mon_ done;

// default constructor

function new(virtual intf_ rrb intf);

this.intf = intf;

this.req = new('SEED, “WEIGHTLOW, ‘WEIGHTHIGH)

// intialize transactors

gen = new(req);

agt = new(gen);

drv = new(

mon = new (i

scb = new () ;

chk = new (s
endfunction : new

endclass : environment

intf , agt, e_drv_done);
ntf, e_drv_done, e _mon_done);

cb, agt, mon, e_mon_done, e_drv_done);

I1-56

Listing I1.11: TopLevel Module

// topLevel.sv
// top level SV test module for RRB

module topLevel () ;

//testModules testModules ();
reg clk = 0;

// clock generator
initial
forever #('CLOCK PERIOD/2) clk = ~clk;

// interface instance

intf rrb intf(clk);

// DUT
RRBTOP #(
.CHANNELS (*CHANNELS) ,
.WIDTH(*WIDTH) ,
.WEIGHTLIMIT (* WEIGHTLIMIT)
)
top (
.reset (intf .RRB.reset),
.clk (intf .RRB. clk),
.request (intf.RRB.request),
.weight (intf .RRB. weight),
.grant (intf .RRB. grant)

)3

// test case
testcase test(intf);

endmodule

I1-57

Listing I1.12: TestCase Module

// test.sv
// test case for RoundRobin Arbiter

“include "include/RRB_ verification.h"

program testcase (intf_rrb intf);

genvar 1i;

// coverage info

covergroup din_cov@(posedge intf.RRB.clk);
request__coverage : coverpoint intf.RRB.request;
weight__coverage : coverpoint ignoreFunction (intf.RRB.weight){

bins bin_1 = {1'bl};
}

//option.per_instance=1;
endgroup

//Function to ignore weights less than 3

integer n;

function bit ignoreFunction(logic ['CHANNELSxWIDTH — 1 : 0]
weight) ;

//$display ("weight = %h", weight);
for(n = 0; n < "CHANNELS; n++)
begin
//8display ("N = %d",n);
//8display ("w coverage test : %h", (weight>> (nx'WIDTH) &
‘WEIGHTMASK)) ;
if (((weight>>(nxWIDTH)) & WEIGHTMASK) <= 2)
begin
//return 0;
//$display ("returning false");
end
end

//8display ("returning true');
return 1;
endfunction

covergroup dout_cov@(posedge intf.RRB.clk);
grant__coverage : coverpoint intf.RRB.grant{

I1-58

bins ch0 = {0};

bins chl = {1<<1};
bins ch2 = {1<<2};
bins ch3 = {1<<3};
bins ch4 = {1<<4};
bins chb = {1<<5};
bins ch6 = {1<<6};
bins ch7 = {1<<7};

}

option . per__instance=1;
endgroup

// coverage handle
din_cov din_ covergroup = new () ;
dout__cov dout_covergroup = new();

// env object (interface)
environment env = new(intf);

initial

begin
$timeformat(—9,2,"ns" ,16);
$set_coverage db_name("testCov");

// start converage collection
din__covergroup.start ();
dout__covergroup.start () ;

// reset dut

env.drv.reset ();

// Test started
$display ("

Test, started

// generate new test wvectors
env.agt.generate_requests();

")

$display ("

// run monitor, mon/drv event sync logic

fork
env.mon.run () ;
env.drv.event_logic();

11-59

end

env.mon.event_logic();

env.chk.update_ golden_data () ;

env.chk.check output();
join_none

fork
// env.chk.check_output();

join__none

@(posedge intf.DRIVER. clk);
// drive the test wvector, wait for sum(requestxweight), and
generate again
for (int i = 0; i < "NUM_ITERATIONS; i++)
begin
$display ("iteration = %d", 1i);
fork
// send the test wvectors to DUT
env.drv.drive_new_data();
join
// generate new test vectors (requests)
env.agt.generate_requests();
$display (" ")
//8display("%g join", $time);

end

@(posedge intf.DRIVER. clk)
@(posedge intf.DRIVER. clk)
@(posedge intf .DRIVER. clk);
@(posedge intf.DRIVER. clk)
@(posedge intf .DRIVER. clk)
@(posedge intf.DRIVER. clk)

final
begin

// display scoreboard results
env.scb.display () ;

// display coverage results
$display ("Input, request, coverage = %e", din_covergroup.

11-60

request__coverage.get__coverage ());

$display ("Input, weight, ,coverage = %e", din_covergroup.
weight__coverage.get__coverage());
$display ("Output, grant, coverage = %e", dout_covergroup.

grant__coverage.get_coverage());
end

endprogram : testcase

	Design and Verification of a Round-Robin Arbiter
	Recommended Citation

	Abstract
	Declaration
	Acknowledgements
	Contents
	List of Figures
	List of Listings
	List of Tables
	1 Introduction
	1.1 Organization

	2 Background Research
	2.1 Fixed Priority Arbitration
	2.2 Lottery Arbiter
	2.3 Matrix Arbiter

	3 Weighted Round-Robin Arbiter
	3.1 Weight Decoder
	3.2 Next Grant Precalculator
	3.3 Grant State Machine

	4 SystemVerilog Verification Design
	4.1 Requestor
	4.2 Generator
	4.3 Agent
	4.4 Driver
	4.5 Monitor
	4.6 Checker
	4.7 Scoreboard
	4.8 Determinism

	5 Tests and Results
	5.1 Simulation
	5.1.1 Weight Decoder
	5.1.2 Next Grant PreCalculator
	5.1.3 Round-Robin Top Level/Grant State Machine

	5.2 SystemVerilog Verification Results
	5.2.1 Scoreboard scores

	5.3 System Overhead
	5.3.1 Area Overhead
	5.3.2 Power Overhead

	6 Conclusions
	6.1 Future Work

	References
	I Arbiter Source Code
	II Test Bench Source Code

