
Tutorial
Formal Assertion based Verification

in Industrial Setting

Alok Jain
Cadence Design Systems

Noida

Raj S. Mitra
Texas Instruments

Bangalore

Pallab Dasgupta
Indian Institute of Technology

Kharagpur

Jason Baumgartner
IBM

Austin

Design Automation Conference, San Diego, June 8, 2007

Agenda

2

� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

3

Agenda

� Introduction to Formal Assertion Based Verification
■ What is the problem statement?
■ Temporal Logics

● LTL and CTL
● PSL and SVA

■ Model Checking
● CTL Model Checking
● LTL Model Checking

■ Symbolic Model Checking
● BDD and SAT based techniques

■ Abstractions

� Case Studies from TI: Protocol & Control Logic Verification
� Case Studies from IBM: Formal Processor Verification
� Verification Closure: Coverage Analysis & Integration with Simulation

Problem Statement

4

� Problem Statement
■ Verify an RTL design satisfies its functional requirements

� Traditional Solution – Logic Simulation
■ RTL design specified in HDLs
■ Requirements specified as test vectors

� Limitations of Logic Simulation
■ Limited set of test vectors
■ Exercise only a small fraction of design
■ Leads to undetected bugs

� Example – Floating point division bug in Pentium
■ 1012 test vectors
■ Cost $470 million

Alternative Solution – Formal ABV

5

� Formal Assertion Based Verification

� Mathematically reason about correctness of RTL design

� Properties specified in some form of “Temporal Logic”

� Benefits
■ Does not require user to provide test vectors
■ Does exhaustive verification

Formal
Assertion

Based
VerificationRTL design

Properties

Does property hold
on the RTL design?

6

Agenda
� Introduction to Formal Assertion Based Verification

■ What is the problem statement?
■ Temporal Logics

● LTL and CTL
● PSL and SVA

■ Model Checking
● CTL Model Checking
● LTL Model Checking

■ Symbolic Model Checking
● BDD and SAT based techniques

■ Abstractions

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

Temporal Logics

7

� Logic extended with the notion of time

� Reason about propositions qualified in terms of time

� Tradeoff between expressibility and complexity of verification

� Two popular forms of temporal logic for formal verification
■ Linear Temporal Logic (LTL)
■ Computation Tree Logic (CTL)

Linear Temporal Logic (LTL)

8

� Introduced by Pnueli in 1977

� Propositional Logic + discrete time

� Time is viewed as a single linear sequence of events

� Properties specified over a single path

� Temporal operators to represent discrete tim
■ p is a proposition – p should hold at current time
■ X p – p should hold at next time
■ F p – p should hold in the future
■ G p – p should hold globally

9

LTL Formulas

X p

F p

G p

p U q

p W q

Time

LTL - Examples

10

� Safety Properties - G ¬(Critical1 ∧ Critical2)
■ Something bad never happens

� Liveness - F (Req1 ∨ Req2)
■ Something Good will eventually happen

� Fairness - G (Req1 Æ F Critical1)
■ If something is requested, it eventually gets scheduled

� Strong Fairness - GF (Req1 ∧ ¬ Critical2) Æ GF Critical1
■ If something is repeatedly requested, it repeatedly gets scheduled

Computation Tree Logic (CTL)

11

� A form of Branching Time Temporal Logic

� Introduced by Clarke and Emerson

� Temporal Operators as in LTL
■ X p
■ F p
■ G p

� In addition, path operators
■ A – Over all paths
■ E – There exists a path

Computation Tree Logic

12

AF p - On all paths, the property holds in the future

AG p - On all paths, the property holds globally

Computation Tree Logic

13

EF p - There exists a path on which the property holds in the future

EG p - There exists a path on which the property globally holds

CTL Examples

14

� Safety Properties
■ AG ¬(Critical1 ∧ Critical2)

� Fairness
■ AG (state1 Æ EF (¬ state1))
■ Self deadlock check for state1

■ AGEF (resetState)
■ A powerful and useful resetability test

� Strong fairness
■ Cannot be specified in CTL

Comparison between LTL and CTL

15

� Expressibility
■ Neither is superior to the other
■ LTL - Strong fairness CTL - Deadlock
■ CTL* - Superset of both LTL and CTL

� Verification Complexity
■ LTL - Exponential in size of formula
■ CTL – Linear in size of formula

� Compositional Verification
■ LTL – Yes CTL – No

� Amenable to Simulation
■ LTL – Yes CTL – No

� Preference in the industry – LTL flavor

Comparison between LTL and CTL

16

LTL CTL

Expressibility
(CTL* superset of LTL and CTL)

Strong Fairness Deadlock

Verification Complexity
(in size of formula)

Exponential Linear

Compositional Verification Yes No

Amenable to Simulation Yes No

� Preference in the industry – LTL flavor

17

Industrial Languages

� Limitations of LTL and CTL
■ Mainly academic languages for experts
■ Unreadable by average user
■ Open to mis-interpretation
■ Sometimes un-intuitive to express properties

� Industrial Languages
■ Property Specification Languages (PSL)
■ System Verilog Assertions (SVA)
■ Extending LTL with notion of sequences

● PSL also has a CTL flavor - Not used very often

Overview of PSL

18

� Boolean Expressions
■ HDL expressions Verilog xor VHDL
■ PSL/Sugar functions: rose(), fell(), prev(), ...

� Temporal Operators
■ always, never, next, until, before, eventually, abort, ...
■ @ -> |-> |=> ; { } [*] [=] [->] && & | :

� Verification Directives
■ assert, assume, restrict, cover, ...

� Modeling Constructs
■ HDL statements used to model the environment

What
When
How

Invariants

19

Something that should never happen!

For example: An underflow should never occur

assert_no_underflow : assert never (read && empty);

assert_no_underflow : assert never (read AND empty);

Temporal
Operator Boolean

Expression

This assertion
should hold at
every time step

Verification
Directive

How
(to apply)

When
(expression

should
be true)

What
(to check)

What
When
How

label

Conditional Behavior

20

Example: If A receives a Grant, then B does not
assert_if_GntA_no_GntB : assert
always (GntA -> ! GntB) @(posedge clk) ;

Implication
operator (->)
expresses
“if...then”

if
then

if
then

if if if if if if

clk

GntB

GntA

At the rising clk,
if GntA is high,
then GntB must

be low

assert_if_GntA_no_GntB : assert property (@(posedge clk)

(GntA) |-> (! GntB)) ;

21

Multi-Cycle Conditional Behavior
Example: A Grant is always followed by Busy

GntA

clk

GntB

assert_busy_after_Gnt : assert
always (GntA OR GntB) -> next Busy @(rising_edge (clk)) ;

Implication (->) and
‘next’ together

express multi-cycle
conditional

behavior

Busy

if
then

if
then

if
then

Now there is a
one-cycle delay
between ‘if’ and

‘then’

assert_busy_after_Gnt : assert property (@(posedge clk)

(GntA || GntB) |=> (Busy)) ;

22

Multi-Cycle Behavior Using Sequences

Example: A never receives a Grant in two successive cycles

GntA

clk

GntB

A sequence is a
shorthand for a
series of ‘next’s

assert_no_2_GntA : assert
never {GntA ; GntA} @(posedge clk) ;

assert_no_2_GntA : assert property (@(posedge clk)
(GntA ##1 GntA) |-> (0)) ;

23

Compound Assertions
Example: If Request is followed by Grant, then next is Busy, and next is Done

assert_GntA_ReqA_next_Busy_Done : assert always
(ReqA -> next (GntA -> next (Busy && next Done))) @(posedge clk) ;

assert_GntA_ReqA_next_Busy_Done : assert always

{ReqA; GntA} |=> {Busy; Done} @(posedge clk) ;

Evaluation
starts again in

each cycle,
overlapping

previous
evaluations

if if

if

if if

ifGntA

clk

Busy

Done

ReqA
next next next

then

next

then

next

The two
assertions are

equivalent.
next

if

if

&& next

if

if

if

if

&& next

if

if

24

Agenda
� Introduction to Formal Assertion Based Verification

■ What is the problem statement?
■ Temporal Logics

● LTL and CTL
● PSL and SVA

■ Model Checking
● CTL Model Checking
● LTL Model Checking

■ Symbolic Model Checking
● BDD and SAT based techniques

■ Abstractions

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

Formal
Assertion

Based
Verification

RTL design

Properties

Does property hold
on RTL?

Model Checking

Model
Checking

RTL design

Properties
PSL/SVA

Does property hold
on the RTL design?

FSM model

� Model Checking
■ Does the model satisfy the property?
■ Does not require any test vectors
■ Does exhaustive verification

How does Model Checking work?

26

� Simulation
■ Requires test vectors
■ Follows specific path

� Model Checking
■ Requires no test vectors
■ Works on entire state

space
■ Breadth first search

Reachable
State Space

x

x

x

x

x

x

x

x

x

x

Bugs triggered
with simulation

Starting
State Point

� Exhaustive
■ Uncovers all possible bugs

x

x

xx

x

x

Example

27

r
t [1]

p [0]

p [1]

t [0]

0 1 2 3r=0r=0

r=1

r=1

� RTL Design
� Modulo-3 counter

� FSM Model

� CTL Property
� EF (p = 2)

Start state

� Starting from start state, can the counter eventually count upto 2

CTL Model Checking

28

� Evaluate the CTL property on the model
■ Evaluate EF (p = 2) on the FSM

0 1 2 3
r=0r=0

r=1

r=1

Least fixed Point

� Start state is a part of the Least Fixed Point
■ Indicates there is a path from start state to (p = 2)
■ EF (p = 2) HOLDS on the FSM model

29

Lets introduce a bug

� RTL Design
� Buggy Modulo-3 counter

� FSM Model

r
t [1]

p [0]

p [1]

t [0]

0 1 2 3

r=0

r=0

r=1

r=1

� CTL Property
� EF (p = 2)

30

CTL Model Checking on the buggy design

� Evaluate the CTL property on the buggy model
■ Evaluate EF (p = 2) on the buggy FSM

0 1 2 2

r=0

r=1

r=0

r=1 Least fixed Point

� Start state is NOT part of the Least Fixed Point
■ Indicates there is NO path from start state to (p = 2)
■ EF (p = 2) DOES NOT HOLD on the buggy FSM model

LTL Model Checking

31

� Requires a new mathematical formulation
■ Omega automata (ω-automata)

� ω-automata
■ Automata over infinite words
■ Infinitely running automata
■ Single framework for expressing design and property
■ Various different forms:

● Buchi, Streett, Rabin, L-automata and L-process

� Buchi Automata
■ Accepting state is visited infinitely often

ω-automata for design

32

(r=1,t≠0) (r=0,t≠2)

(t≠0)
(t≠0)

(r=1,t≠0) (r=0,t≠1)

(r=0,t=1) (r=0,t=2)

(r=1,t=0)

(r=1,t=0)

(t=0) (t=0)

t [1]

t [0]

r

0 1 2 3r=0r=0

r=1

r=1

33

ω-automata for design

(r=1,t≠0) (r=0,t≠2)

(t≠0)
(t≠0)

(r=1,t≠0) (r=0,t≠1)

(r=0,t=1) (r=0,t=2)

(r=1,t=0)

(r=1,t=0)

(t=0) (t=0)

� Valid Behavior – (r=1,t=0) (r=0,t=1) (r=0,t=2) (r=0,t=0) ………

� Invalid Behavior – (r=1,t=1) ………

� L(D) – Set of all valid behaviors of the design

ω-automata for property

34

� Every LTL property can be expressed as ω-automata

� F (t = 2)

� Alternatively eventually! (t == 2)

� Valid behavior of the property

■ (t ≠ 2)* (t = 2) (true)
ω

■ ….. (t = 2) ……………………………..

� L(P) – Set of all valid behaviors of the property

t=2

t≠2

LTL Model Checking

35

� LTL Model Checking is Language Containment

� Design behaviors is a subset of property behaviors

� L(D) ⊆ L(P) or L(D) ∩ L(P) = ∅

(r=1,t≠0) (r=0,t≠2)
(t≠0)

(t≠0)

(r=1,t≠0) (r=0,t≠1)

(r=0,t=1) (r=0,t=2)

(r=1,t=0)

(r=1,t=0)

(t=0) (t=0)

t=2

t≠2

Complement

Cross
Product

Empty Language?

36

LTL Model Checking on our Example

(r=1,t≠0) (r=0,t≠2)

(t≠0)
(t≠0)

(r=1,t≠0) (r=0,t≠1)

(r=0,t=1) (r=0,t=2)

(r=1,t=0)

(r=1,t=0)

(t=0) (t=0)

t=2

t≠2

F (t = 2)

Will obtain a CEX – (r=1, t=0)ω

� Add a constraint – G (r = 0) or always(r == 0)

� Constraints are used to model environment and limit behaviors

� L(C) – Set of all behaviors of the constraint

� Check L(C) ∩ L(D) ∩ L(P) = ∅. Property will pass

37

Complexity of Model Checking
� CTL Model Checking

■ Evaluate property over the FSM structure
■ Notion of fixed point computation
■ Complexity is linear in the size of the formula

� LTL Model Checking
■ Notion of ω-automata
■ Translate design and property to ω-automata
■ Then LTL model check is simply a graph problem
■ Complexity is exponential in the size of the formula

� What problem remains? The State Explosion Problem
■ Complexity is linear in the number of states in design
■ Exponential in number of state bits in the design

38

Agenda
� Introduction to Formal Assertion Based Verification

■ What is the problem statement?
■ Temporal Logics

● LTL and CTL
● PSL and SVA

■ Model Checking
● CTL Model Checking
● LTL Model Checking

■ Symbolic Model Checking
● BDD and SAT based techniques

■ Abstractions

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

Binary Decision Diagrams

39

a
b

c out

a b c out

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

a

b b

cc c c

0 1 0 1 0 1 1 1

out

0

0

0

1

1

1

� Ordered Decision Tree

Binary Decision Diagrams

40

a

b

c

0 1

out

a

b b

cc c c

0 1 0 1 0 1 1 1

out
� Reduced Order BDD (ROBDD)
� Merge isomorphic nodes
� Remove redundant tests

BDD based Symbolic Model Checking

41

� Build a symbolic FSM model using BDDs

� Perform fixed point computation on the symbolic FSM

� Determine if property holds or not on the symbolic FSM

Symbolic
Model

Checking

RTL design

Properties
PSL/SVA

Does property hold
on the RTL design?

Symbolic FSM

Symbolic Model Checking on our Example

42

r

p1

0

p0

n1n1

n0 n0

1

n1

00 01 10 11
r=0r=0

r=1

r=1

r

n1

p0

p1

n0

� FSM next state function can be represented symbolically as a BDD
� BDD allows both forward and backward state traversal in the FSM
�Technically called a transition relation

Symbolic Model Checking on our example

43

r

p1

0

p0

n1n1

n0 n0

1

n1

00 01 10 11r=0r=0

r=1

r=1

0

n1

n0

1 1

p1

p0

0

AND =∃ r ()

BDD Based Model Checking

44

� Benefits
■ All operations can be done symbolically
■ Avoids upfront state explosion of explicit FSM

� However, not a magic solution
■ Size of BDD dependent on variable order
■ Example – for an n-bit adder

● Best order is linear, Worst is exponential
■ Finding the optimal order is a very hard problem

● NP-complete problem

� In practice works well if
■ Transition relation compactly represented with BDDs
■ Reachability is fast - BDDs do not get stuck in reordering

45

SAT (Satisfiability) Problem

� Given Boolean function f(x1, x2, …, xn)

� If it is possible to find assignments:
■ (x1=a1), (x2=a2), … (xn=an), such that
■ f(a1, a2, …, an) = 1?

� Works on Boolean formula in CNF
■ Conjunctive Normal Form or product of sums form

� This is an NP-Complete problem

(¬a ∨ b) ∧ (¬b ∨ c ∨ d)

Transforming design into a SAT problem

46

� Can the output of a design take value 1?

� p can take value 1 if (CNF1 ∧ CNF2 ∧ p) is satisfiable

CNF1 = (a ∨ ¬g) ∧ (b ∨ ¬g) ∧ (¬a ∨ ¬b ∨ g)

CNF2 = (¬g ∨ p) ∧ (¬c ∨ p) ∧ (g ∨ c ∨ ¬p)

a
b
c p

g

47

Bounded Model Checking

� Unfold the circuit “k” times

� Take the unrolled circuit and convert into CNF

� Use SAT solver to check if safety property holds for k steps

� If no, then SAT solver will give a CEX of ≤ k steps

� Bounded Model Checking can only give failures for safety

r

p

r0

p0

p0

p1

r1

p2

r2

p3

Start state p0=0 Check property until k steps

…
rk-1

pk

Symbolic Model Checking Summary

48

� BDD based Model Checking
■ Works well for “quick” passes and failures
■ Passes and failures could be quite deep

� SAT based Bounded Model Checking
■ Good for shallow failures
■ For deep failures unrolling becomes a bottleneck

� Other techniques
■ Combining BDD, SAT and ATPG based techniques
■ Distribution
■ Abstractions

49

Agenda
� Introduction to Formal Assertion Based Verification

■ What is the problem statement?
■ Temporal Logics

● LTL and CTL
● PSL and SVA

■ Model Checking
● CTL Model Checking
● LTL Model Checking

■ Symbolic Model Checking
● BDD and SAT based techniques

■ Abstractions

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

50

Abstraction

� Throw away information that is not required for proof

� Abstraction is key to scaling capacity of model checking

� One of most important abstraction
■ “Localization" abstraction
■ Throws away information not relevant to the given property

G (p Æ Xp)
Make g a pseudo-input

always ((p==1) Æ next (p==1))

p
a
b

g

51

Abstraction and Refinement

� Choose Initial Abstraction

� Model Check Abstracted Design

� Property Pass – It is indeed a Pass on
full design!

� Justify Counter-example

� Justified? – Bug Found!

� Refine the model
■ Many ways of refinement

� Model Check Refined Design

Other Advanced Abstraction Techniques

52

� Proof based Abstraction-Refinement
■ Combines SAT based BMC and BDD based model checking
■ Uses SAT based BMC to find a suitable abstraction

� Interpolation
■ SAT based Unbounded Model Checking
■ Uses over-approximate reachability analysis

Industrial Formal ABV Tools

53

� Various Commercial Tools
■ Cadence – Incisive Formal Verifier
■ Synopsys – Magellan
■ Mentor – 0-in
■ Jasper – JasperGold
■ OneSpin, Real-Intent, Averant, Axiom

� Combination of Symbolic Model Checking and Abstractions

� Can handle local properties
■ Typically can scale to around 10K state bits

� Global properties are still difficult
■ Need advanced abstractions and compositional techniques

54

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification
■ Methodology

● Planning for Formal Verification
● Property Coding Guidelines
● Formal Verification Flow

■ Case Studies
● Protocol Compliance : Bridge Validation
● Arbitration
● Interrupt Sorter
● Memory Controller
● SoC Connectivity
● SoC Performance

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

Need for Efficient Methodology

55

� State explosion problem (insufficient resources) very real !

� Abstraction is the key
■ Automatic
■ Manual

� No golden abstraction(s) to solve state explosion problem

� Analysis is important (apriori and dynamic)
■ For handling formal proof complexity
■ For predictability of FV usage and results

Reality Bites!

56

� 80% of medium / large sized modules experience state explosion
■ For one or more assertions
■ No golden abstraction(s) apply across all designs

� 70% of initial counter-examples are spurious
■ More so because of incorrect constraints, rather than incorrect

assertions
■ Decomposition in practical scenarios lacks formalism

� 50-70% of time is consumed in modeling / setup / coding
■ Rest is tool run time

Experience from application of FV on large set of Industrial designs

Need for Verification Planning

57

� Verification Objective: Close verification within a predicted schedule
■ Planning

● Complexity Estimation, Verification Plan, Partitioning and Abstractions
■ Execution

● Analyzing indeterminate results
● Adding / Removing / Optimizing Constraints
● Identification and Closure of False Failures
● Iterations could be large – due to adhoc constraint updates

■ Closure – Signoff
● Coverage analysis, Verification report

� All the above are inter-related
■ Closure has no meaning if results are indeterminate
■ Indeterminate results point to lack of proper abstraction
■ Lack of proper abstraction results from improper planning

Formal Verification Decisions

58

� Abstraction decision
■ Identify sweet spots (control versus data path)
■ What parts of the design need to be abstracted out?

� Modeling decision
■ Choosing the correct way of modeling the property
■ Complex SERE’s versus simple properties

� Property decision
■ Which language ? Which AIP’s ? Glue logic ?

� Tool specific Decision
■ Chose the correct FV engine
■ Chose correct tool (abstraction) options

Formal Verification Planning

59

� Predict the problems in advance
■ Based on design knowledge, tool, experience, etc

� Predict
■ Approximate design complexity (design analysis)
■ Approximate proof complexity (related to constraints and logic cone of

assertions)

� Decide
■ Whether to partition or not ? Where to partition ?
■ Abstraction mechanism associated with the partitioning
■ How to code assertions / constraints properly?
■ What engines / methods to use for what scenarios?

Planning Step-I: Identify the sweet spots

60

� Sweet spots : Control logic verification
■ Bus Bridges , Arbitration Logic
■ Controllers (FSM logic, Memory Cntlr, Interrupt Cntlr)
■ Control dominated Logic (Stall, Pipeline …)

� Not so sweet spots
■ Complex Serial Protocols
■ Modules with large FIFO’s
■ Protocol interfaces with huge latency parameters

� Negative candidates : Datapath intensive blocks
■ Data Transformation Blocks (Filters …)
■ Blocks with complex arithmetic units (Multipliers, Adders)

Planning Step-II: Analyze the module

61

� Identify the functionality of the block to be verified

� Identify the functionality of the surrounding blocks.
■ Check for well defined interfaces (standard protocols)

� Prepare detailed micro level bulleted English plan for
■ Assertions to be coded for block functionality
■ Constraints to be coded for functionality of surrounding blocks
■ Disable / Restrain any data-path interfaces (address-data bits)

Planning Step-III: Estimate Complexity

62

� Estimate Complexity for FV
■ (a) Number of flops in the module (first-crude estimate)
■ (b) Number of flops in logic cone of each assertion (finer estimate)
■ (c) Number of flops inferred because of constraint coding (adds to

complexity)

9 Good Candidate : < M flops ((b) + (c))

? Not so good Candidate : M – N flops ((b) + (c))

⌧ Negative candidates : > N flops ((b) + (c))

M ~ 1000 , N ~ 3000 Partitioning,
Restrictions needed

Planning Step-IV: Partition if needed

63

� Structural Partitioning
■ Partition a design into a set of functionally independent and spatially

disjoint components

� Functional Partitioning
■ Partition the design functionality itself into mutually exclusive logical

partitions

Structural Partitioning

64

� Golden Rules for partitioning
■ Identify the sub-modules (specs must be clear) which can be verified

separately
■ Identify the ‘simple / sparse’ interface at which to cut
■ Partition the design and code constraints at the cut-points
■ Verify each partition in isolation (apply assume-guarantee)

� Coding Constraints at cut-point-interface
■ Localization of the verification process
■ Abstraction is needed to benefit from decomposition
■ Golden Rule: “If surrounding RTL is replaced with equivalent constraints
Æ No gain!”

Functional Partitioning

65

� Identify mutually exclusive functional partitions
■ Example: Different modes of operation

� Identify interactions between these partitions
■ Independent – do not impose restrictions on each other

● Example: independent read and write operations
● Use pin tie-offs to cut off the other partition

■ They follow a sequence
● Example: a “read-exclusive” operation in OCP protocol should always be

followed by a write operation
● Identify the shared resources which play a role in one or more partitions
● Use constraints or simulation to skip over the previous partition

Assume–Guarantee Reasoning

66

pA

BA
pB

� Properties can be used as either assertions or assumptions

� Assume guarantee reasoning
■ DUV is block A

● assert pA; assume pB
■ DUV is block B

● assert pB; assume pA

� Using Protocol AIP’s
■ at master interface

● assume prop_slave* , assert prop_master*
■ at slave interface

● assume prop_master*, assert prop_slave*

Functional Assume–Guarantee

67

� Properties can be coded in layers (bottom up fashion)

� Properties in a layer assume validity of properties in below layers

� Application:
■ Prove the correctness of lower level properties
■ Apply them as constraints thereafter to prove higher level properties
■ Example : Arbitration validation:

Base level property: “The grants are zero-one-hot”
Higher level property: “check the arbitration scheme”

68

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification
■ Methodology

● Planning for Formal Verification
● Property Coding Guidelines
● Formal Verification Flow

■ Case Studies
● Protocol Compliance : Bridge Validation
● Arbitration
● Interrupt Sorter
● Memory Controller
● SoC Connectivity
● SoC Performance

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

Property Coding Guidelines

69

� Golden Rules:
■ Monitor style vs generator style

● For verifying RTL, do not create another one
■ Atomic vs Expressive Sequential properties

● Expressiveness adds proof complexity
■ Separability of functional checks

● Verify unrelated functional aspects in isolation
● Code separate properties for individual I/O’s of module
● Reduce input state space via pin-constraints
● Prove partitioned spaces are mutually exclusive

■ Incremental Property specification and verification
● Build up layers of properties
● Usually simpler to prove properties separately

■ Avoid integers, counters

Property Coding Guidelines

70

� Guidelines – try these templates for each property
■ Can it be written as “condition should/shouldn’t always happen”
■ Can it be written as

● prev_stateÆ(implies) current_state
■ Can it be written using ‘event bounded window’ – something happening

between two specified events
■ Can it be written without using number of clocks (i.e. counter)

Event2Event1

P P P P

Event2Event1

assert_frame assert_window

71

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification
■ Methodology

● Planning for Formal Verification
● Property Coding Guidelines
● Formal Verification Flow

■ Case Studies
● Protocol Compliance : Bridge Validation
● Arbitration
● Interrupt Sorter
● Memory Controller
● SoC Connectivity
● SoC Performance

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

Formal Verification Steps

72

� Verification Setup
■ Sanity checks
■ Cover points
■ Constraint selection (incremental constraint addition)

� Formal Engine Selection

� Managing subsequent verification setup changes
■ Use structural coverage metrics

● Branch coverage, Expression coverage
● FSM checks

� Putting it all together

Formal Engine Selection

73

� Engines targeted towards
■ Bug Finding
■ Complete Proof

� Selection depends upon
■ Estimated Sequential Depth (user decision)
■ Design characteristics

● More breadth than depth owing to
concurrent FSM’s

● Large sequential depths owing to counters, serial
shift registers

FVFV

Re
ac

ha
bl

e.. ATPG

SA
T

SA
T

Abstraction

Hybrid

Structural Coverage Metrics

74

� Metrics point towards ‘unreachable’ parts of the design under the set of
applied constraints – validates the ‘sanity’ of the constraints

� Various set of metrics supported by tools
■ Branch coverage (Dead code analysis)
■ FSM checks
■ Expression coverage

� Point to over-constrained, restricted verification environment

� Managing constraint addition / removal
■ For every major constraint change, coverage analysis must be done to

filter out constraint related problems
■ Compare with past data

Formal Verification Flow

Model Checker

Model +
Properties

NO

YES
Indeterminate

Results
Indeterminate

Results

Decompose, Abstract,
Over Constrain

YES

PASSPASS
NO

Spurious Spurious
cex

YES

NO

Refine the model or assertions
Modify assumptions Stuck ? None of the

Abstractions working

Bug Hunting
(Directed

Simulation
assisted MC)

Closure ?

Bug Hunting Mode

76

� To find silicon bugs, or when the overall proof procedure does not
yield results

� Functional Partitioning
■ Break design state space into logical sub-spaces

� Directed simulation
■ Guide the system to known states

� Formal Verification
■ To explore for bugs in the logical partition, separately
■ Usually apply this technique with some over-constraints

Bug Hunting Example: Dealing with FIFO’s

77

� Interesting points to check: Overflow/Underflow
■ If possible, “reduce FIFO depth / width”
■ Else light-weight simulation to “reach near corner points”

Rd ptrWr Ptr

Rd ptr

reset FIFO almost FULL

Push Predefined
Pattern of Data (that can
catch corner cases**)

(a) Dynamic Simulation
to Bring System to a

Known State

(b) Apply pin-
constraints (upon pins
that have no further

role) to reduce cone of
influence

(c) Apply FV from this
state onwards

78

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification
■ Methodology

● Planning for Formal Verification
● Property Coding Guidelines
● Formal Verification Flow

■ Case Studies
● Protocol Compliance : Bridge Validation
● Arbitration
● Interrupt Sorter
● Memory Controller
● SoC Connectivity
● SoC Performance

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

79

Bridge : Verification Targets
� Functional Coverage Points:

■ Protocol Compliance
■ Address Decoding
■ Data Integrity
■ Arbitration
■ Performance / Latency

� Structural Coverage Points
■ Dead Codes
■ FSM state / transition
■ Structural checks (Out of

bounds, FIFO full / empty)

Black Box Verification White Box Verification

Implied IntentFunctional Intent

Mostly AutomatedManual

Parallel Protocols

80

� Control Variables
■ Define state of transaction (Command, Burst, Response)
■ Define legal / illegal states (reachable / unreachable)
■ Define legal / illegal transitions between legal states

� Qualifier Variables
■ Add extra information to transaction (Address, Data)

� Every protocol can be decomposed into functional layers
■ Atomic Transactions: basic transactions like read / write

● Handshake mechanism: Something holds until something else happens
● Basic definition for start / end of request, response

■ Complex Transactions: adds extra sequential information
● e.g. to bind atomic transactions in a “Burst mode”
● Basic definition involves start / end of transaction ‘windows’

■ Ordering: remember history of pipelined events
■ Out of order execution: properties for inter-thread transitions

Serial Protocols

81

� DATA & CONTROL shared on same transmission line
■ Difficult to separate

� Data-frames are spaced over several clock-cycles
■ Requires “HISTORY” info: Detecting a pattern requires

“remembering” previous train of signals – needs an FSM
■ E.g. Whether a train of 10 bits is a pre-amble or a post-amble

depends on the first 3 bits in that sequence.

Simple Parallel Protocol:
CS = ƒ(current values only)

Complex Parallel Protocol
CS = ƒ (current values, pipeline history,
thread_id)

Serial protocol :
CS = ƒ (history)

Increasing effect of history on current state decoding

CS: Current state of protocol (transaction)

Property Coding for Protocols

82

Encoding
Layer

Packet
Layer

Transaction
Layer

Semantic
Layer

Information

Frame Frame

How the Protocol looks
at it

Packet Packet

Data Stream

How the Properties
look at it

Decoding
Layer

Assume-Guarantee

Assertions in a particular
level depends on those

at a lower level

Data
Integrity

packets’
validity

Sequencing

Parallelism
(threads,
bursts)

Dependency
among

assertions

Semantic
Layer

Packet
Layer

Transaction
Layer

■ Generic and small FSMs for assertion writing (for each layer)
■ FSMs for a higher layer use output flags of lower layer FSMs
■ Prove assertions bottom-up, using proven assertions as constraints

AXI-OCP Bridge

83

� Characteristics:
■ 1 AXI interface, 3 OCP-2.0

Interfaces
■ Flop Count : 560
■ Pipeline depth (AXI) : 5
■ Threads Supported
■ Functional reset happens 2

cycles after reset is asserted
� Scope of FV:

■ Protocol compliance check
■ No data integrity checks

� Initialization: Use Simulation
■ 2 cycles IDLE after primary reset

is asserted

AXI-OCP
Bridge

AXI-OCP
Bridge

AXI OCP1

OCP2

OCP3

Other Signals

AXI-OCP
Bridge

AXI-OCP
Bridge

AXI OCP1

OCP2

OCP3

Other Signals

� Modeling:
■ Divide & Conquer

● Verify each AXI-OCP path in
isolation

● Use Addresses to restrict
other paths

AXI-OCP Bridge

84

AXI-OCP
Bridge

AXI-OCP
Bridge

AXI OCP1

2

3

Other Signals

Assume:
Master

Properties

Prove:
Slave

Properties

Assume:
Slave

Properties

Prove:
master

Properties

AXI-OCP
Bridge

AXI-OCP
Bridge

AXI OCP1

2

3

Other Signals

� Verification:
■ AIPs used for AXI and

OCP
■ First prove each path is

independent
■ “If address/thread-id is

A3/T3, then MCmd at
OCP interface 1 & 2 is
always IDLE”

■ Apply assume-
guarantee

■ Prove assertions in
bottom-up fashion

� Handling indeterminate proofs:
■ Reduce pipeline depth, # threads
■ Prove each burst type separately,

using pin constraints
■ Bug hunting: initialization via

simulation

AXI-OCP Bridge

85

� Project Statistics:
■ Number of Assertions : 125
■ Number of Constraints : 60
■ Number of Restrictions : 15
■ Total Time : 3 weeks (Tool runtime: 35%)

� Sample Results
■ BUGS / Anomalies

● “Data was presented on the OCP port even prior to the corresponding
command acceptance on AXI”

● “Sequence of generated addresses incorrect for incrementing bursts”

I2C Controller [Gorai et al, DAC-2006]

86

OCP I2C

�Parallel to Serial Bridge:
■697 Flops

�Scope of Verification:
■Root-cause a silicon bug
■Prove that a software

workaround is robust

�Result:
■Found trace for the bug
■Workaround valid for a

specific sequence of
commands only

�Bug condition:
■I2C Controller in Master Receive Mode
■Number of bytes to be transferred is Odd
■OCP fills FIFO with “addresses to be read”, and I2C

transmits the address from FIFO (address phase)
■I2C receives data from Slave (data phase) and set

RRDY flag
■OCP to read a byte from FIFO and clear RRDY flag
■I2C detects “I2C-stop” condition and set ARDY flag
■OCP to clear ARDY Flag
■Bug: Near stop condition, RRDY cannot be cleared
■Workaround: Clear ARDY and then clear RRDY flag

I2C Controller

87

� Verification Steps
■ OCP and I2C VIP’s were configured and attached
■ Test pins, redundant OCP data pins were tied to constant values
■ Protocol Compliance checks

● Proven I2C assertions were then used as constraints
■ Directed simulation to

● Configured registers for MRx mode, for 1 byte transfer
● Load transmit FIFO with data
● Take the design to end of I2C address phase

� The Event window where RRDY could be cleared divided into 4 parts
■ Based on Set Flags & Stop conditions

� Bug located: RRDY could not be cleared in one region only
■ Effort: 2 months, mainly to write I2C AIP. Reuse: 2 weeks

OCP Arbiter

88

� Characteristics:
■ 4 OCP inputs (from masters)

● ocp1, ocp2 with pipeline
● ocp3, ocp4 no pipeline

■ 10 OCP outputs (to slaves)
■ Configurable Internal Register
■ Flops: 637
■ Round Robin Arbitration with

priority-reset on 2 cycles IDLE
■ Bypass functionality

� Scope of FV:
■ Protocol compliance check
■ Arbitration Check
■ Bypass Check

OCP
Arbiter
OCP

Arbiter

OCP1
OCP1

OCP2

OCP10

OCP2

OCP3

OCP4
OCP7

� FV Complexity
■ 32 bit address lines
■ Internal Decoding Logic
■ Arbitration Exceptions:

● Bypass
● Configuration register

OCP Arbiter

89

OCP
Arbiter
OCP

Arbiter

OCP1
1

2
OCP2

OCP3

OCP4

7

OCP
Arbiter
OCP

Arbiter

OCP1
1

2
OCP2

OCP4

7

Bypass Check

�Identify serviced masters:
■ Check for ByteEn pass-through
■ Tie ByteEn to unique values (to

identify master requests)
■Map the 10 requests on Slave

side as 4 grants for masters

�Modeling:
■ Protocol Compliance Check

● Assume-guarantee
■ Bypass Check

● Whenever there is request from
OCP3 to dedicated slave, it must
get serviced with zero-cycle
delay

■ Arbitration Check
● Disable Configuration reg
● Disable Bypass

■Define events: Start / End of
Requests

OCP Arbiter

90

� Create abstract arbiter model (assertions)
■ Round Robin Scheme with priority reset

OCP
Arbiter
OCP

Arbiter

OCP1

OCP4

OCP
Arbiter
OCP

Arbiter

OCP1

OCP4

Model ‘requests’ as
considered by arbiter

- Model ‘grants’ as considered
by arbiter
- Map ‘10’ grants to ‘4’ grants

Abstract
Arbiter
Model

‘4’ requests ‘4’ grants

OCP Arbiter

91

�Challenges
■Due to decoding logic, the proof complexity is very high
●Address constraints: Allow only some number of active slaves
●Restrict accesses: Take a set of 3 masters at a time
●Using proved properties as constraints

■Pipelining creates problems for accurate arbitration checks
●Need to keep external history for pipeline: External buffer keeps track of

‘number of pending requests’ Æ counter implementation

�Sample BUGS / Anomalies discovered:
■Bypass should have zero-cycle latency, whereas 1 to 2 cycle latency was

possible under error conditions
■Arbitration Error in the first cycle : uninitialized registers
■Priority reset after idle cycles was not happening always

Interrupt Controller [Biswas et al, CDNLive-2005]

92

� Characteristics:
■ Sorting between 32/48/96 interrupts (configurable)
■ Mask and Priority configurable for each interrupt
■ OCP Interface (for configuration)
■ Flop Count : 785 (for 32 interrupts)
■ Output after 8 clock cycles (sorting in groups of 4)

� Scope of FV:
■ Protocol compliance check
■ Sorting Algorithm Verification Sorting

Algorithm
Sorting

Algorithm
OCP

Interrupts winnerSorting
Algorithm
Sorting

Algorithm
OCP

Interrupts winner

Prop_s
0 1 1 0

Sorting
Algorithm
Sorting

Algorithm
OCP

Interrupts winner

Disabled

i

Interrupt Controller

93

� Challenges
■ Mask & priority registers programmable via OCP interface

● Many combinations possible

� Solutions:
■ Prove integrity of OCP data writes to internal registers
■ Then apply stability constraints on register
■ For intra-class checks, tie-off other interrupts
■ For inter-class checks, constrain values within each class to be same
■ Compare expected winner (computed by Verilog function) with actual

winner

Memory Controller

94

� Characteristics:
■ Interface to SARAM core
■ Handshaking (with stall) with other bank-controllers
■ Total number of request buses (cpu, dma etc.) :9
■ Fixed Intra as well inter priority between requests
■ Pipelined CPU requests, DMA burst requests
■ Flop Count : 3500
■ Embedded SARAM, BIST controller

� Scope of FV: Serialization check
● “Order of grants must be same as the requests”
● End-to-end property, encompasses all behavior of controller (mux, stall,

arbitration, etc.)

Memory Controller

95

SARAM channelSARAM channel
SARAM Cores

Arbitration logic
Serialization

Stall behavior

Strobe & inputs Output Stall Signals

Input (global) Stall
signals 0

Pin ConstraintsMembist Disabled Memory removed

Ready SignalsRequest and Address
Signals

(Constrained)

Memory Controller

96

� Solutions: White-box and Controlled Verification
■ Allow access to each core

● But intelligently disable parts/bits of address bus
■ Keep out other bank controllers

● Assume a floating primary input signaling their stall behavior
■ Identify and code assertions for internal points

● E.g. Code and prove assertions for stall module
■ Then use them as constraints

� Results:
■ More than 30 bugs found, most of them corner cases (related to flush

functionality of pending buffers and stall behavior, which in turn lead to
serialization assertion failures)

■ Effort:
● Assertions : 215, Constraints : 12
● Total Time : 8 weeks (Tool runtime: 50%)

97

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification
■ Methodology

● Planning for Formal Verification
● Property Coding Guidelines
● Formal Verification Flow

■ Case Studies
● Protocol Compliance : Bridge Validation
● Arbitration
● Interrupt Sorter
● Memory Controller
● SoC Connectivity
● SoC Performance

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

SoC Connectivity Verification

98

� Bus Architecture Connectivity, I/O Pin-Muxing Logic

� Errors caught easily and upfront in the design
■ Traditional verification involves exercising the complete communication

protocol from one end point to find any bug
■ Verification starts much earlier, issues get resolved quicker
■ Errors detected: tieoffs, unconnected points, wrong connections

� Connectivity Description:
■ Interface Definition: Port, direction, width, high/low, etc.
■ Connectivity table: IPx-Porty to IPa-Portb

� Results:
■ Properties: ~ 5000 (at top-level of a 5M gate chip)
■ Time: 6 hours
■ Note: not checking for validity of xls itself, nor IP functionality

� To be done: Interrupt and Clock-reset connectivities

SoC Connectivity Verification

99

PSL Gen
ScriptsSPECIFICATIONS Connectivity

XLS

Formal
Verification

Connectivity related
bugs found

Track 1

PSL

RTL
Manual / Automated
Flow Generates RTL

Track 2

SoC Bandwidth Verification [Bhatia et al, DAC-2007]

100

� Memory bandwidth validation:
■ Multiple masters accessing the

memory subsystem
■ Master starvation affects system

performance
■ Traditional methods: simulation,

FGPA / emulation, running real
software on real silicon

■ Formal Verification needed for
corner case analysis on real
RTL – early enough to fix design
bottlenecks

Interconnect

ARM

DMADMA

Memory
Traffic

Controller
D

isplay U
nit

C
am

era I/F

JP
E

G

E
ngine

Bridge
G

raphics I/F

�

AFE

IS
P

High Speed
Serial Port

� Properties:
■ Rate, e.g. "Requests are produced every ‘n’ time units": t(Request[i+1]) - t(Request[i]) = n
■ Latency, e.g. "Response is generated no more than ‘k’ time units after Request":

t(Response[i]) - t(Request[i]) <= k
■ Throughput, e.g. "at least ‘W’ Request events will be produced in any period of ‘T’ time units":

t(Request[i+W]) - t(Request[i]) <= T

101

Master 2 Ch0Master 2 Ch0

Master 2 Ch 1Master 2 Ch 1

Master 3Master 3

Master 4Master 4

Master 1Master 1
+ Master Models

SEL

..

..

..

MM
UU
XX

DB

DI

+ PSL

SoC Bandwidth Verification

Verification SS

EMIF

DUT

Interconnect

MIF

102

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification
■ Complexities of High-End Processors
■ Algorithmic Methods for Reducing Verification Complexity
■ Processor Verification Case Studies

● Sequential Equivalence Checking (SEC)
● Instruction Dispatch Case Study
● Instruction Fetch-Hang Case Study
● Floating-Point Unit Verification
● Load-Store Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

POWER5 Chip: It’s Ugly

103

� Dual pSeries CPU
� SMT core (2 virtual procs/core)
� 64 bit PowerPC
� 276 million transistors
� 8-way superscalar
� Split L1 Cache (64k I & 32k D) per core
� 1.92MB shared L2 Cache >2.0 GHz
� Size: 389 sq mm
� 2313 signal I/Os
� >>1,000,000 Lines HDL

POWER architecture:
� Symmetric multithreading
� Out-of-order dispatch and execution
� Various address translation modes
� Virtualization support
�Weakly ordered memory coherency

Moore’s Law: AND It’s Getting Uglier

104

� Complexity increases for POWER5, POWER6,
POWER7, …

� Increase in # transistors / chip
■ Contributes somewhat to complexity
■ Alleviated by modularity

● N identical proc cores on chip
■ Alleviated by increased RAM size

� Increase in speed
■ Contributes significantly to HDL

complexity
■ CEC methodology requires 1:1 latch

correspondence between circuit, HDL
● CEC=Combinational Equiv Checking

Complexities of High-End Processors

105

� CEC methodology forces HDL to acquire circuit characteristics
■ Word-level operations, isomorphisms broken by self-test logic

● Self-test logic: much more intricate than mere scan chains
● Reused for functional obligations: initialization, reliability, …

■ Run-time monitoring logic entails similar complexities

Complexities of High-End Processors

106

� CEC methodology forces HDL to acquire circuit characteristics
■ Timing demands require a high degree of pipelining

● And multi-phase latching schemes

■ Placement issues: redundancy added to HDL
● Lookup queue routes data to 2 different areas of chip Æ replicate

■ Power-savings logic complicates even simple pipelines

■ Design HDL becomes difficult-to-parse bit-level representation
● Industrial FPU: 15,000 lines VHDL vs. 500 line ref model

■ Sequential synthesis cannot yet achieve necessary performance goals
● And need integration of pervasive logic: self-test, run-time monitors

Complexities of High-End Processors

107

� Numerous techniques have been proposed for Processor Verification

� Satisfiability Modulo Theories replaces word-level operations by
function-preserving, yet more abstract, Boolean predicates
■ Replace complex arithmetic by arbitrary simple (uninterpreted) function
■ Reduce arithmetic proof to simpler data-routing check

� Numerous techniques to abstract large memories

� Numerous techniques to decompose complex end-to-end proofs

�…

Complexities of High-End Processors

108

� Difficult to find places to attempt such abstractions on
high-end designs
■ Word-level info lost on highly-optimized, pipelined, bit-sliced designs

● Designs are tuned to the extent that they are “almost wrong” R. Kaivola

■ Time-consuming + error-prone to manually abstract the implementation

� Abstractions may miss critical bugs
■ Removal of bitvector nonlinearities are lossy

● May miss bugs due to rounding modes, overflow, … if not careful

� Need to verify a more abstract model?
■ Developing, maintaining such a model is very expensive
■ Emerging SEC technology: may close abstract vs CEC model gap

Complexities of High-End Processors

109

� Industrially, “Formal Processor Verification” refers to proc components
■ E.g., verification of FPU, Cache Controller, Branch Logic

� “Dispatch to Completion” proofs for processors as complex as Pentium,
POWER, … are intractable given today’s technologies

� In this tutorial, we focus on various case studies of the verification of
processor components

110

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification
■ Complexities of High-End Processors
■ Algorithmic Methods for Reducing Verification Complexity
■ Processor Verification Case Studies

● Sequential Equivalence Checking (SEC)
● Instruction Dispatch Case Study
● Instruction Fetch-Hang Case Study
● Floating-Point Unit Verification
● Load-Store Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

Reducing Verification Complexity

111

� We discussed characteristics of high-end processors that make them
large, complex, difficult to verify
■ High degree of pipelining
■ Multi-phase latching schemes
■ Addition of sequential redundancy
■ Loss of word-level and isomorphic characteristics

� Some may be addressed using automatic vs. manual techniques

Semi-Formal Verification (SFV)

112

� SFV: hybrid between simulation and FV
■ Uses resource-bounded formal algos to amplify simulation results
■ Uses simulation to get deep into state space

� Hybrid approach enables highest coverage, if design too big for FV
■ Scales to large designs, without costly “manual abstraction”

� Incomplete, like simulation
■ May trade proof capability for high semi-formal coverage

Pipelining

113

� High-end designs often use aggressive pipelining to break
computations across multiple clock periods
■ Increases #state elements; diameter

� Min-area peripheral retiming may be used to drop latch count
■ Used as an automatic, property-preserving transform

“Transformation-Based Verification using Generalized Retiming” CAV01

Multi-Phase Latching Schemes

114

� High-end designs often use multi-phase level-sensitive latches to better distribute
propagation delays vs. edge-sensitive flops
■ Increases #state elements; diameter

� Phase abstraction can automatically convert multi-phase to simple-delay model
■ Unfold next-state functions modulo 2, removing oscillator + ~1/2 latches

“Automatic Generalized Phase Abstraction for Formal Verification” ICCAD05

Sequential Redundancy

115

� High-end designs use sequential redundancy to minimize propagation delays

� Pervasive logic Æ sequential, yet disabled, logic intertwined with all latches
■ Increases #state elements; breaks isomorphisms, word-level properties

� Numerous techniques exist to identify, merge redundant gates

“Exploiting Suspected Redundancy without Proving It” DAC05

Reducing Complexity through Transforms

116

� High-end design complexities can be (partially) alleviated through
automated transformations and abstractions

� Our solution at IBM leverages transformation-based verification
■ Fully automated, scalable (S)FV toolset SixthSense

■ Iterate synergistic transforms to decompose large problems into simpler
sub-problems
● Localization, retiming, phase abstraction, redundancy removal, …

■ Leverage various proof+falsification engines to solve resulting problems
● Semi-formal search, bounded model checking, interpolation, …

Transformation-Based Verification

117

Design +
Properties

SixthSense

50000 registers

Reachability
Engine

Redundancy
Removal
Engine

40000 registers

Redundancy-
removed,

localized trace

Redundancy-
removed

trace

Localization
Engine

150 registers

Problem
decomposition
via synergistic

transforms

Counterexample
Trace consistent with

Original Design

All transformations
are transparent to the user

All results are in terms
of original design

Reducing Verification Complexity

118

� Automated techniques are continually increasing in capacity

� However, for complex proofs, manual techniques are critical to push the
capacity barrier
■ Choice of testbench boundaries
■ Manual abstractions to reduce design complexity
■ Underapproximations and overapproximations
■ Strategic development of constraints and properties

� The best strategy often depends upon some knowledge of available algos

119

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification
■ Complexities of High-End Processors
■ Algorithmic Methods for Reducing Verification Complexity
■ Processor Verification Case Studies

● Sequential Equivalence Checking (SEC)
● Instruction Dispatch Case Study
● Instruction Fetch-Hang Case Study
● Floating-Point Unit Verification
● Load-Store Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

Processor Verification Concepts

120

� A verification Testbench comprises
■ Design components under verification

■ Input assumptions
● May be represented as constraints
● Or may be overridden by random drivers

� We refer to either scheme as a driver

■ Properties to be checked
● Coverage metrics, assertions, equivalence vs. ref model

■ Initialization information
● Initial states impact reachable states which impacts pass vs fail

Processor Verification Concepts

121

� Verifying a proc component is basically the same as verifying any design
■ However, due to high-performance logic, verifying architectural

properties typically requires a Testbench which is too large for proofs

� Options:
1. Develop unit-level Testbench without worrying about proof feasibility
2. Develop minimal Testbench encompassing only functionality to be

verified

Processor Verification Concepts

122

1. Develop unit-level Testbench without worrying about proof feasibility
■ Unit-level testbenches often built for sim regardless

● Use of synthesizable language Æ reusable for FV, emulation, …

■ Leverage semi-formal verification for bug-hunting
● With luck, robust tool may yield some proofs regardless
● But likely need hand-tweaking of Testbench for proofs

� Easier for non-experts to leverage (S)FV
■ Manual abstraction is time-consuming and difficult
■ Even if using experts to abstract, disperses formal spec effort

� Easier to specify desired properties at unit level
■ Verify functionality vs. verify blocks
■ Difficult to cover architectural properties on small blocks

Processor Verification Concepts

123

2. Develop minimal Testbench encompassing only functionality to be verified
■ Requires dedicated effort to enable FV

● Checks and Assumptions may be reusable in higher-level sim
● But often need to develop a higher-level Testbench for sim

■ Block-level Testbench often more complex to define than unit-level
● More complex, prone to change, poorly documented input protocol

� Works very well if done by designer at design granularity level
■ E.g. designer of Data Prefetch building Testbench at that level

� Higher chance of proofs, corner-case bugs on smaller Testbench
■ Data Prefetch is much smaller than entire Load-Store Unit!

Basic CPU Architecture

124

Load-
Store

Unit (LSU)

Instr
Fetch
Unit
(IFU)

Instr
Decode

Unit
(IDU)

Floating
Point

Unit (FPU)

Fixed-
Point

Unit (FXU)

Branch
Execution
Unit (BXU)

Global
Completion

Unit
(GCU)

125

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification
■ Complexities of High-End Processors
■ Algorithmic Methods for Reducing Verification Complexity
■ Processor Verification Case Studies

● Sequential Equivalence Checking (SEC)
● Instruction Dispatch Case Study
● Instruction Fetch-Hang Case Study
● Floating-Point Unit Verification
● Load-Store Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

Pseudo Case-Study: SEC

126

� Performance-critical designs undergo many functionality-preserving
transforms
■ Timing optimizations
■ Power optimizations
■ Addition of test and run-time monitoring logic

� Using SEC to validate such changes can dramatically reduce verif
resources

Initialized
OLD Design

Initialized
NEW Design

Inputs =?

Outputs

Pseudo Case-Study: SEC

127

� Due to synthesis limitations, transforms often done manually
■ Entail risk of (late) error introduction
■ Suboptimalities tolerated to minimize error risk

� SEC is very easy to run: no difficult Testbench setup

� SEC often runs quickly, and exhaustively checks equivalence
■ Eliminates risk; enables more aggressive, later optimizations

� Without SEC, functional verif is rerun upon HDL modification
■ CPU-months of simulation regressions
■ FV testsuites re-run

Pseudo Case-Study: SEC

128

� SEC also useful for:
■ Reference-model style verification

● Less circuit-like model serves as extensive “property set”

■ Demonstrate bwd-compatibility of design evolutions
● E.g. if HW multithreading added to old design, SEC can confirm “single

thread” mode of new matches old

■ Quantify: functional changes do not alter unintended behavior
● If opcode1 handling changed, constrain and check equivalence across all

other opcodes

129

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification
■ Complexities of High-End Processors
■ Algorithmic Methods for Reducing Verification Complexity
■ Processor Verification Case Studies

● Sequential Equivalence Checking (SEC)
● Instruction Dispatch Case Study
● Instruction Fetch-Hang Case Study
● Floating-Point Unit Verification
● Load-Store Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

Instruction Dispatch Case Study

130

� Concerns the portion of the Instruction Decode Unit responsible for
routing valid instruction groups to execution units

Flushes / Rejects

Instr
Buffer

Instr
Fetch
Unit

+
Decoder

Staging
Logic

Instr
Dispatch

Logic

In
st

ru
ct

io
ns

In
st

ru
ct

io
ns

In
st

ru
ct

io
ns

To
Execution

Units

Decoded
ICache

Line

Stall

Instruction Dispatch: Verification Goals

131

� Verify that Dispatched instructions follow program order, despite:
■ Stalls
■ Flushes (which roll back the Dispatch flow to prior Instr Tag)
■ Branch Mispredicts (similar to Flushes)
■ Rejects (which force re-issue of instructions)
■ Bypass path

Instruction Dispatch: Logic Boundaries

132

� First choice: what logic to include in Testbench?
■ Independent verif of Instr Buffer, Staging Logic, Dispatch Logic attractive

from size perspective, but hard to express desired properties
● Decided to include these all in a single testbench

■ Decoded instructions were mostly data-routing to this logic
● Aside from special types (e.g. Branch), this logic did not interpret instructions
● Hence drove Testbench at point of decoded instruction stream

■ Though infrequent during normal execution, this logic must react to
Rejects, Stalls, Flushes at any point in time
● Hence drove these as completely random bits

Instruction Dispatch: Input Modeling

133

� Second choice: how to model input behavior
■ Needed to carefully model certain instruction bits to denote type

● Branch vs. Regular types

■ Other bits were unimportant to this logic
● Precise modeling: allow selection of exact legal decodings

� Manually intensive, and large constraints may slow tool

● Overapproximate modeling: leave these bits free
� Ideal since overapproximation ensures no missed bugs
� But large buffers imply large Testbench!

● Instead, used the bits strategically
� Tied some constant, to reduce Testbench size
� Randomized some, to help ensure correct routing
� Drove one bit as parity, to facilitate checks
� Encoded “program order” onto some bits, to facilitate checks

Instruction Dispatch: Property Modeling

134

� Third choice: how to specify properties to be checked
■ Dispatches follow instruction order:

● Easy check since driver uses bits of instr to specify program order
● Check for incrementing of these bits at Dispatch

■ Flushes / Stalls roll back the Dispatch to the proper instruction
● Maintain a reference model of correct Dispatch Instr Tag

■ Dispatched instructions are valid
● Check that output instructions match those driven:

� Correct “parity” bit
� Patterns never driven for a valid instruction are never read out

� Drove “illegal” patterns for instructions that must not be read out

Instruction Dispatch: Proof Complexity

135

� Recall that driver tricks were used to entail simpler properties
■ Check for incrementing “program counter” bits in Dispatched instr

� Without such tricks, necessary to keep a reference of correct instruction
■ Captured when driven from Decoder; checked when Dispatched

● More work to specify
● Larger Testbench, more complex proofs, due to reference model

� Shortcut possible since this logic treated most instruction bits as data
■ If Testbench included execution units, shortcut would not be possible

Instruction Dispatch: Proof Complexity

136

� Philosophy: “don’t be precise where unnecessary for a given testbench”
is very powerful for enabling proofs
■ Instr Dispatch requires precise Instr Tag modeling due to flushes; does

not care about decoded instr
■ Some downstream Execution Units don’t care about Instr Tag; require

precise instr code

� However, this occasionally runs contrary to “reusable properties”
■ E.g., “patterns which cannot be driven are not Dispatched” check

cannot be reused at higher level, where overconstraints are not present

Instruction Dispatch: Proof Complexity

137

� Semi-Formal Verification was main work-horse in this verification effort
■ Wrung out dozens of bugs

● Corner-cases due to Flushes, Stalls, Bypass, …

■ For SFV, biasing of random stimulus important to enable sim to provide
a reasonable sampling of state space
● Needed to bias down transfers from IFU, else Instr Buffer always full

� Parameterizing size of Instr Buffer smaller, setting more decoded instr
bits constant helped enable proofs

138

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification
■ Complexities of High-End Processors
■ Algorithmic Methods for Reducing Verification Complexity
■ Processor Verification Case Studies

● Sequential Equivalence Checking (SEC)
● Instruction Dispatch Case Study
● Instruction Fetch-Hang Case Study
● Floating-Point Unit Verification
● Load-Store Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

Instruction Fetch Case Study

139

� Motivated by an encountered deadlock:
■ Instruction Fetch Unit stopped fetching instructions!

InitFetch

ICache

Instr
Fetch
State

Machine

Instr
Buffer

In
st

r.
Fe

tc
h

In
st

r’s
InstructionsMispredict Flush

Branch
Execution

Unit

Instr
Pipeline

To
Execution

Units

Fetch-Hang Case Study

140

� Suspected: Instr Fetch State Machine (IFSM) can enter illegal hang state

� First tried to isolate IFSM in a Testbench
■ Despite simple previous Figure, formidable to specify accurate driver

due to numerous ugly timing-critical interfaces

■ With underconstrained Testbench, checked whether IFSM could enter a
state where it did not initiate Instr Fetch after InitFetch command

■ Discovered a hang state – yet could not readily extrapolate the tiny
counterexample to one of the entire IFU+IDU
● Exhibited input timings thought to be illegal
● Yet designer was able to discern a scenario which, if producible, could lead

to deadlock

Fetch-Hang Case Study

141

� Given extrapolated scenario, next attempted to produce that scenario on
larger IFU+IDU components
■ Interfaces at this level were very easy to drive

● Abstracted the ICache to contain a small program

■ However, VERY large+complex Testbench
● Could not get nearly deep enough to expose condition which could reach

hang state

� Used 2 strategies to get a clean trace of failure:
■ Tried to define the property as an earlier-to-occur scenario
■ Constrained the bounded search to extrapolated scenario

Fetch-Hang Case Study

142

� Extrapolated scenario:
■ Stream A is being executed, encounters a branch to B (to be taken)
■ Instructions in-line from A are still being fetched to Instr Buffer at

time of branch resolution
■ Somehow the in-line instructions are not immediately invalidated
■ Fetch to B is delayed until exactly the point that the in-line

instructions are dispatched out of the Instr Buffer (InitFetch)
● This can put the IFSM into the dangerous hang state

■ Somehow a Mispredict Flush does not get triggered (to squash the
in-line instructions) to break IFSM out of the hang state

� Difficult to discern how to complete scenario to end up in deadlock

tim
e

Fetch-Hang Case Study

143

� Reachability of hang state on full Testbench possible with BMC
■ However, normal execution always kicked IFSM out of hang state

� But trace provided useful insight: an in-line instruction may avoid
invalidation if fetched during 1-clock window where branch is dispatched
■ This information, plus the timing at which activity occurred during the

BMC trace, was used to constrain a deeper BMC check

time

Stream A hits branch to B,
predicted “not taken”

Inline A fetch concurrent w/
branch-to-B dispatch

Inline A dispatch
concurrent w/ B fetch

Branch resolved
“taken”

Hang state
entered

Hang not
broken?

Fetch-Hang Case Study

144

� Constrained BMC run exposed the deadlock situation!

� Address B exactly same address as in-line instructions from A which
spuriously made it through Instr Buffer
■ Other conditions required, e.g. no spuriously dispatched branches

� However, removing constraints to check for alternate fail conditions (and
validity of fix) became intractable even for BMC
■ Tried manual abstractions of Testbench to cope with complexity

● Replaced Instr Buffer with smaller timing-accurate abstraction
● Still intractable due to depth, size of Fetch logic

■ Realized we needed purely abstract model to approach a proof

Fetch-Hang Case Study

145

� Built a protocol-style model of entire system, merely comprising timing
information and handling of relevant operations

� Validated (bounded) cycle accuracy vs. actual HDL using SEC

� Easily reproduced failures on unconstrained protocol model
■ Then verified HW fix: closing one-clock timing window

■ Also verified SW fix: strategic no-op injection
● Clearly wanted to inject as few as possible for optimality
● Modeled by adding constraints over instruction stream being executed

upon abstract model
● Re-running with constraints yielded proof

146

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification
■ Complexities of High-End Processors
■ Algorithmic Methods for Reducing Verification Complexity
■ Processor Verification Case Studies

● Sequential Equivalence Checking (SEC)
● Instruction Dispatch Case Study
● Instruction Fetch-Hang Case Study
● Floating-Point Unit Verification
● Load-Store Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

FPU Case Study

147

� Floating point number format: M * BE

■ M: Mantissa e.g. 3.14159
■ B: Base, here B=2
■ E: Exponent, represented relative to predefined bias

● Actual exponent value = bias + E

� A normalized FP number has Mantissa of form 1.?????
■ Aside from zero representation

� Fused multiply-add op: A*B + C for floating point numbers A,B,C
■ C referred to as addend
■ A*B referred to as product

� Guard bits, rounding modes, sticky bits used to control rounding errors

FPU Case Study

148

� Highly-reusable methodology developed for FPU verification

� Checks numerical correctness of FPU datapath
■ Example bugs:

● If two nearly equal numbers subtracted (causing cancellation), the wrong
exponent is returned

● If result is near underflow, the wrong guard-bit is chosen

� Focused upon a single instruction issued in an empty FPU
■ Inter-instruction dependencies independently checked, conservatively

flagged as error

FPU “Numerical Correctness”

149

� Uses a simple IEEE-compliant reference FPU in HDL
■ Uses high-level HDL constructs: + - loops to count number of zeros
■ Imp: 15000 lines VHDL; Ref-FPU: <700 lines

� Formally compare Ref-FPU vs. real FPU

..00mantissa addend
…00mantissa product

164 bit
2e_addend 2e_prod

+/- a+b

S Exp Frac

cnt leading 0’s copy and round
Leading zero’s can happen, e.g.,

1.101011
– 1.101001
= 0.000010Final IEEE result

FPU Complexity Issues

150

� Certain portions of FPU intractable for formal methods
■ E.g., alignment-shifter, multiplier

� Needed methods to cope with this complexity:
■ Black-box multiplier from cone-of-influence

● Verified independently using “standard” techniques
● Multipliers are fairly regular, in contrast to rest of FPU

■ Case-splitting
● Restrict operands Æ each subproblem solved very fast
● Utilize batch runs Æ subproblems verified in parallel

■ Apply automatic model reduction techniques
● Redundancy removal, retiming, phase abstraction…
● These render a combinational problem for each case

FPU Case-Splitting

151

� Four distinct cases distinguished in Ref-FPU
■ Based on difference between product, addend exponent

� Case splitting strategy via constraining internal Ref-FPU signals
■ Verification algos implicitly propagate these constraints to real FPU
■ Allows each case to cover large, difficult-to-enumerate set of operands

� Disjunction of cases easily provable as a tautology, ensuring
completeness

exponent addend theis and

exponent product theis)(where

c

baprodcprod

e

biaseeeee −+=−=δ

)(: δδ +=−+= cba ebiaseeC

152

FPU Case-Splitting

FPU Normalization Shift Case-splits

153

� Normalization shifter is used to yield a normal result
■ Depends upon # number of leading zeros of intermediate result

� Define a secondary case-split on normalization shift
■ Constraint defined directly on shift-amount signal (sha) of Ref-FPU
■ Sha is 7-bit signal (double-precision) to cover all possible shift amounts

)discharged (trivially cases remaining cover the to)106(:
amounts;shift possible 106 allfor)(:

/ >=
==

shaC
XshaC

restsha

sha

FPU Results

154

� Development of methodology required nontrivial trial-and-error to ensure
tractability of each proof
■ And some tool tuning…

� Resulting methodology is highly portable
■ ~1 week effort to port to new FPUs

� Numerous bugs flushed out by this process
■ In one case, an incorrect result was flushed out after billions of

simulation patterns

155

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification
■ Complexities of High-End Processors
■ Algorithmic Methods for Reducing Verification Complexity
■ Processor Verification Case Studies

● Sequential Equivalence Checking (SEC)
● Instruction Dispatch Case Study
● Instruction Fetch-Hang Case Study
● Floating-Point Unit Verification
● Load-Store Verification

� Verification Closure: Coverage Analysis & Integration with Simulation

Load-Store Unit Case Study

156

� Numerous properties to check of LSU and Memory Infrastructure:
■ Multiprocessor cache coherency properly maintained
■ Correctness of associativity policy
■ Proper address-data correlation and content maintained
■ Parity and data errors properly reported
■ Data prefetching stays within proper page limits
■ …

� In this case study we introduce several Testbench modeling tricks that
can be used for such checks

Cache Coherence Case Study

157

� Cache coherence protocol requires masters to obtain a clean snoop
response before initiating a write
■ Obtain Exclusive snoop to write, clean snoop to read
■ Otherwise data consistency will break down

� Mandatory for driver to adhere to protocol, else will spuriously break logic

� Adhering to protocol requires either:
■ Building reference model for each interface, indicating what coherence

state it has for each valid address
● Safe, but dramatically increases Testbench size!

■ Using internal cache state to decide legal responses
● Not safe: if cache is flawed (or has timing windows due to pipelining), driver

may miss bugs or trigger spurious fails

Cache Coherence Case Study

158

� Trick: check coherence only for one randomly-selected address
■ Reference model becomes very small

� Allow arbitrary activity to be driven to other addresses
■ Will generate illegal stimuli, but cache should still behave properly for

checked address

� Other tricks:
■ Parameterize RAM! Caches often are VERY large
■ Can limit # addresses that can be written to, but need to take care that

exercise sectoring, N-way associativity, …

Associativity Case Study

159

� N-way associative caches may map M>N addresses to N locations
■ When loading N+1’th address, need to cast a line out
■ Victim line often chosen using Least-Recently Used (LRU) algo

� Verify: newly-accessed entry not cast out until every other entry accessed

� Randomly choose an entry i to monitor; create a N-1 wide bitvector
■ When entry i accessed, zero the bitvector
■ When entry j != i accessed, set bit j
■ If entry i is cast out, check that bitvector is all 1’s

� Weaker pseudo-LRU may only guarantee: no castout until J accesses
■ Zero count upon access of entry i
■ Increment count upon access of j != i
■ Assert counter never increments beyond J

Address-Data Consistency

160

� Many portions of LSU need to nontrivially align data and address
■ Data prefetch, load miss queues: delay between address and data

entering logic
● Many timing windows capable of breaking logic

■ Cache needs to properly assemble sectors of data for writes to memory
■ Address translator logic maps virtual to real addresses

� Can either build reference model tracking what should be transmitted
(remembering input stimuli)

� Or – play the trick used on Instr Dispatch example
■ Encode information into data

Address-Data Consistency

161

� Drive data as a function of addr
■ Validate that outgoing addr-data pairs adhere to encoded rule
■ Should trap any improper association and staging of data

� Encode atomicity requirements onto data
■ Tag each cache line sector with specific code, validate upon write
■ Tag each word of quad-word stores with specific code, validate that

stores occur atomically and in order

� Encode a parity bit onto driven data slices
■ Can even randomize odd vs. even parity
■ Should trap any illegal data sampling

� Drive poisoned data values if known that they should not be transmitted

Parity / Error Detection Correctness

162

� Error code schemes are based upon algorithms:
■ Properly diagnose <I bit error code errors, <J data bit errors
■ Properly correct <K bit data errors

� Often use a reference model based upon error code algorithm
■ Build a Testbench for each type of injected error

● Single-bit data, double-bit data, single-bit error code, …
■ Case-split on reaction type

● Compare logic reaction against expected outcome

� Used to find error detection bugs; improve error detection algorithms
■ Quantify % N-bit errors detected using symbolic enumeration
■ Study undetected cases to tighten algorithm

Prefetch Correctness

163

� Prefetch logic is a performance-enhancing feature
■ Guess addresses likely to be accessed; pull into cache before needed
■ Often use a dynamic scheme of detecting access sequences:

● Start by fetching one cache line
● If continued accesses to prefetched stream, start fetching multiple lines

� However, faulty prefetch logic can break functionality
■ Generation of illegal prefetch addresses Æ checkstop
■ May be responsible for address-data propagation
■ And bad prefetching can easily hurt performance

Prefetch Correctness

164

� Generation of illegal prefetch addresses Æ checkstop
■ Most prefetching is required not to cross address barriers

● E.g. must be done to same page as actually-accessed addr
■ Can restrict address stream being generated, or monitor addr stream,

and validate that prefetch requests stay within same page

� Also wish to verify that prefetch initiates prefetches when it should, does
not when it shouldn’t
■ Often done using a reference model or set of properties to encode

specific prefetching algorithm

165

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation
■■ Design Intent VerificationDesign Intent Verification

■■ Verification as Coverage AnalysisVerification as Coverage Analysis
■■ Design Intent Coverage and Specification RefinementDesign Intent Coverage and Specification Refinement
■■ Reasoning about SpecificationsReasoning about Specifications
■■ Have I Written Enough Properties?Have I Written Enough Properties?
■■ Property Directed Simulation GamesProperty Directed Simulation Games
■■ The Integrated PictureThe Integrated Picture

166

Design Intent VerificationDesign Intent Verification

Design IntentDesign Intent
VerificationVerification

Design Intent
Specification
Design Intent
Specification

Design Intent
Modeling

Design Intent
Modeling

Design
Verification

Design
Implementation

Design
Implementation

This step is becoming veryThis step is becoming very
important in practice important in practice –– why?why?

What is design intent verification?

167

� Design Intent
■ A set of abstract high-level global safety and liveness requirements

� Design Intent Modeling
■ Developing a set of high-level component models that mimic the

expected behavior of the components

� Design Intent Verification
■ The models taken together should satisfy the design intent

168

Traditional: Traditional: Without intent verificationWithout intent verification

SubSub --system system
Tech. SpecsTech. Specs

(English)(English)

Design Intent SpecsDesign Intent Specs
(English)(English)

Design Intent SpecsDesign Intent Specs
(English)(English)

CompComp --1 1
SpecsSpecs

CompComp --1 1
SpecsSpecs

CompComp --2 2
SpecsSpecs

CompComp --2 2
SpecsSpecs

CompComp --k k
SpecsSpecs

CompComp --k k
SpecsSpecs

Design ofDesign of
the partsthe parts

CompComp --1 1
DesignDesign

CompComp --1 1
DesignDesign

CompComp --2 2
DesignDesign

CompComp --2 2
DesignDesign

CompComp --k k
DesignDesign

CompComp --k k
DesignDesign

IntegratedIntegrated
DesignDesign

IntegratedIntegrated
DesignDesign

Design VerificationDesign Verification

This verification task is large and complexThis verification task is large and complex

169

Emerging: Emerging: With intent verificationWith intent verification

Can be done before implementationCan be done before implementation

SubSub--system system
Tech. SpecsTech. Specs

(English)(English)

Design Intent SpecsDesign Intent Specs
(English)(English)

Design Intent SpecsDesign Intent Specs
(English)(English)

CompComp--1 1
SpecsSpecs

CompComp--1 1
SpecsSpecs

CompComp--k k
SpecsSpecs

CompComp--k k
SpecsSpecs

Design ofDesign of
the partsthe parts

CompComp--1 1
DesignDesign

CompComp--1 1
DesignDesign

CompComp--k k
DesignDesign

CompComp--k k
DesignDesign

IntegratedIntegrated
DesignDesign

IntegratedIntegrated
DesignDesign

Design Intent Design Intent
(Formal Specs)(Formal Specs)
Design Intent Design Intent

(Formal Specs)(Formal Specs)

SubSub--system system
ModelsModels

CompComp--1 1
FF--SpecsSpecs

CompComp--1 1
--ModelModel

CompComp--k k
FF--SpecsSpecs
CompComp--k k

--ModelModel

Design IntentDesign IntentDesign IntentDesign Intent
--VerificationVerification

VerifVerifVerifVerif
of the of the of the of the
partspartspartsparts

IntegratedIntegratedIntegratedIntegrated
DesignDesignDesignDesign

VerificationVerificationVerificationVerification

Intent Verification – Everywhere?

170

� Digital design verification
■ Micro-architectural properties (SVA / PSL)
■ RTL properties (SVA / PSL), RTL blocks

� Mixed-signal design verification
■ Integrated power mgmt chips (LDOs, buck converters, battery charger)
■ Modeling options include VerilogA, VerilogAMS

� Embedded systems
■ Safety critical properties
■ Modeling options include Matlab, UML statecharts

Design Intent Verification – Why?

171

� Practical considerations
■ Components are out-sourced, and integrated into the design at the end

(sometimes as black-boxes)

� Helps in developing the component specs before implementation

� Helps in developing acceptance tests for the components and verifying
the integrated design

172

DimensionsDimensions

System System
TypeType FormalFormal

specsspecs

CoreCore
ProblemsProblems

Discrete ModelsDiscrete Models

Continuous ModelsContinuous Models

Hybrid ModelsHybrid Models
Boolean LogicBoolean Logic

Temporal LogicTemporal Logic

FSMFSM

EquationsEquations

Hybrid AutomataHybrid Automata
SatisfiabilitySatisfiability

Formal coverageFormal coverage

SynthesizabilitySynthesizability

Model CheckingModel Checking

173

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation
■■ Design Intent VerificationDesign Intent Verification

■■ Verification as Coverage AnalysisVerification as Coverage Analysis
■■ Design Intent Coverage and Specification RefinementDesign Intent Coverage and Specification Refinement
■■ Reasoning about SpecificationsReasoning about Specifications
■■ Have I Written Enough Properties?Have I Written Enough Properties?
■■ Property Directed Simulation GamesProperty Directed Simulation Games
■■ The Integrated PictureThe Integrated Picture

174

Verification is all about coverageVerification is all about coverage

The role of a specification is to The role of a specification is to
partition the set of possible behaviors partition the set of possible behaviors
into valid and invalid behaviorsinto valid and invalid behaviors

Valid Invalid

ImplementationImplementationImplementation

The role of verification is to checkThe role of verification is to check
whether the valid behaviors w.r.t thewhether the valid behaviors w.r.t the
specificationspecification coverscovers all behaviors ofall behaviors of
the implementationthe implementation

In other words, the set of behaviors not exhibited by the In other words, the set of behaviors not exhibited by the
implementation covers the invalid behaviors of the specificationimplementation covers the invalid behaviors of the specification

175

Verification as coverageVerification as coverage

ImplementationImplementation

If:If:

•• RR is a function that captures exactly the set of all behaviors is a function that captures exactly the set of all behaviors
of the given implementation, and of the given implementation, and

•• AA is the specification,is the specification,

Then the verification problem is to check for the validity ofThen the verification problem is to check for the validity of R R ⇒⇒ A A
A bug is a witness forA bug is a witness for R R ∧¬∧¬AA

176

Verification MethodologiesVerification Methodologies
A bug is a trace that acts as a witness forA bug is a trace that acts as a witness for R R ∧¬∧¬AA

�� Simulation and dynamic ABV:Simulation and dynamic ABV: Enumerate traces treatingEnumerate traces treating RR as an executable as an executable
black box and search forblack box and search for ¬¬AA on each traceon each trace

�� Model checking:Model checking: RepresentRepresent RR as a state machine, representas a state machine, represent ¬¬AA as another as another
automaton and check whether the product of the two machines is eautomaton and check whether the product of the two machines is emptympty

�� Design intent coverage:Design intent coverage: RepresentRepresent RR as a collection of properties that are as a collection of properties that are
guaranteed by theguaranteed by the components, and check the components, and check the satisfiabilitysatisfiability ofof R R ∧¬∧¬AA

177

Compositional Verification & CoverageCompositional Verification & Coverage

A: Specification

Properties

Verification

M1 M2 Mk

R : Implementation

Model checking:Model checking: RR is a set of logic blocks or state machinesis a set of logic blocks or state machines
Simulation:Simulation: RR is a set of executable black boxesis a set of executable black boxes
Design intent coverage:Design intent coverage: RR is a set of local properties over the is a set of local properties over the MMiiss

178

Two key problemsTwo key problems

A: Specification
What should be our approach when What should be our approach when RR
consists of state machines for some consists of state machines for some
components, properties for some components, properties for some
components and executable black components and executable black
boxes for the rest?

Properties

Verification
boxes for the rest?

M1 M2 Mk

R : Implementation

ProblemProblem--1: 1: Developing a unified model for coverage analysisDeveloping a unified model for coverage analysis
ProblemProblem--2: 2: Property slicing / Specification refinementProperty slicing / Specification refinement

179

Model checking as coverage analysisModel checking as coverage analysis

module GrayCounter(a1, a2, module GrayCounter(a1, a2, rstrst))
input input rstrst;;
regreg a1, a2;a1, a2;

always @ (always @ (posedgeposedge clkclk))
beginbegin

a1 <= a2 & ~a1 <= a2 & ~rstrst;;
a2 <= ~a1 & ~a2 <= ~a1 & ~rstrst;;

endend
endmodule

rst a1

a2

clk endmodule

Sample propertySample property: : If the counter is not reset, then the next value ofIf the counter is not reset, then the next value of
the counter differs from the present value by exactly one bit.the counter differs from the present value by exactly one bit.

AA ≡≡ G(G(¬¬rstrst ⇒⇒ (a1 (a1 ⊕⊕ Xa1) Xa1) ⊕⊕ (a2 (a2 ⊕⊕ Xa2))Xa2))

180

Model checking as coverage analysisModel checking as coverage analysis

module GrayCounter(a1, a2, module GrayCounter(a1, a2, rstrst))
input input rstrst;;
regreg a1, a2;a1, a2;

always @ (always @ (posedgeposedge clkclk))
beginbegin

a1 <= a2 & ~a1 <= a2 & ~rstrst;;
a2 <= ~a1 & ~a2 <= ~a1 & ~rstrst;;

endend
endmodule

rst a1

a2

clk endmodule

RR ≡≡ G((a2 G((a2 ∧∧ ¬¬rstrst ⇔⇔ Xa1) Xa1) ∧∧ ((¬¬ a1 a1 ∧∧ ¬¬rstrst ⇔⇔ Xa2))Xa2))

AA ≡≡ G(G(¬¬rstrst ⇒⇒ (a1 (a1 ⊕⊕ Xa1) Xa1) ⊕⊕ (a2 (a2 ⊕⊕ Xa2))Xa2))

Model checking Model checking AA on module on module GrayCounterGrayCounter is equivalentis equivalent
to checking the validity of to checking the validity of R R ⇒⇒ A A or checking theor checking the
satisfiabilitysatisfiability of of R R ∧¬∧¬AA

181

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation
■■ Design Intent VerificationDesign Intent Verification

■■ Verification as Coverage AnalysisVerification as Coverage Analysis
■■ Design Intent Coverage and Specification RefinementDesign Intent Coverage and Specification Refinement
■■ Reasoning about SpecificationsReasoning about Specifications
■■ Have I Written Enough Properties?Have I Written Enough Properties?
■■ Property Directed Simulation GamesProperty Directed Simulation Games
■■ The Integrated PictureThe Integrated Picture

182

Priority Cache AccessPriority Cache Access

The block arbitrates between The block arbitrates between
r1 and r2 to assert g1 or g2, r1 and r2 to assert g1 or g2,
and between r3 and r4 to and between r3 and r4 to
assert g3 or g4assert g3 or g4

The lines d1/d2 indicate whether the page requested by the The lines d1/d2 indicate whether the page requested by the
high / low priority device is available in the cachehigh / low priority device is available in the cache

•• If there is a cache hit then d1 is asserted within two cyclesIf there is a cache hit then d1 is asserted within two cycles

•• If there is a cache miss then d1 is asserted after fetching theIf there is a cache miss then d1 is asserted after fetching the pagepage
from memoryfrom memory

[Source: A Roadmap for Formal Property Verification, Springer, 2006]

183

Architectural PropertyArchitectural Property

M1 and M2 have higherM1 and M2 have higher
priority over M3 and M4priority over M3 and M4

A page requested by M1/M2 is either served within two cycles A page requested by M1/M2 is either served within two cycles
(cache hit) or served when the page is ready. In the latter case(cache hit) or served when the page is ready. In the latter case, no , no
page should be served to the low priority devices in between.page should be served to the low priority devices in between.

G[r1 V r2 G[r1 V r2 ⇒⇒ XX[d1 V X(XX[d1 V X(¬¬d2 U d1)]]d2 U d1)]]

184

One possible architectureOne possible architecture

G[r1 V r2 G[r1 V r2 ⇒⇒ XX[d1 XX[d1
V X(V X(¬¬d2 U d1)]]d2 U d1)]]

What does one do if we What does one do if we
cannot verify the property cannot verify the property
directly due to capacity directly due to capacity
limitations?limitations?

Write properties on individual blocks that together Write properties on individual blocks that together prove prove thethe
architectural propertyarchitectural property

185

Developing block specsDeveloping block specs

TargetTarget: :
A1: A1: G[r1 V r2 G[r1 V r2 ⇒⇒ XX[d1 XX[d1

V X(V X(¬¬d2 U d1)]]d2 U d1)]]

Arbiter:Arbiter:

R1R1: G[r1 V r2 : G[r1 V r2 ⇔⇔ XaXa]]
R2R2: G[z3 V z4 : G[z3 V z4 ⇔⇔ XbXb]]

Cache Block:Cache Block: Mask:Mask:

R3R3: G[a : G[a ⇒⇒ X[w U d1]]X[w U d1]]
R4R4: G[: G[¬¬b b ⇒⇒ ¬¬X d2]

R5R5: G[r3 : G[r3 ∧∧ ¬¬w w ⇔⇔ z3]z3]
R6R6: G[r4: G[r4 ∧∧ ¬¬w w ⇔⇔ z4]X d2] z4]

186

Design Intent CoverageDesign Intent Coverage

Arch. SpecsArch. Specs: :
A1: A1: G[r1 V r2 G[r1 V r2 ⇒⇒ XX[d1 XX[d1

V X(V X(¬¬d2 U d1)]]d2 U d1)]]

RTL Specs:RTL Specs:
R1R1: G[r1 V r2 : G[r1 V r2 ⇔⇔ XaXa]]
R2R2: G[z3 V z4 : G[z3 V z4 ⇔⇔ XbXb]]
R3R3: G[a : G[a ⇒⇒ X[w U d1]]X[w U d1]]
R4R4: G[: G[¬¬b b ⇒⇒ ¬¬X d2]X d2]
R5R5: G[r3 : G[r3 ∧∧ ¬¬w w ⇔⇔ z3]z3]
R6R6: G[r4: G[r4 ∧∧ ¬¬w w ⇔⇔ z4]z4]Is it possible to have an implementationIs it possible to have an implementation

that satisfies R1, …, R6, but refutes A1?that satisfies R1, …, R6, but refutes A1?

…… if not, then all invalid behaviors are not covered by theif not, then all invalid behaviors are not covered by the
RTL specs, and we need to add more RTL properties RTL specs, and we need to add more RTL properties

187

In this case, we have a gap!!In this case, we have a gap!!

A1: A1: G[r1 V r2 G[r1 V r2 ⇒⇒ XX[d1 V X(XX[d1 V X(¬¬d2 U d1)]]d2 U d1)]]

Gap: Gap: G[r1 V r2 G[r1 V r2 ⇒⇒ XX[XX[((¬¬d1 d1 ∧∧ Xd1)Xd1) V d1 V X(V d1 V X(¬¬d2 U d1)]]d2 U d1)]]
[Source: A Roadmap for Formal Property Verification, Springer, 2006]

188

The Correct ArchitectureThe Correct Architecture

TargetTarget: :
A1: A1: G[r1 V r2 G[r1 V r2 ⇒⇒ XX[d1 XX[d1

V X(V X(¬¬d2 U d1)]]d2 U d1)]]

Arbiter:Arbiter:

R1R1: G[r1 V r2 : G[r1 V r2 ⇔⇔ XaXa]]
R2R2: G[r3 V r4 : G[r3 V r4 ⇔⇔ XbXb]]

Cache Block:Cache Block:

R3R3: G[a : G[a ⇒⇒ X[w U d1]]X[w U d1]]
R4R4: G[: G[¬¬z z ⇒⇒ ¬¬X d2]

Mask:Mask:

R5R5: G[b : G[b ∧∧ ¬¬w w ⇔⇔ z]z]
X d2]

…… this time R1,…,R5 covers A1this time R1,…,R5 covers A1

189

Intent Coverage Problem: Intent Coverage Problem: Formally…Formally…

�� Given:Given:

■■ Architectural specificationArchitectural specification AA, , consisting of a set of temporalconsisting of a set of temporal
properties over a setproperties over a set APAPAA of Boolean signalsof Boolean signals

■■ RTL specificationRTL specification RR, , consisting of a set of temporal properties consisting of a set of temporal properties
over a setover a set APAPRR of Boolean signals, such that of Boolean signals, such that
APAPAA ⊆⊆ APAPRR

[Primary Coverage Goal][Primary Coverage Goal] DoesDoes RR cover cover AA ??

[Specification Refinement] [Specification Refinement] Refinement ofRefinement of AA to derive a property that captures to derive a property that captures
the behaviors not covered bythe behaviors not covered by RR ..

190

Specification RefinementSpecification Refinement

�� Consider the coverage of Consider the coverage of AA by by RR::

AA:: G((G((¬¬rr22)) ⇒⇒ X gX g11))

RR:: G((rG((r11 ∧∧ ¬¬ rr22)) ⇒⇒ X gX g1 1))

�� AA ∨∨ ¬¬RR can be represented as:can be represented as:

(a)(a) G(rG(r1 1 ∨∨ rr2 2 ∨∨ X gX g11))

(b)(b) G((G((¬¬X gX g11 ∧∧ ¬¬rr11)) ⇒⇒ rr22))

(c)(c) G((G((¬¬ rr11 ∧∧ ¬¬rr22)) ⇒⇒ X gX g11))

(c) is visually closest to (c) is visually closest to AA –– our goal is to show the coverage gap as (c).our goal is to show the coverage gap as (c).

191

Spec. Refinement by RelaxationSpec. Refinement by Relaxation

Arch. Spec:Arch. Spec: G((rG((r2 2 ∧∧ z) z) ⇒⇒ X((gX((g22 ∧∧ ¬¬gg11) U) U ¬¬rr22))))
RTL SpecsRTL Specs:: G((rG((r11 ∧∧ ¬¬rr22)) ⇔⇔ X gX g11))

GF(GF(¬¬rr22))

The RTL specs do not cover the architectural specs, but we The RTL specs do not cover the architectural specs, but we
can decompose the architectural specs as:can decompose the architectural specs as:

AAxx:: GG((r((r2 2 ∧∧ z) z) ⇒⇒ X(gX(g22 U U ¬¬rr22))))
AAyy:: GG((r((r2 2 ∧∧ z) z) ⇒⇒ X(X(¬¬gg11 U U ¬¬rr22))))

■■ AAyy is covered by the RTL specsis covered by the RTL specs
■■ AAxx represents the coverage gap more accuratelyrepresents the coverage gap more accurately

192

The SpecMatcher ToolThe SpecMatcher Tool

■■ Compares temporal specifications (in LTL)Compares temporal specifications (in LTL)

■■ Reports the coverage gap in terms of Reports the coverage gap in terms of structure structure
preservingpreserving properties.properties.

■■ Two key algorithmsTwo key algorithms::
●●Push_Terms:Push_Terms: Computes the bounded temporal terms in Computes the bounded temporal terms in

the gap,the gap, A A ∨∨ ¬¬RR, , and and pushespushes these terms into the syntactic these terms into the syntactic
structure of the architectural properties.structure of the architectural properties.

●●Relax_ArchSpecRelax_ArchSpec:: Systematic weakening of architectural Systematic weakening of architectural
properties having unbounded temporal operators (such as properties having unbounded temporal operators (such as
G, F, and U), and isolating the coverage gap.G, F, and U), and isolating the coverage gap.

[Source: A Roadmap for Formal Property Verification, Springer, 2006]

193

The Integrated FlowThe Integrated Flow

Block-level
test plans

System-level
test plan

Intent Intent
CoverageCoverage

Arch SpecsArch Specs

Unit level specsUnit level specs

D
es

ig
n

re
fin

em
en

t

Unit level ValidationUnit level Validation
(Simulation + FPV)(Simulation + FPV)

Intent Intent
CoverageCoverage

Sp
ec

. r
ef

in
em

en
t

Si
m

ul
at

io
n

+
D

yn
am

ic
 A

B
V

194

Intent Coverage and Model CheckingIntent Coverage and Model Checking

M1 M2 Mk

Properties

R : Properties for M1 … Mk

A: Specification

Verification

Pure Design Intent CoveragePure Design Intent Coverage

AdvantagesAdvantages: :
•• ScalableScalable
•• Can be done top down, before implementationCan be done top down, before implementation

DisadvantagesDisadvantages: :
•• Requires more user involvementRequires more user involvement

M1 M2 Mk

Properties

R : State m/c for M1 … Mk

A: Specification

Verification

Pure Model CheckingPure Model Checking

AdvantagesAdvantages: :
•• Less user involvementLess user involvement

DisadvantagesDisadvantages: :
•• Capacity limitationsCapacity limitations

Between Intent Coverage and Model CheckingBetween Intent Coverage and Model Checking

195

M1 M2 Mk

Properties

R : State m/c for M1 … Mi and
properties for Mi+1 … Mk

A: Specification

Verification

Hybrid Design Intent CoverageHybrid Design Intent Coverage

ApproachApproach--1:1:
••Find the gap, T, between Find the gap, T, between A A andand

the properties of the properties of Mi+1 … Mk

••Model check T on Model check T on M1 … Mi

ApproachApproach--2:2:

••Translate MTranslate M1 1 … M… Mii into the propertyinto the property
domaindomain

•• Use pure design intent coverageUse pure design intent coverage

[Source: Das et. al. What lies between Design Intent Coverage and
Model Checking? DATE 2006]

196

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation
■■ Design Intent VerificationDesign Intent Verification

■■ Verification as Coverage AnalysisVerification as Coverage Analysis
■■ Design Intent Coverage and Specification RefinementDesign Intent Coverage and Specification Refinement
■■ Reasoning about SpecificationsReasoning about Specifications
■■ Have I Written Enough Properties?Have I Written Enough Properties?
■■ Property Directed Simulation GamesProperty Directed Simulation Games
■■ The Integrated PictureThe Integrated Picture

197

Consistency and CompletenessConsistency and Completeness

�� Verification:Verification: R R ⇒⇒ A A

�� Consistency issues:Consistency issues:
■■ Verification is vacuous whenVerification is vacuous when RR is is unsatisfiableunsatisfiable

■■ Verification is vacuous whenVerification is vacuous when AA is validis valid

�� Completeness issues:Completeness issues:
■■ Verification closure depends on the completeness ofVerification closure depends on the completeness of AA –– have I have I

written enough properties?written enough properties?

Formal Consistency Analysis – Why?

198

� Are my properties correct?
■ Debugging formal specifications can be quite hard
■ Coding errors – new languages, alien semantics
■ Logical errors

� Am I checking the right property on the right design?
■ A typical BUS protocol consists of:

● Properties over individual components: master, slave, arbiter
● Global properties

■ In the absence of proper assume constraints, checking global properties
on individual components can lead to realizability problems.

� Reasoning about formal specifications
■ Logical implication
■ Coverage analysis

Verification is Logical Consistency

199

� Verification is mostly about checking logical implication

� Model checking:
■ Does the product of the component state machines logically imply each

of the formal properties?

� Design intent coverage:
■ Do the properties of the component modules together imply the

architectural properties of the design?

� Logical implication ≡ Satisfiability / Validity

Satisfiability and Realizability forms the basis of reasoning about
specifications

200

UnsatisfiableUnsatisfiable SpecificationSpecification
�� When the master is not in the IDLE or WAIT states, the request lWhen the master is not in the IDLE or WAIT states, the request line, ine, reqreq, should be , should be

kept highkept high

�� The master lowers the request line, The master lowers the request line, reqreq, sometime, sometime

`̀define IDLE 3’b000define IDLE 3’b000

`define WAIT 3’b000`define WAIT 3’b000

property property ReqHighDuringTransferReqHighDuringTransfer;;

@ (@ (posedgeposedge clkclk))

(state != ‘IDLE || state != ‘WAIT) |(state != ‘IDLE || state != ‘WAIT) |--> > reqreq ;;

endpropertyendproperty

property property ReqIsSometimesLowReqIsSometimesLow;;

@ (@ (posedgeposedge clkclk))

##[0:$] !##[0:$] !reqreq ; ;

endpropertyendproperty

201

The Correct SpecificationThe Correct Specification

�� When the master is not in the IDLE or WAIT states, the request lWhen the master is not in the IDLE or WAIT states, the request line, ine, reqreq, should be , should be
kept highkept high

�� The master lowers the request line, The master lowers the request line, reqreq, sometime, sometime

`define IDLE 3’b000`define IDLE 3’b000

`define WAIT 3’b000`define WAIT 3’b000

property property ReqHighDuringTransferReqHighDuringTransfer;;

@ (@ (posedgeposedge clkclk))

(state != ‘IDLE (state != ‘IDLE &&&& state != ‘WAIT) |state != ‘WAIT) |--> > reqreq ;;

endpropertyendproperty

property property ReqIsSometimesLowReqIsSometimesLow;;

@ (@ (posedgeposedge clkclk))

##[0:$] !##[0:$] !reqreq ; ;

endpropertyendproperty

202

VacuityVacuity

�� When the When the gntgnt signal is high, the master should not be in the IDLE or WAIT signal is high, the master should not be in the IDLE or WAIT
statesstates

property property UseBusWhenGrantedUseBusWhenGranted;;

@ (@ (posedgeposedge clkclk))

gntgnt ||--> (state != ‘IDLE || state != ‘WAIT) ;> (state != ‘IDLE || state != ‘WAIT) ;

endpropertyendproperty

�� Same mistake Same mistake –– this time the property will always be truethis time the property will always be true

�� This gives us a false sense of security !!This gives us a false sense of security !!

203

RealizabilityRealizability of Open System Specsof Open System Specs

�� Whenever the highWhenever the high--priority request, priority request, hreqhreq, arrives, the grant, , arrives, the grant, hgnthgnt, is given for , is given for
one cycleone cycle

property property HighPriorityGrantHighPriorityGrant ;;

@ (@ (posedgeposedge clkclk))

hreqhreq ||--> ##1 > ##1 hgnthgnt ##1 !##1 !hgnthgnt ;;

endpropertyendproperty

�� The property cannot be satisfied if we have The property cannot be satisfied if we have hreqhreq in consecutive cyclesin consecutive cycles

�� The property is The property is satisfiablesatisfiable ---- consider all traces where consider all traces where hreqhreq is not asserted in is not asserted in
consecutive cyclesconsecutive cycles

�� The property is The property is unrealizableunrealizable because because hreqhreq is an input signalis an input signal
■■ It will become realizable under the assumption that It will become realizable under the assumption that hreqhreq never arrives in never arrives in

consecutive cycles

Arbiter
hreq hgnt

consecutive cycles
[Ref: Pnueli, Rosner, ACM POPL, 1989]

204

RealizabilityRealizability = = SatisfiabilitySatisfiability ∀∀ Inputs?Inputs?

�� Not quite. Consider the following properties:Not quite. Consider the following properties:
■■ Each request is eventually grantedEach request is eventually granted
■■ The request line is lowered one cycle after the grantThe request line is lowered one cycle after the grant

property property GntGnt ;;
@ (@ (posedgeposedge clkclk))
reqreq ||--> ##[1:$] > ##[1:$] gntgnt ;;

endpropertyendproperty
property property LowReqAfterGntLowReqAfterGnt ;;

@ (@ (posedgeposedge clkclk))
gntgnt ||--> ##1 !> ##1 !reqreq ;;

endpropertyendproperty

�� The second property can be satisfied if we know the future inputThe second property can be satisfied if we know the future inputs !!

Arbiter
req gnt

s !!
[Ref: Pnueli, Rosner, ACM POPL, 1989]

205

ReceptivenessReceptiveness

�� Consider the property: Consider the property:

A request is always lowered after the grant is asserted.A request is always lowered after the grant is asserted.

property property LowReqAfterGntLowReqAfterGnt ;;

@ (@ (posedgeposedge clkclk))

gntgnt ||--> ##1 !> ##1 !reqreq ;;

endpropertyendproperty

�� The arbiter can realize this property by never asserting g1.The arbiter can realize this property by never asserting g1.
■■ This is an unThis is an un--receptive property receptive property –– why?why?

�� A module must have the freedom of choosing its outputs as long aA module must have the freedom of choosing its outputs as long as it does s it does
not refute the propertynot refute the property

Arbiter
req gnt

[Ref: Dill, MIT Press, 1989]

206

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation
■■ Design Intent VerificationDesign Intent Verification

■■ Verification as Coverage AnalysisVerification as Coverage Analysis
■■ Design Intent Coverage and Specification RefinementDesign Intent Coverage and Specification Refinement
■■ Reasoning about SpecificationsReasoning about Specifications
■■ Have I Written Enough Properties?Have I Written Enough Properties?
■■ Property Directed Simulation GamesProperty Directed Simulation Games
■■ The Integrated PictureThe Integrated Picture

207

Have I written enough properties?Have I written enough properties?

�� Completeness can be assured against some functional coverage goaCompleteness can be assured against some functional coverage goall

�� ParadoxParadox::
■■ If I had a formal definition of the coverage goal, then that itsIf I had a formal definition of the coverage goal, then that itself could become the elf could become the

formal specification!!formal specification!!

�� SolutionSolution::
■■ Evaluate the formal property specification with some structural Evaluate the formal property specification with some structural coverage metriccoverage metric
■■ The structural coverage metric should be such that:The structural coverage metric should be such that:

●● Low coverage indicates gaps in the specification, and I need morLow coverage indicates gaps in the specification, and I need more e
propertiesproperties

●● High coverage does not necessarily mean that I have enough propeHigh coverage does not necessarily mean that I have enough propertiesrties

Types of Coverage Approaches

208

� Mutation-based Approaches
■ A given implementation is used as the reference

� Fault-based Approaches
■ A given fault model is used as the reference

� Design Intent Coverage
■ A higher level specification is used as the reference

209

MutationMutation--based Coveragebased Coverage

SpecificationSpecification::

P1:P1: g1 is never asserted in consecutive cyclesg1 is never asserted in consecutive cycles

property NoConsecutiveG1;property NoConsecutiveG1;
@ (@ (posedgeposedge clkclk) g1 |) g1 |--> ##1 !g1 ;> ##1 !g1 ;

endpropertyendproperty

P2: P2: g2 is never asserted in consecutive cycles

0000

1010 0101

State: (g1,g2)State: (g1,g2)

Abstract FSM of aAbstract FSM of a
RoundRound--robin Arbiter

g2 is never asserted in consecutive cycles
robin Arbiter

ApproachesApproaches: :

Falsity coverage:Falsity coverage: Mutate the FSM and check whether the truth of Mutate the FSM and check whether the truth of
any property changes.any property changes.

Vacuity coverage:Vacuity coverage: Mutate the FSM and check whether any property Mutate the FSM and check whether any property
becomes vacuous.becomes vacuous.

[Ref: Hoskote et.al. DAC 1999, Chockler et.al. CAV 2001]

210

MutationMutation--based Falsity Coveragebased Falsity Coverage

0000

1010 0101

State: (g1,g2)State: (g1,g2)

s1s1

s0s0

s2s2

SpecificationSpecification::

P1:P1: g1 is never asserted in consecutive cyclesg1 is never asserted in consecutive cycles
P2: P2: g2 is never asserted in consecutive cyclesg2 is never asserted in consecutive cycles

Abstract FSM of aAbstract FSM of a
RoundRound--robin Arbiterrobin Arbiter

0000

1111 0101

MutantMutant--22
(g2 flipped at s1)(g2 flipped at s1)

s2s2

s0s0

s1s1
P2 fails.P2 fails.
⇒⇒ The value of g2 at s1 is coveredThe value of g2 at s1 is covered

1010

1010 0101

MutantMutant--11
(g1 flipped at s0)(g1 flipped at s0)

s2s2

s0s0

s1s1

P1 fails.P1 fails.
⇒⇒ The value of g1 at s0 is coveredThe value of g1 at s0 is covered

211

MutationMutation--based Vacuity Coveragebased Vacuity Coverage

SpecificationSpecification::
P1:P1: g1 is never asserted in consecutive cyclesg1 is never asserted in consecutive cycles

property NoConsecutiveG1;property NoConsecutiveG1;
@ (@ (posedgeposedge clkclk) g1 |) g1 |--> ##1 !g1 ;> ##1 !g1 ;

endpropertyendproperty

P2: P2: g2 is never asserted in consecutive cycles

0000

1010 0101

State: (g1,g2)State: (g1,g2)

s1s1

s0s0

s2s2

g2 is never asserted in consecutive cyclesAbstract FSM of aAbstract FSM of a
RoundRound--robin Arbiterrobin Arbiter

No property fails.No property fails.
⇒⇒ The value of g1 at s1 is not coveredThe value of g1 at s1 is not covered

Falsity coverage

0000

0000 0101
s2s2

s0s0

s1s1

MutantMutant--33
(g1 flipped at s1)(g1 flipped at s1)

P1 is satisfied vacuously.P1 is satisfied vacuously.
⇒⇒ The value of g1 at s1 is coveredThe value of g1 at s1 is covered

Vacuity coverage

What does mutation coverage mean?

212

� If mutations on many parts of the implementation do not affect the truth
of the properties, then it is likely that our specification does not cover
those behaviors that are exhibited by those parts of the implementation
■ Extensions to transition coverage, path coverage, etc
■ Extensions to simulation coverage metrics, such as code coverage

(mutations on the HDL code) and circuit coverage (toggle coverage on
latches and signals)

� Does this mean that 100% coverage ⇒ we have written enough
properties?

213

High Coverage is not good enoughHigh Coverage is not good enough

Gray Counter:Gray Counter: Correct!!Correct!!

module module GrayCounterGrayCounter(x1, x2)(x1, x2)
regreg x1, x2;x1, x2;

always @ (always @ (posedgeposedge clkclk))
beginbegin

x1 <= x2;x1 <= x2;
x2 <= ~x1;x2 <= ~x1;

endend
endmoduleendmodule

0000 0101

1010 1111

Gray Counter:Gray Counter: Incorrect!!Incorrect!!

module module GrayCounterGrayCounter(x1, x2)(x1, x2)
regreg x1, x2;x1, x2;

always @ (always @ (posedgeposedge clkclk))
beginbegin

x1 <= x1;x1 <= x1;
x2 <= ~x2;x2 <= ~x2;

endend
endmoduleendmodule

0000 0101

1010 1111

Property P: Property P: The next value of the counter differs from the presentThe next value of the counter differs from the present
value in exactly one bit value in exactly one bit (100% state coverage, but …)(100% state coverage, but …)

[Source: A Roadmap for Formal Property Verification, Springer, 2006]

Fault-based Coverage Analysis

214

� Core Idea: Inject a fault into the specification and test whether the
specification remains satisfiable / realizable

� Fault Model
■ Stuck-at faults on one or more signals
■ Possible counter-example scenarios

� Good for a first-cut check on the first formal specification
■ Low coverage means we need more properties
■ High coverage does not necessarily mean we have sufficient properties

[Ref: A Roadmap for Formal Property Verification, Springer, 2006]

Stuck-at Fault Coverage

215

� Output Fault Coverage:
■ A stuck-at fault on a non-input y is covered if there exists some scenario

where the specification forces y to take the opposite value

� Input Fault Coverage:
■ A stuck-at fault on a input x is covered if we cannot realize the

specification without reading that input x

[Ref: Das, et.al., VLSI 2005]

216

Example: Output Fault CoverageExample: Output Fault Coverage

Memory arbiter: Memory arbiter: memmem--arbiter(inputarbiter(input rr11, r, r22 ; output g; output g11, g, g22))

Priority of g1:Priority of g1: G ((r1 G ((r1 ∧∧ r2) r2) ÆÆ X g1)X g1)

MutexMutex:: G (G (¬¬g1 g1 ∨∨ ¬¬g2)g2)

�� g1 sg1 s--aa--0 is 0 is directly covered directly covered (input: r1=r2=1)(input: r1=r2=1)

�� g2 sg2 s--aa--1 is 1 is indirectly coveredindirectly covered –– it implies g1 sit implies g1 s--aa--0, which is directly covered0, which is directly covered

�� g2 sg2 s--aa--0 is 0 is not coverednot covered –– we can have a valid implementation that never asserts g2 !! we can have a valid implementation that never asserts g2 !!

■■ add a property for the scenario where g2 has to be highadd a property for the scenario where g2 has to be high
G((G((¬¬r1 r1 ∧∧ r2) r2) ÆÆ X g2X g2))

■■ now, g2 snow, g2 s--aa--0 is directly covered and g1 s0 is directly covered and g1 s--aa--1 indirectly covered1 indirectly covered

Arbiterr2

g1r1

g2

217

Example: Input Fault CoverageExample: Input Fault Coverage

Memory arbiter: Memory arbiter: memmem--arbiter(inputarbiter(input rr11, r, r22 ; output g; output g11, g, g22))

Priority of g1:Priority of g1: G ((r1 G ((r1 ∧∧ r2) r2) ÆÆ X g1)X g1)

No starvation:No starvation: G ((G ((¬¬r1 r1 ∧∧ r2) r2) ÆÆ X g2)X g2)

MutexMutex:: G (G (¬¬g1 g1 ∨∨ ¬¬g2)g2)

�� r1 sr1 s--aa--0 and s0 and s--aa--1 are 1 are covered covered

�� r2 sr2 s--aa--0 is 0 is coveredcovered

�� r2 sr2 s--aa--1 is 1 is not coverednot covered –– we can realize the specs without reading r2 we can realize the specs without reading r2
(always assume that it is high)(always assume that it is high)

■■ Modified specs (substituting r2=1) covers original specs:Modified specs (substituting r2=1) covers original specs:
G (r1 G (r1 ÆÆ X g1), G (X g1), G (¬¬r1 r1 ÆÆ X g2), G (X g2), G (¬¬g1 g1 ∨∨ ¬¬g2)g2)

■■ Add a property for some scenario where r2 is lowAdd a property for some scenario where r2 is low
G (G (¬¬r2 r2 ÆÆ X (X (¬¬g2g2))))

■■ Substituting r2=1 fails to cover the above property. Hence r2 sSubstituting r2=1 fails to cover the above property. Hence r2 s--aa--1 is covered.

Arbiterr2

g1r1

g2

1 is covered.

218

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation
■■ Design Intent VerificationDesign Intent Verification

■■ Verification as Coverage AnalysisVerification as Coverage Analysis
■■ Design Intent Coverage and Specification RefinementDesign Intent Coverage and Specification Refinement
■■ Reasoning about SpecificationsReasoning about Specifications
■■ Have I Written Enough Properties?Have I Written Enough Properties?
■■ Property Directed Simulation GamesProperty Directed Simulation Games
■■ The Integrated PictureThe Integrated Picture

219

The Integrated Flow (Recap)The Integrated Flow (Recap)

Block-level
test plans

System-level
test plan

Intent Intent
CoverageCoverage

Arch SpecsArch Specs

Unit level specsUnit level specs

D
es

ig
n

re
fin

em
en

t

Unit level ValidationUnit level Validation
(Simulation + FPV)(Simulation + FPV)

Intent Intent
CoverageCoverage

Sp
ec

. r
ef

in
em

en
t

Si
m

ul
at

io
n

+
D

yn
am

ic
 A

B
V

Dynamic Property Verification (DPV)Dynamic Property Verification (DPV)

220

[Source: A Roadmap for Formal Property Verification, Springer, 2006]

The notion of context

221

� Two types of properties:
■ Invariants – properties that must hold always

● Example: An arbiter must never assert two grants at the same time (mutex)
■ Context sensitive properties

● Example: In a burst mode transfer, addresses wrap around the 2KB
address boundaries

� To verify the second property we must reach a burst transfer
■ In all other scenarios, the property is vacuous

Assertion Coverage

222

� Assertion coverage attempts to determine whether the simulation has
covered scenarios where the assertion was checked non-vacuously
■ How do we check the vacuity?
■ Many definitions:

● Implication vacuity
● Explicit specification of coverage goals – such as cover properties in SVA
● Gaming definitions

223

Implication vacuityImplication vacuity

�� Property: Property: If the request r is asserted, then the grant g must be asserted If the request r is asserted, then the grant g must be asserted
in the next two cycles, unless r is lowered in between.in the next two cycles, unless r is lowered in between.

property P;property P;

@ (@ (posedgeposedge clkclk))

r |r |--> ##1 (g or (!g && !r) or ((!g && r) ##1 g) ;> ##1 (g or (!g && !r) or ((!g && r) ##1 g) ;

endpropertyendproperty

�� Whenever Whenever r r is asserted, implication vacuity will report nonis asserted, implication vacuity will report non--vacuous vacuous
interpretationinterpretation

�� If If rr is asserted and the DUT does not assert is asserted and the DUT does not assert gg in the next cycle, then we in the next cycle, then we
should drive should drive rr again to check the remaining part of the propertyagain to check the remaining part of the property

■■ Otherwise, the real intent of the property is not checkedOtherwise, the real intent of the property is not checked

224

PropertyProperty--driven test generation?driven test generation?
�� It’s a game …It’s a game …

PlayerPlayer--11:: The Test Bench (TB)The Test Bench (TB)
■■ Drives the input signals in each roundDrives the input signals in each round

PlayerPlayer--22:: The Design Under Test (DUT)The Design Under Test (DUT)
■■ Produces the output signals in each roundProduces the output signals in each round

�� We play for the test bench …We play for the test bench …

�� Two types of games Two types of games –– same players, but the winning conditions are differentsame players, but the winning conditions are different
■■ Vacuity gamesVacuity games
■■ RealizabilityRealizability gamesgames

[Ref: Banerjee, et.al., DAC 2006]

225

Vacuity GamesVacuity Games

�� Winning condition defined in terms of a formal property, PWinning condition defined in terms of a formal property, P

�� In any round of the game, the inputs written by PlayerIn any round of the game, the inputs written by Player--1 (TB) is 1 (TB) is vacuousvacuous iff iff PP
is satisfied under these inputs regardless of the values of the is satisfied under these inputs regardless of the values of the outputs in that outputs in that
roundround

■■ PlayerPlayer--1 (Test bench)1 (Test bench)
●● It loses if in any round it writes vacuous inputsIt loses if in any round it writes vacuous inputs
●● It wins if in any round it writes nonIt wins if in any round it writes non--vacuous inputs and yet the vacuous inputs and yet the

property is satisfied or refutedproperty is satisfied or refuted

■■ PlayerPlayer--2 (DUT)2 (DUT) loses when Playerloses when Player--1 wins, and wins when Player1 wins, and wins when Player--1 1
losesloses

�� The values written in a round reThe values written in a round re--defines the property for the next rounddefines the property for the next round

[Ref: Banerjee, et.al., DAC 2006]

226

RealizabilityRealizability GamesGames

�� Problem with unreceptive specificationsProblem with unreceptive specifications

■■ In some round of the game, the property for the next round may bIn some round of the game, the property for the next round may become ecome
unrealizable, but unrealizable, but satisfiablesatisfiable

■■ This means that PlayerThis means that Player--1 (TB) has a winning strategy from that round 1 (TB) has a winning strategy from that round –– if it uses if it uses
that strategy then the property for some future round will becomthat strategy then the property for some future round will become e unsatisfiableunsatisfiable

■■ This strategy is to be demonstrated by a This strategy is to be demonstrated by a realizabilityrealizability gamegame

�� Winning conditions (P is unrealizable)Winning conditions (P is unrealizable)

■■ PlayerPlayer--1 (Test bench) 1 (Test bench)
●● Wins in a round if the property is refuted (becomes Wins in a round if the property is refuted (becomes unsatunsat))
●● Loses if the property for the next round becomes realizableLoses if the property for the next round becomes realizable

■■ PlayerPlayer--2 (DUT) loses when Player2 (DUT) loses when Player--1 wins, and wins otherwise1 wins, and wins otherwise

[Ref: Banerjee, et.al., DAC 2006]

227

Example Example –– tictic--tactac--toetoe

X : Environment
0 : DUT

X ? X

0 X

0?

•• Open Game at start: DUT has a strategy to winOpen Game at start: DUT has a strategy to win
99 Specification is realizableSpecification is realizable

•• DUT makes a mistake: Occupies row 2, column 1DUT makes a mistake: Occupies row 2, column 1
�� Specification is unrealizableSpecification is unrealizable

•• Intelligent TestIntelligent Test--bench: forces DUT to defeatbench: forces DUT to defeat
¾¾ Crucial Move: Occupying central squareCrucial Move: Occupying central square

228

Integration into Test EnvironmentIntegration into Test Environment

Assertion Monitor
+

Game Oracle

Assertion MonitorAssertion Monitor
++

Game OracleGame Oracle

DUTDUTDUT Test
Bench
TestTest

BenchBench

229

Agenda
� Introduction to Formal Verification

� Case Studies from TI: Protocol & Control Logic Verification

� Case Studies from IBM: Formal Processor Verification

� Verification Closure: Coverage Analysis & Integration with Simulation
■■ Design Intent VerificationDesign Intent Verification

■■ Verification as Coverage AnalysisVerification as Coverage Analysis
■■ Design Intent Coverage and Specification RefinementDesign Intent Coverage and Specification Refinement
■■ Reasoning about SpecificationsReasoning about Specifications
■■ Have I Written Enough Properties?Have I Written Enough Properties?
■■ Property Directed Simulation GamesProperty Directed Simulation Games
■■ The Integrated PictureThe Integrated Picture

230

The Design Intent Verification FlowThe Design Intent Verification Flow

Simulation + DPV Platform

Design Intent
(Formal Properties)

Sub-system Specs
(Formal)

Coverage
Analyzer

Sub-system
Modules

Sub-system Acceptance Testing
(simulation + FPV)

Integrated
Design

Test
Generator

+
Assertion
Monitor

Uncovered behaviors

231

References
1. Banerjee, A., B.Pal, S.Das, A.Kumar, P.Dasgupta, Test Generation Games from

Formal Specifications, DAC 2006.

2. Basu, P., S.Das, A.Banerjee, P.Dasgupta, P.P.Chakrabarti, C.R.Mohan, L.Fix,
R.Armoni, Design Intent Coverage – A New Paradigm for Formal Property
Verification. IEEE Trans. on CAD, Oct 2006.

3. Chockler, H., O.Kupferman, R.P.Kurshan, M.Y.Vardi, A practical approach to
coverage in model checking. CAV 2001.

4. Chockler, H., O.Kupferman, M.Y.Vardi, Coverage metrics for temporal logic model
checking. TACAS 2001, LNCS 2031.

5. Chockler, H., O.Kupferman, M.Y.Vardi, Coverage Metrics for Formal Verification.
LNCS 2860, 2003.

6. Das, S., P.Basu, A.Banerjee, P.Dasgupta, P.P.Chakrabarti, C.R.Mohan, L.Fix,
R.Armoni, Formal Verification Coverage: Computing the coverage gap between
temporal specifications, ICCAD 2004.

7. Das, S., A.Banerjee, P.Basu, P.Dasgupta, P.P.Chakrabarti, C.R.Mohan, L.Fix,
Formal methods for analyzing the completeness of an assertion suite against a
high-level fault model, VLSI Design, 2005.

232

References
8. Das, S., P.Basu, P.Dasgupta, P.P.Chakrabarti, What lies between design intent

coverage and model checking? DATE 2006.

9. Dasgupta, P., A Roadmap for Formal Property Verification, Springer 2006.

10. Dill, D.L., Trace Theory for Automatic Hierarchical Verification of Speed-
independent circuits, ACM Distinguished Dissertations, MIT Press, 1989.

11. Hoskote, Y., T.Kam, P.H.Ho, X.Zao, Coverage estimation for symbolic model
checking, DAC 1999.

12. Pnueli, A., R.Rosner, On the synthesis of a reactive module, ACM Symposium on
Principles of Programming Languages, 1989.

	Formal Assertion based Verificationin Industrial Setting
	Agenda
	Agenda
	Problem Statement
	Alternative Solution – Formal ABV
	Agenda
	Temporal Logics
	Linear Temporal Logic (LTL)
	LTL Formulas
	LTL - Examples
	Computation Tree Logic (CTL)
	Computation Tree Logic
	Computation Tree Logic
	CTL Examples
	Comparison between LTL and CTL
	Comparison between LTL and CTL
	Industrial Languages
	Overview of PSL
	Invariants
	Conditional Behavior
	Multi-Cycle Conditional Behavior
	Multi-Cycle Behavior Using Sequences
	Compound Assertions
	Agenda
	Model Checking
	How does Model Checking work?
	Example
	CTL Model Checking
	Lets introduce a bug
	CTL Model Checking on the buggy design
	LTL Model Checking
	-automata for design
	-automata for design
	-automata for property
	LTL Model Checking
	LTL Model Checking on our Example
	Complexity of Model Checking
	Agenda
	Binary Decision Diagrams
	Binary Decision Diagrams
	BDD based Symbolic Model Checking
	Symbolic Model Checking on our Example
	Symbolic Model Checking on our example
	BDD Based Model Checking
	SAT (Satisfiability) Problem
	Transforming design into a SAT problem
	Bounded Model Checking
	Symbolic Model Checking Summary
	Agenda
	Abstraction
	Abstraction and Refinement
	Other Advanced Abstraction Techniques
	Industrial Formal ABV Tools
	Agenda
	Need for Efficient Methodology
	Reality Bites!
	Need for Verification Planning
	Formal Verification Decisions
	Formal Verification Planning
	Planning Step-I: Identify the sweet spots
	Planning Step-II: Analyze the module
	Planning Step-III: Estimate Complexity
	Planning Step-IV: Partition if needed
	Structural Partitioning
	Functional Partitioning
	Assume–Guarantee Reasoning
	Functional Assume–Guarantee
	Agenda
	Property Coding Guidelines
	Property Coding Guidelines
	Agenda
	Formal Verification Steps
	Formal Engine Selection
	Structural Coverage Metrics
	Formal Verification Flow
	Bug Hunting Mode
	Bug Hunting Example: Dealing with FIFO’s
	Agenda
	Bridge : Verification Targets
	Parallel Protocols
	Serial Protocols
	Property Coding for Protocols
	AXI-OCP Bridge
	AXI-OCP Bridge
	AXI-OCP Bridge
	I2C Controller [Gorai et al, DAC-2006]
	I2C Controller
	OCP Arbiter
	OCP Arbiter
	OCP Arbiter
	OCP Arbiter
	Interrupt Controller [Biswas et al, CDNLive-2005]
	Interrupt Controller
	Memory Controller
	Memory Controller
	Memory Controller
	Agenda
	SoC Connectivity Verification
	SoC Connectivity Verification
	SoC Bandwidth Verification [Bhatia et al, DAC-2007]
	SoC Bandwidth Verification
	Agenda
	POWER5 Chip: It’s Ugly
	Moore’s Law: AND It’s Getting Uglier
	Complexities of High-End Processors
	Complexities of High-End Processors
	Complexities of High-End Processors
	Complexities of High-End Processors
	Complexities of High-End Processors
	Agenda
	Reducing Verification Complexity
	Semi-Formal Verification (SFV)
	Pipelining
	Multi-Phase Latching Schemes
	Sequential Redundancy
	Reducing Complexity through Transforms
	Transformation-Based Verification
	Reducing Verification Complexity
	Agenda
	Processor Verification Concepts
	Processor Verification Concepts
	Processor Verification Concepts
	Processor Verification Concepts
	Basic CPU Architecture
	Agenda
	Pseudo Case-Study: SEC
	Pseudo Case-Study: SEC
	Pseudo Case-Study: SEC
	Agenda
	Instruction Dispatch Case Study
	Instruction Dispatch: Verification Goals
	Instruction Dispatch: Logic Boundaries
	Instruction Dispatch: Input Modeling
	Instruction Dispatch: Property Modeling
	Instruction Dispatch: Proof Complexity
	Instruction Dispatch: Proof Complexity
	Instruction Dispatch: Proof Complexity
	Agenda
	Instruction Fetch Case Study
	Fetch-Hang Case Study
	Fetch-Hang Case Study
	Fetch-Hang Case Study
	Fetch-Hang Case Study
	Fetch-Hang Case Study
	Fetch-Hang Case Study
	Agenda
	FPU Case Study
	FPU Case Study
	FPU “Numerical Correctness”
	FPU Complexity Issues
	FPU Case-Splitting
	FPU Case-Splitting
	FPU Normalization Shift Case-splits
	FPU Results
	Agenda
	Load-Store Unit Case Study
	Cache Coherence Case Study
	Cache Coherence Case Study
	Associativity Case Study
	Address-Data Consistency
	Address-Data Consistency
	Parity / Error Detection Correctness
	Prefetch Correctness
	Prefetch Correctness
	Agenda
	Design Intent Verification
	What is design intent verification?
	Traditional: Without intent verification
	Emerging: With intent verification
	Intent Verification – Everywhere?
	Design Intent Verification – Why?
	Dimensions
	Agenda
	Verification is all about coverage
	Verification as coverage
	Verification Methodologies
	Compositional Verification & Coverage
	Two key problems
	Model checking as coverage analysis
	Model checking as coverage analysis
	Agenda
	Priority Cache Access
	Architectural Property
	One possible architecture
	Developing block specs
	Design Intent Coverage
	In this case, we have a gap!!
	The Correct Architecture
	Intent Coverage Problem: Formally…
	Specification Refinement
	Spec. Refinement by Relaxation
	The SpecMatcher Tool
	The Integrated Flow
	Intent Coverage and Model Checking
	Between Intent Coverage and Model Checking
	Agenda
	Consistency and Completeness
	Formal Consistency Analysis – Why?
	Verification is Logical Consistency
	Unsatisfiable Specification
	The Correct Specification
	Vacuity
	Realizability of Open System Specs
	Realizability = Satisfiability  Inputs?
	Receptiveness
	Agenda
	Have I written enough properties?
	Types of Coverage Approaches
	Mutation-based Coverage
	Mutation-based Falsity Coverage
	Mutation-based Vacuity Coverage
	What does mutation coverage mean?
	High Coverage is not good enough
	Fault-based Coverage Analysis
	Stuck-at Fault Coverage
	Example: Output Fault Coverage
	Example: Input Fault Coverage
	Agenda
	The Integrated Flow (Recap)
	Dynamic Property Verification (DPV)
	The notion of context
	Assertion Coverage
	Implication vacuity
	Property-driven test generation?
	Vacuity Games
	Realizability Games
	Example – tic-tac-toe
	Integration into Test Environment
	Agenda
	The Design Intent Verification Flow
	References
	References

