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Abstract 

In recent years, due to improvements in semiconductor technology, FPGA 

devices and embedded systems have both been gaining popularity in numerous 

areas, from vehicle-mounted systems to the latest iPhones. Recently, as Intel 

(Altera) and Xilinx both released their new generations of ARM A9 processor 

integrated FPGAs, they have become very popular platforms which combine the 

hardware features of an FPGA and an embedded systems software’s flexibility. 

This makes it suitable platforms to apply complex algorithms for real time 

processing of video images. 

Feature tracking is a popular topic in image processing and usually includes one 

or more pre-processing methods such as corner detection, colour 

segmentation, etc. that could be undertaken on the FPGA with little latency. 

After the pre-processing, complex post-processing algorithms running on the 

ARM processors, that use the results from the pre-processing, can be 

implemented in the embedded systems. 

The research described in this thesis investigated the use of low cost FPGASoC 

devices for real time image processing by developing a real-time image 

processing system with several methods for implementing the pre-processing 

algorithms within the FPGA. The thesis also provides the details of an 

embedded Linux based FPGASoC design and introduces the OpenCV library and 

demonstrates the use of OpenCV co-processing with the FPGA. The tested 

system used a low cost FPGASoC board, the DE1-SOC, which is manufactured 

by Terasic Inc. As a platform which contains a Cyclone V FPGA designed by 

Intel with a dual-core ARM A9 processor, the application developed is based on 

a customized OpenCV programme running on the ARM processors and 
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concurrently receives the pre-processing result processed by the FPGA. With 

the FPGA acceleration, the developed system outperforms a software-only 

system by reducing the total processing time by 48.2%, 49.5% and 56.1% at 

resolutions of 640x480, 800x600 and 1024x768 separately. 

This reduction in processing time allows an improvement in the performance of 

systems using the results from the real-time image processing system.  
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Glossary 

ALiS—Alternate Lighting of Surfaces 

ALU—Arithmetic Logic Unit 

ASIC—Application Specific Integrated Circuit 

CLB—Configurable Logic Block  

CPU—Central Processing Unit  

CRT—The Cathode Ray Tube  

DSP—Digital Signal Processing 

EDS—Embedded Development Suite 

FPC—Flexible PIC Concentrators 

FPGA—Field-Programmable Gate Array  

FPGASoC—Field-Programmable Gate Array System on a Chip 

GPU—Graphic Processing Unit 

HDL—Hardware Description Language 

HDMI—High-Definition Multimedia Interface  

HLS – High Level Synthesis 

HPS—Hardware Processing System 

LCD—Liquid-crystal display 

IP—Intellectual Property 
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OpenCV—Open Source Computer Vision Library 

OpenCL— Open Computing Language 

PAL—Phase Alternation Line 

PIC—Physical Interface Cards 

PC—Personal Computer 

RTL—Register Transfer Logic 

SD—Secure Digital 

SOPC—System On a Programmable-Chip 

USB—Universal Serial Bus 

UVC—USB Video device Class 

U-Boot—the Universal Boot Loader 

VIP—Video Image Processing 
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Chapter 1 Introduction  

1.1 Motivation  

Image processing and computer vision has become a popular research area in 

both electrical engineering and computer science in recent decades. Although 

it has been widely applied in many fields, industry has shown more interest in 

real time image processing in recent years. Using classical serial computer 

architectures, it often takes significant time to process the data. To achieve 

real-time performance with low latency, distributed systems such as multi-core 

CPUs. GPUs, FPGAs or ASICs are used to improve the performance.  

FPGAs can achieve real-time performance in many applications that general 

serial processors cannot without sacrificing resolution [1]. FPGAs usually have 

lower costs of system fabrication and maintenance compared with CPUs and 

GPUs. An FPGA’s reconfiguration characteristics provides more flexibility than 

ASICs which cannot be reprogrammed after they have been fabricated. 

In 2010, Altera, now owned by Intel, introduced their 28nm technology 

FPGASoC. In this generation, Altera integrated a Hardware Processor Systems 

(HPS) which includes a dual core ARM Coretex-A9 processor, into their low-cost 

product range the Cyclone V FPGA [2]. This 925 MHz ARM hard processor core 

is a good replacement for the synthesised soft NIOS II processor core on the 

Cyclone IV with a maximum frequency of 190MHz [2]. The FPGASoC combines 

the benefits of FPGA hardware for fast data processing and relative high-

performance embedded software flexibility. By integrating both systems into a 
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single component, it reduces the hardware complexity, physical size, power 

consumption, and cost of the final system. 

Many complex image processing applications, for instance object tracking and 

face detection, are not only based on time consuming convolution algorithms 

like edge detection and corner detection, but also require the original raw data 

to make high level decisions. Thus, the FPGA provide a good solution for parallel 

processing which can keep the original image data whilst undertaking low level 

convolution algorithms, for example edge detection, with low latency. 

Therefore, with the combination of an FPGA and an ARM processor, Intel’s 

FPGASoC, has the potential to implement complex image processing 

applications, in real-time, on a low-cost board making it suitable for embedded 

image processing tasks.  

This research investigated the use of low cost FPGASoC devices for real time 

image processing by developing a real-time image processing system with 

several methods for implementing pre-processing algorithms within the FPGA. 

The thesis also provides the details of an embedded Linux based FPGASoC 

design and introduces the OpenCV library and demos the use of OpenCV co-

processing with the FPGA. The results demonstrate the improved performance 

obtained by using the combined FPGA – ARM combination compared with just 

using the ARM processor. 
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1.2 Existing Technologies and System Performance 

1.2.1 CPU & GPU 

Various types of architecture are used for real-time image processing platforms. 

One of the popular architectures uses a PC as the host system. This approach 

has been a very popular architecture for real time image processing for several 

decades. Every functional hardware module can be implemented separately via 

an expansion interface, for example a graphic card or USB camera.  

As this technology has been developed over decades, there are many 

applications which focus on the PC. For example, Kang and Doraiswami 

developed a system which used an USB interface board and a webcam, allowing 

the PC to capture video for endoscopic applications [3]. The system 

implemented several image processing modules including contrast 

enhancement, Canny Edge Detection and the Hough Transform on the PC using 

MATLAB for real time image processing. 

Many computer-based vision systems now use the software approach, using a 

generic CPU and GPU to perform all the image processing tasks. With the rapid 

increase of the processing capabilities of GPUs, the software approach now 

offers greater processing capability to handle more complex image processing 

tasks in real-time. 

There is another example that Balfour et al. presented a vision-based closed 

loop control system for welding applications where a PC associated with a video 

capture card and a graphic card was used to perform real-time video 

acquisition, image analysis, display and process control [4]. However, these are 

not ideal for compact embedded vision systems as it requires a host computer 
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and a graphic card and therefore has a high-power consumption associated 

with these systems. 

1.2.2 FPGA vs CPU vs GPU 

The advantages and disadvantages of FPGA based image processing systems 

against CPUs & GPUs is now discussed. FPGAs are usually considered as a low-

level and parallel device which provides flexibility so that it can be programmed 

to implement any logical circuit. Thus, it is also sometimes used to prototype 

ASIC designs.  

However, FPGA design is usually considered too difficult or niche to use when 

compared with GPUs and CPUs, even for the senior designers whose proficiency 

is in software programming languages, as FPGA systems need to be developed 

using hardware languages [5]. The most common hardware languages for 

FPGAs are Verilog [6] and VHDL [7], which are called hardware description 

languages (HDLs). The main difference between these languages and 

traditional software languages is that HDLs describe hardware i.e. registers and 

Boolean logic functions, whereas software languages such as C describes the 

sequential instructions without knowing about the precise hardware 

implementation details. As a result, researchers and application scientists tend 

to choose software design because of the relative ease of development and the 

sheer number of abstractions and classifications available which significantly 

increase productivity.  

Due to their earlier development, both CPUs and GPUs shared a great number 

of established libraries which have plenty of resources for designers to 

productively implement various tasks. FPGAs only provide a limited number of 

“IP” libraries and component features for users’ designs. 
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However, these issues are just the first question to consider when designers 

choose whether to use FPGAs, GPUs or CPUs to build a system. The following 

is a comparison of implementations between FPGAs, GPUs and CPUs. 

  

1.2.2.1  Structure 

A significant element which impacts the choice of FPGAs, CPUs and GPUs is the 

structure. A suitable architecture for the targeted application can significantly 

improve its performance and reduce the system cost. For image processing, 

which can be considered as 2D signal processing, a high memory bandwidth 

for the memory intensive processing operations is required [5]. Figure 1-1 

shows the architecture of a CPU and a GPU. Both CPU and GPU have the control 

units, ALUs (Arithmetic Logic Unit), DRAM (Dynamic Random-Access Memory) 

and Cache. But the difference between CPU and GPU is a large proportion of 

GPU chip is the ALUs  

 

Figure 1-1 A Comparison of the Structures of CPU and GPU [8] 

FPGAs show good performance on parallelism. Since it can implement a non-

von-Neumann massive-parallel architecture [8], its calculated results can be 

fed directly to the next processing stage without temporary storage in the main 

memory. Hence, the requirement for memory bandwidth is much lower than 
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when implemented with a GPU or CPU. Therefore, it is thought to have better 

performance in image processing applications as its algorithms can exploit a 

great degree of parallelism [8]. 

The differences between CPUs and GPUs are caused by their different design 

goals as they are targeted at two different scenarios. CPUs need to be very 

versatile to deal with a variety of different data types. This makes the CPU's 

internal structure extremely complicated. Whilst what GPUs face is a large-scale 

data which is highly unified and mutually independent and normally operate in 

a pure computing environment with limited external interrupts. Comparing with 

the processing cores of both, the FPGAs programmable block is much simpler. 

Which hardware to choose depends on the complexity of the task required. For 

example, if a real time image processing system requires high resolution and 

complex calculations, GPU is more suitable for the work. But if the system only 

requires convolution based low level algorithms, FPGA become more suitable.  

1.2.2.2  Performance 

There are various elements which should be considered when measuring how 

a system performs. As far as real-time image processing is concerned, factors 

like speed and energy efficiency are significant. 

As mentioned by Asano, et al. [8], how fast a CPU, GPU or FPGA can achieve 

varies for each application. Generally speaking, FPGAs demonstrate extremely 

high parallelism at a lower clock rate; in comparison, the GPU is endowed with 

a high clock speed, also with relatively high parallelism, but is limited by poor 

memory management. CPUs, on the contrary, show relatively high clock 

speeds, facilitate memory management but their parallelism is limited. For an 

image processing system which contains numerous inherent parallelisms, the 
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advantage of a CPU is not obvious. This leaves a comparison between GPUs 

and FPGA. For example, GPUs have better implementation in normalized cross-

correlation [9] and two-dimensional filters [8]; while FPGAs were identified as 

having outstanding performance in matched filter computations [10], K-Means 

clustering tasks and stereo vision [8]. 

To assess energy efficiency, Fowers et al. implemented a sliding window 

operation, sum of absolution differences and corrector and determined that, 

“the FPGA used orders of magnitude less energy than other devices in many 

situations” [11]. Table 1-1 shows a comparison of power consumption and 

energy usage of FPGA, CPU and GPU implementing a Canny Edge Detector at 

different resolutions. The researchers use a CPU Intel Core2 Duo E6600, 2.4 

GHz; a GPU GeForce GTX 580, 1.54 GHz and a 28 nm Arria V 5AGXFB3 FPGA 

device for comparison [12]. The power consumption of FPGA remains almost 

the same at 1.5 Watts as the effect of the change of system is negligible. In 

the meantime, the power consumption of CPU and GPU stays around 150 Watts 

and 240 Watts. Thus, the energy consumptions of CPU are over one thousand 

times higher than the FPGA. With the advantages in architecture, the energy 

efficiency of the GPU is better than the CPU, but still it is incomparable with the 

FPGA. FPGA still leads with a factor of hundreds. However, with higher 

resolutions, the energy consumption of the FPGA is increasing fast which is 

98.2 Millijoules at 3936x3936 which is 14.7 times higher than the performance 

at 1024x1024. But for the GPU, it increases by a factor of 2.5, the difference of 

power consumption between FPGA and GPU is reduced gradually.  
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Table 1-1 Comparison of power consumption for Canny Edge Detector Implementations 

[12] 

Resolution CPU GPU FPGA 

Power(W) Energy(J) Power(W) Energy(J) Power(W) Energy(mJ) 

512x512 141 2.8 231 0.5 1.5 1.7 

1024x1024 147 8.8 244 6.08 1.5 6.7 

3936x3936 153 213.1 251 15.0 1.5 98.2 

1.2.3 SOPC 

Several years ago, with the advances of semiconductor technology, it became 

possible to integrate the entire embedded/computer system including 

processors, memory and other system units into a single programmable chip - 

FPGA. This technology is called "System-on-a-Programmable-Chip" (SOPC) 

[13]. As a new approach, it provided another architecture capable of 

implementing a standalone embedded vision system.  

Endowed with both a reconfigurable and compact nature, SOPCs provide high 

flexibility and performance with low risks; as its design can easily be adapted 

into various types of FPGAs and therefore present a wide range of performance. 

Concerns about problems like changing the architecture of the system are 

unnecessary as all the components of the SOPC could be separately 

implemented as individual non-device-specific soft IP cores which included the 

processors. Moreover, the utilization of soft processor core, for instance Nios II 

from Altera and Microblaze [14] from Xilinx, has accessed the system 

architecture’s configurability to make a trade-off between performance and 

area via adjusting the architecture [15]. Furthermore, SOPCs have other 
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advantages like low cost and short development time compared with the ASIC 

approach [16]. For example, Hau et al. designed a rapid prototyping of an 

automated video surveillance system [17]. The system was designed with the 

Altera video processing and embedded design framework (VIP, UIP) and 

implemented on an Altera DE2-70 board which contained an Altera Cyclone IV 

FPGA. By using high performance and parallel hardware accelerators, the 

system demonstrated a real-time object detection algorithm. In addition, by 

the implementation of a software processor (NIOS II), user controls and 

application flexibility were achieved by applying high level programming 

language (C++). Wu et al. designed a real-time image processing system [18]. 

The system was integrated into a low-cost programmable chip and the system 

performance was maximized by using the cache and streaming transfer within 

the system. The effective bus-mastering scheme was also demonstrated. The 

system was implemented with an Altera Apex 20K programmable board, a 

SDRAM, a CameraLink CMOS camera with a custom designed camera interface 

card for video capture and a VGA monitor for video display.  Both the systems 

described above are designed with hardware/software co-design method and 

implemented with a NIOS II CPU. Both systems were implemented with a SOPC 

approach and used the Avalon bus interface [19] to reduce the complexity of 

development and enhance the performance of the systems.  

One of the key challenges that both systems had to overcome was the 

bandwidth of the external memory that stored the image. This memory, acting 

as a frame buffer would have to allow the image capture unit to write the image 

to the memory, the display unit to read data from the memory and the CPU to 

read and write data from the frame buffer. Also, if this memory is also used by 

the CPU for program and variable storage these accesses would also be sharing 

the available bandwidth. 
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1.2.4 Embedded Systems & FPGASoC 

Another type of architecture is embedded systems which consist of one or more 

microprocessors/microcontrollers to control the whole system and perform the 

image acquisition and processing tasks. These microprocessors could be 

general purpose microprocessors or DSP microprocessors [20]. In recent years, 

the ARM processor has become the most popular microprocessor in embedded 

systems. With the availability of the ARM processors for System on a Chip (SOC) 

applications, it can build the whole system in a single device. For software 

development, it can use either Linux or Android as the Operating System 

platform where several open source libraries such as OpenCV and Python 

libraries can be installed to simplify the application development. However, as 

the more significant complexity of hardware architecture of microprocessors, it 

is result in a relatively less significant in speed [21].  

In 2014, Guennouni et al have developed an application for multiple objects 

detection based on OpenCV libraries [22]. The system is based on cascade 

object detection algorithm for multiple object detection. Then Varfolomieiev et 

al have developed an improved algorithm of median flow for visual object 

tracking and its implementation on an ARM platform [23]. The algorithm has 

been implemented using the OpenCV library and tested on BeagleBoard-xM 

based on ARM processor. The algorithm uses the “good feature to track” 

algorithm and an edge detection algorithm. However, those pre-processing 

algorithms involved in these designs are more suitable for FPGA implementation 

instead of ARM processor. 

Recently, as mentioned, a newer generation of FPGASoC has been introduced. 

These provide an upgraded version of the SOPC. They inherit the benefits of 
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SOPC and provide higher CPU performance because the CPU is hardwired 

rather than implemented using the FPGA logic blocks. Russell and Fishchaber 

designed a sign recognition system based on OpenCV using a Zynq SOC board 

[24]. The system uses the Xilinx Zynq-7020 chip to acquire 1920x1080 video 

with the VITA-2000 sensor attached to Flexible Physical Interface Cards (PIC) 

Concentrators (FPC) slot. The system was designed within six weeks and could 

process a frame in 5 seconds. 

Typically, these image processing applications apply some low-level image 

processing tasks to pre-process the image. For example, the image may be 

Gaussian filtered to reduce noise in the image and then edge detection 

algorithms applied to highlight the edges of features in the image. Then higher-

level algorithms use the information from the low-level information to make 

decisions about the object contents. For example, in vehicle traffic sign analysis, 

the edges will be analysed to determine the shapes of the signs, i.e. whether 

they are circular, square, rectangular etc. to aid in their classification.  

 

1.3 Thesis Contribution 

This research investigated the use of a low cost FPGASoC device for real time 

image processing by developing a real-time image processing system with 

several approaches for the pre-processing algorithms, using the FPGA, to 

reduce the processing time. Additionally, it synchronizes the original data in 

parallel with the pre-processed data in memory for further processing, i.e. the 

pre-processed image is stored as a 64-bit word with 8 bits each for the RGB 

values and 32-bit for the pre-processing results. Simultaneously, it provides the 
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infra-structure for implementing complex image processing applications on the 

integrated ARM system supported by the OpenCV library. The FPGA design was 

developed in Quartus II using the Video Image Processing (VIP) IP which 

provides several sub-systems such as frame buffer, clocked video in & out in 

Platform Designer (formally Qsys), which is Intel’s (formally Altera) tool for 

developing SOPC systems. Therefore, the programmable hardware design 

needed to the algorithm development to be compatible with Intel’s VIP based 

IP format so that it could be compatible with the Intel VIP subsystems. 

This research applied two approaches, a Hardware Description Languages 

(HDL) approach and High-Level Synthesis (HLS) approach, to develop the 

algorithm IP for the FPGA. Firstly, the research shows the two methods to 

implement the Canny Edge Detection algorithm with the HDL approach. With 

both methods, it would show the correlations of resource usage and latency 

with accuracy and resolution.  

Secondly, the HLS approach is researched by developing the Canny Edge 

Detector algorithm and Harris Corner Detection algorithm. With this approach, 

it would improve the productivity and reduce the difficulty of FPGA 

programming. 

The next, the high-level processing details of an embedded Linux based 

FPGASoC design and the associated libraries are presented. Then an IP is 

developed using the HDL method which contains the original RGB data, Harris 

Corner Detection result, Canny Edge Detection result and Grayscale result all 

synchronized together, pixel by pixel, as a 64-bit word for each pixel. 

Concurrently, this design is based on the customized OpenCV application for 

post-processing implementations.  
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To summarise the novelty in this research, it is the development of an 

embedded FPGASoC image processing architecture where convolution-based 

image pre-processing takes place, in real-time, in the FPGA fabric allowing the 

ARM SoC processor to concentrate on the post processing algorithm thus 

reducing the time between the image is captured and the result presented. 

Such an approach will open up the market for low-cost real-time image 

processing applications as the system capital and running costs are significantly 

lower than using a PC based system. The comparison between the HDL and 

HLS approaches allows recommendation on which to select when developing 

an embedded image processing system. 

1.4 Thesis Outline 

This thesis is structured as follows.  

Chapter 2 describes the background knowledge of the systems referred to in 

this thesis and the development environment.  

Chapter 3 provides details of the design tools and hardware devices used in 

this research. It introduces the design tools and includes details of the Intel 

Video and Image Processing Suite (VIP).  

Chapter 4 presents the FPGA image pre-processing design with the HDL 

approach and the HLS approach. It introduces the Canny Edge Detection (CED) 

algorithm and then describes the implementation of an accurate version and a 

simplified version of the CED algorithm using the hardware description 

language (HDL).  
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Chapter 5 presents the FPGA image pre-processing design with the HLS 

approach. It presents details of the implementation of the CED algorithm using 

the HLS approach. It also introduces the Harris Corner Detection (HCD) 

algorithm. Then it compares the results of both the CED and HCD 

implementation with the HDL approach and presents a discussion of the results. 

It also presents the system architecture in detail and discusses the results 

obtained.  

Chapter 6 introduces an embedded Linux based FPGASoC design. It provides 

details of the FPGASoC design and introduces the OpenCV library. It also 

presents details of implementation of HCD and CED together in one IP. After 

that, it demonstrates the use of the FPGA to accelerate the OpenCV design in 

the FPGASoC design. 

Finally, Chapter 7 presents the conclusions and potential for future research. 
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Chapter 2 Background 

2.1 Introduction 

This chapter presents the background knowledge of the systems referred to in 

this thesis and the development environment. The second section of this 

chapter briefly introduces the field of computer vision and image processing 

and describes the background to this technology. The third section presents 

the characteristics of FPGAs, including their history of development, internal 

structures, core technology and representative products. The next section 

focuses on the comparison between FPGAs and architectural approaches. The 

following section discusses the design flow for FPGA designs and provides 

information on the existing FPGA design methods. Finally, the video image 

format adopted is described. 

  

2.2 Machine Vision & Image Processing 

With the development of modern electronics, it is possible to make the 

computer ‘see’ things. This can be achieved by imitating the eye’s function via 

image perception and content interpretation, this is called computer vision. The 

principle of computer vision is analysing images and then extracting relevant 

information from the scene [25], which could be a two-dimensional scene or a 

three-dimensional scene. 

Nowadays, computer vision extends far beyond basic image processing. It also 

integrates communication and graphical techniques, processor and computer 

aided design as well as information handling and control. Using these sub-
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systems help to build a computer vision application, for instance motion 

detection, image restoration, recognition and scene reconstruction etc. People 

usually set it goals of identifying various types of objects which could occurred 

in the scene.  

Machine vison (MV), is frequently defined as the application of computer vision 

for manufacturing and industry [26]. For instance, MV shows good performance 

in automatic inspection and analysis tasks. It has become a significant 

technology in industry as it allows the replacement of humans in the visual 

inspection process with the associated cost reductions and increases in 

accuracy. Also, machine vision systems allow inspection tasks to be completed 

in hazardous work environments that are not suitable for manual work. Machine 

vision encompasses mechanical engineering, control, electric lighting, optical 

imaging, sensors, analogue and digital video technology, and industrial 

automation, etc. Besides, as a category of computer vision which mainly 

depends on machine-based image processing, it also has requirements of 

computer networks and digital input/output equipment when it controls other 

manufacturing devices. 

With that in mind, image processing is the process of extracting information 

from the scene, converting an image signal into a digital signal and then 

electronically processing it. It is also considered as a collation of intensity data 

with its spatial arrangement [27]. It is usually a video frame or an image as the 

input for an image processing application. A real-time image processing system 

is required to implement specific image processing algorithms to verify the real-

time performance before applying it into a computer vision system [18]. The 

specific task of a real-time system is processing the data required in the given 

interval, then analysing its performance to estimate the ability of it to process 

the data (image) in real time. A real-time system generally has three basic 
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functions, video acquisition, processing and display or control system as shown 

as Figure 2-1. At the first step, the image data is acquired from a 

digital/analogue camera or other video input devices. Then the processing 

system can be subdividing into a pre-processing system and a post-processing 

system. The pre-processing system includes the video format transformation 

which will be discussed in Section 2.5, pre-processing algorithms such as edge 

detection or image segmentation based on FPGA in this research with HDL or 

HLS programming method will be discussed in Section 2.3 and Section 2.4, 

respectively. For post-processing system, it will be discussed in details in 

Chapter 6. 

Lastly there could be a video output which presents the processed results on a 

visual display or it could directly generate a control signal to other systems.  

 

Figure 2-1 A real time image processing system 

 

2.3 Field Programmable Gate Array (FPGA) 

A formidable processing system is extremely important for building a 

satisfactory real-time image processing system. As mentioned previously, 

several architectures could be chosen as the processing hardware. The FPGA 

was firstly introduced in the 1980s by Xilinx and was named by Actel in 1988. 
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During more than 30 years of development, the FPGA has increased more than 

10 000 times in logic capacity and 100 times in speed [28]. As its name 

suggests, FPGAs are designed as reconfigurable semiconductor devices. They 

are built with a matrix of logic blocks or adaptive logic modules (ALMs) of 

various types, such as multiplier blocks, memory and general logic; the ALMs 

are surrounded and connected by the programmable routing fabric, which is 

illustrated in Figure 2-3; then the array is surrounded by I/O blocks that 

interface the device to the outside world. Each ALM is made up of both registers 

and lookup tables (LUTs) [29] shown as Figure 2-2.  

 

Figure 2-2 An Adaptive Logic Module (ALM) Block Diagram [29] 

When the FPGA is configured for the specific digital circuits, each item of the 

CLBs would be assigned a simple independent logic function. The CLBs utilize 

the LUTs to implement the Boolean logic function and then it is connected by 

the routing fabric to make the structure of the whole digital circuit. The I/O 

blocks consequently link the logic matrix to the outside. With an increase of the 

order of magnitudes of logic functions, the FPGA device, in theory, is able to 

be programmed into any kind of logic circuits. However, it will never be as fast 
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as dedicated hardwired circuit, or as energy efficient, when using the same 

semi-conductor technology. 

 

Figure 2-3 Basic Structure of FPGA [30] 

Currently, there is a new trend in the FPGA field; that is to further develop the 

approach of coarse-grained architecture, synthesizing traditional FPGAs’ 

interconnects and logic blocks together with embedded microprocessors and 

their related peripherals. This is how the System on a Programmable Chip 

(SOPC) [13] was developed. This kind of architecture utilizes the soft processor 

cores developed by the FPGA logic vendor, for instance the MicroBlaze (Xilinx) 

and Nios II (Intel/Altera).  

The more recently introduced alternative approach based on hard processors 

could be found in the Xilinx Zynq-7000 All Programmable SoC [31] and Altera 

Cyclone V FPGA SOC [32] (shown in Figure 3-9), both integrate FPGA hardware 

with a dual-core ARM-A9 processor. Another example is the Microsemi 

SmartFusion which integrates the ARM Cortex-M3 hard processor core as well 

as analogue peripherals, such as multi-channel DACs and ADC with the flash-

based FPGA fabric [33]. In the next section, these processors will be described. 
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2.3.1 On chip processors 

As previously mentioned, there are two types of processors provided by FPGA 

manufacturers: hard processor and soft processor. A hard processor means an 

integrated processor like an ARM processor in hardware within the IC, whilst a 

soft processor is implemented within the FPGA fabric. Hard processors generally 

offer better performance (speed), lower power consumption and higher 

density. However, a soft processor system can have highly configurable 

features by using a specialized instruction set. Also, a programmable quantity 

of processors can be instantiated, as needed, with each tuned to the required 

area and performance specifications.  

There are several processors commonly used in SOPC designs. Firstly, the soft 

processors, such as the Nios and Nios II developed by Intel/Altera, Microblaze 

developed by Xilinx and OpenRISC developed by OpenCores. Nios II [34] is a 

32-bit soft-processor architecture designed specifically for the Intel/Altera 

family of FPGAs. Nios II incorporates many enhancements over the original 

Nios architecture, making it more suitable for a wide range of embedded 

computing applications, from DSP systems to control applications. Similar to 

the original Nios, Nios II has a RISC soft-core architecture which is implemented 

entirely in the programmable logic and memory blocks of the Intel/Altera 

FPGAs. The soft-core nature of the Nios II processor lets the system designer 

specify and generate a custom Nios II core, tailored for specific application 

requirements. System designers can extend the Nios II's basic functionality by 

adding a predefined memory management unit or defining custom instructions 

and custom peripherals [34]. 

As a competitor product, the MicroBlaze [35] is a soft microprocessor core 

designed by Xilinx for Xilinx FPGAs. It is implemented entirely in the general-

purpose memory and logic fabric of Xilinx FPGAs. In terms of its instruction set 
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architecture, MicroBlaze is similar to the RISC-based DLX architecture which is 

described in the popular computer architecture book by Patterson and 

Hennessy [36]. With few exceptions, the MicroBlaze can issue a new instruction 

every cycle, maintaining single-cycle throughput under most circumstances 

[35]. 

On the other hand, hard processors are usually developed by specialized 

semiconductor companies. The PLD vendors purchases their IP licenses, 

fabricating and optimizing the processors into their specific FPGA family such 

as Altera's Cyclone V and Xilinx’s Xilinx Zynq-7000 which include a 1.0 GHz and 

800 MHz dual-core ARM Cortex-A9 respectively. 

The Cortex-A9 [37] is a 32-bit hard processor with the ARMv7-A architecture 

which made it high-performance and low-power. Compared with soft-core 

processors, the hardware devices inside the chip which improve its performance 

includes, but is not limited to, an AMBA Level 2 Cache Controller, a global timer, 

the Floating-Point Unit and Direct Memory Access (DMA) [37]. When integrated 

inside an FPGA, the Cortex-A9 also provides the Advanced Extensible Interface 

(AXI) interconnects which directly connects to the FPGA allowing data exchange 

between the ARM processors and the FPGA logic. More details of on chip buses 

is presented in the next section. 

 

2.3.2 On chip buses 

Each of the processors use their own, different, on-chip bus. General speaking, 

a bus, in this context, is a public communication trunk that transfers information 

between the various functional components of a computer. The on-chip bus is 

the most common method to connect IP cores in an SoC, through which the 
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data communication could be transferred between the IP cores. Two standards 

of on-chip buses, Avalon Interface [19] and AMBA [38] are mentioned here. 

The former, the Avalon Interface bus, was launched by Altera to allow all 

peripherals to interface with its own IP and softcore processors. There are 

several types of Avalon Interfaces, for example the Avalon Streaming Interface 

(Avalon-ST) and the Avalon Memory Mapped Interface (Avalon-MM), the 

Avalon Conduit Interface and the Avalon Tri-State Conduit Interface (Avalon-

TC) [19]. 

Avalon-ST interfaces support data paths requiring the following features: Low 

latency, high throughput point-to-point data transfer, Multiple channel support 

with flexible packet interleaving, error, and start and end of packet support for 

data bursts and automatic interface adaptation [19].  

Figure 2-4 shows the signals that are typically included in an Avalon-ST 

interface. As this figure indicates, a typical Avalon-ST source interface drives 

the valid, data, error, and channel signals to the sink. The ready signal from 

the sink to source indicates when the sink is able to receive data. 

 

Figure 2-4 A typical Avalon-ST signals between Source and Sink [39] 

Avalon Memory-Mapped (Avalon-MM) interfaces can be used to implement read 

and write interfaces for master and slave components. The components include 
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microprocessors, memories and DMAs which typically use memory-mapped 

interfaces to perform read or write operations [19]. Avalon-MM interfaces range 

from simple to complex. SRAM interfaces that have fixed-cycle read and write 

transfers have simple Avalon-MM interfaces, but pipelined interfaces capable of 

burst transfers are more complex [19]. Many components may have both 

Avalon-ST and Avalon-MM interfaces where the ST interfaces are used in a 

data-flow system to receive and transmit streaming data whilst the MM 

Interface is used to write configuration information to the IP Component and 

monitor its status. 

The AMBA bus is another on-chip bus developed by ARM. It has four levels of 

hierarchy: Advanced high-performance bus (AHB), advanced system bus (ASB), 

advanced peripheral bus (APB) and most recently the advanced extensible 

interface (AXI). Generally, the high-performance system bus (AHB or ASB) is 

mainly used to meet high bandwidth requirements between high-speed devices 

such as the CPU, DMA and memory. While, most of the low-speed external 

devices of system are connected by the low bandwidth bus APB; then the 

system bus and the peripherals bus are connected by a bridge (AHB/ASB-APB-

Bridge). The AXI3 or AXI 1.0 interface is used on ARM Cortex-A processors 

including the Cortex-A9 which also provide the interconnections between the 

FPGA and the HPS in the Cyclone V SOC [40] as shown in Figure 2-5.  
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Figure 2-5 Altera/Intel SoC FPGA Device Block Diagram [40] 

The design of the internal architecture only begins when the bus system is 

selected. Designers consequently work on the data and control paths, the 

hardware/software co-design, processor optimisation and both on-chip and off-

chip components definition etc. these could be designed using different tools. 

2.4 FPGA Programming 

FPGA configuration/programming is also not like a general CPU program which 

is based on instructions that are decoded by hardware; it contains a complete 

configuration of the FPGA hardware. This limits the methods that can be used 

for FPGA programming. In this section, the languages used for FPGA 

programming and the design flow are discussed. 
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2.4.1 HDL 

Hardware description languages (HDL) are languages used to describe the 

electronic system hardware behaviour, structure and data flow. It is a method 

popularly applied in the design of ASICs and FPGAs. There has been over 40-

years of history of evolution since HDLs were developed and they have been 

widely used in all of the design stages of electronic systems, such as simulation, 

verification, modelling and synthesis, etc. Hundreds of hardware description 

languages appeared by the 1980s, which played a significant role in promoting 

design automation. However, these languages generally varied from each other 

as they were targeted at a specific design area. As a result, the numerous 

languages made it difficult for the user to choose an appropriate system. 

Therefore, an urgent need emerged for a standard hardware description 

language to be generally accepted. To meet this requirement two languages 

VHDL and Verilog emerged. So far, they both are regarded as two of the most 

common languages for ASIC and FPGAs designers. 

HDLs function in every stage of the design flow, ensuring the correct 

implementation of the system design. Figure 2-6 shows the design flow for 

FPGA designs. An abstract requirement would eventually be transformed into 

the specific configuration bitstream for the FPGA after certain programming 

procedures. 

The design flow begins at the architecture design. Before that, some 

preparatory work should be carried out, such as the sepcification of the project, 

system design, FPGA chip selection and lists of IPs which could be used. 
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Figure 2-6 Design flow for FPGA designs [41] 

Generally, the top-down design method is used to divide the system into several 

basic units. Then, each basic unit is divided into the lower-level basic units, this 

operation would go on until the Electronic Design Automation (EDA) element 

library can be used directly. 

The procedure of the HDL design entry and the test environment design are 

carried out simultaneously. The former is the process of presenting the 

designed system or circuit in the form required by the HDL system and then 

inputting it to the EDA tool. The method most widely used, in practice, is the 

HDL language text input, which can be divided into ordinary HDL and behaviour 

HDL. Ordinary HDL (i.e. structural HDL and Register Transfer Logic (RTL) HDL) 

is mainly used in simple small designs. While in medium and large projects, 
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behavioural HDL is implemented using the mainstream languages of either 

Verilog HDL or VHDL or a combination of both. 

The design will then undergo behavioural simulation. Its function is to verify 

the logic function of the designed system before synthesis for the target 

hardware. At this stage, there is no propagation delay information in the 

simulation just a logic functional simulation. Before the behavioural simulation, 

the waveform files and test vectors should be established via a Waveform Editor 

or HDL. The simulation results will generate the report file and then output the 

signal waveform, from which the changes of each node can be observed. If an 

error is found, the designer will go back to the last design step for modification. 

The common simulation tools are ModelSim from Model Tech, VCS from 

Sysnopsys and NC-Verilog as well as NC-VHDL from Cadence.  

Synthesis is then undertaken. The objective of synthesis is to translate the 

description on a higher level of abstraction into a lower level description. It 

optimizes the logical connections generated by the description and timing 

requirements and flattens the hierarchical design for implementation in the 

FPGA. 

Synthesis refers to compiling the design into a logical netlist which consist of 

the basic logic units such as AND gates, OR gates, NOT gates, D type flip-flops 

rather than a true gate level circuit. As the synthesis needs to make use of the 

FPGA manufacturer's layout and wiring function it is generated according to the 

standard gate structure net table which is generated after the synthesis. To be 

able to convert into a standard portable structure network table, the writing of 

the HDL description must conform to the style required by a specific package.  

The stages of synthesis are as follows. It configures the integrated generated 

logical network table to a specific FPGA chip. During this procedure, the layout 
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and routing is the most important process as it configures the hardware 

primitives and the underlying units in the logical netlist to the inherent hardware 

structure of the chip. This operation often needs to make choices between the 

best performance (speed) and the best area usage. 

At present, the structure of a FPGA is very complex, especially for timing 

constraints. The timing-driven engine needs to be used for layout and routing. 

After finishing the routing, the software tool will automatically generate a report 

to provide information about the use of each part of the design. Moreover, as 

only FPGA manufacturers truly understand the chip structure, the tools for 

layout and routing must be provided by the FPGA manufacturers. 

The final process for the design is timing analysis, referring to the annotation 

of the delay information of the layout and routing to the design network table 

to detect any timing violations. Based on the result, the designer could identify 

the highest working frequency of the design in that chip, check whether the 

timing constraints are satisfied and analyse the clock quality. The system must 

be modified and returned to the HDL design entry stage if the constraints are 

not being satisfied.  

In summary, as mentioned previously, HDL languages are not easy to learn. 

There is an obvious difference between them and other programming 

languages. It requires designers to learn and master this language. It also 

requires a large effort for the design process rather than just coding. Therefore, 

a suitable tool which could link the high-level programming language with HDL 

seems to be necessary.  
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2.4.2 High-Level Synthesis 

The recent development of the High-Level Synthesis (HLS) allows an alternative 

method to implement the same design goals, without using HDL languages. 

HLS is a process that translates a high-level program, normally written in 

C/C++, at a behavioural or algorithmic level into a low-level automatic digital 

description, for instance, code in HDL. The popular HLS tools include Xilinx’s 

Vivado HLS and Intel’s HLS Complier, both can automatically translate C/C++ 

into Verilog or VHDL. What’s more, the HLS aims to allow the programmer to 

generate the design at a higher level which relieves then from the pressure of 

learning a new HDL. Therefore, it brings noticeable benefits when utilised, such 

as promoting the design speed and shortening the development time. It is also 

causing less descriptive mistakes which makes the programming and any 

modifications easier.  

However, the compiler does not always make the best choice when it interprets 

the code. An incorrect and ineffective interpretation would consequently impact 

the performance of system. So certain compiler directives, such as busses 

input/output and loop pipelining /unrolling, needs to be added in the basic code 

to ensure proper implementation by the compiler.  

While, effective programming requires far more than simply implementing the 

HLS. The programmer should have an in-depth understanding of an HDL to 

master the HLS. On the other hand, a HLS could be a great assistant if the HDL 

is well understood, even though people commonly thought the best way to 

program efficiently is to use the low-level language directly. Additionally, 

designers need to be aware that there is a noticeable distinction between 

simulation results and hardware results. The HLS tools don’t guarantee the 

cycle accuracy. To deal with this, the programmer should have further HDL 

language knowledge; and the extra debugging skills.  
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2.4.3 OpenCL 

As well as the choice between HDL and HLS when programming an FPGA, 

people could also implement their design using OpenCL. OpenCL is a framework 

of program development for parallel programming on heterogeneous platforms. 

This environment was originally developed for GPUs but now it has developed 

into a synthesize platform which includes GPUs, CPUs, FPGAs and other 

processors. It consists of a language (based on C99 and C++11) for writing 

kernels (functions running on OpenCL devices) and a set of application 

programming interfaces (APIs) to control and define the platform. OpenCL 

provides standard parallel computing based on task and data segmentation. 

When implementing OpenCL on FPGAs, it uses the structure of FPGAs for a 

small application optimized processor core. This approach asks programmers 

to define the parallelism clearly and explicitly instead of the automatic 

parallelization in HLS. Consequently, programmers tend to reduce the massive 

parallelism on FPGA to the GPU’s level; this operation eases the GPU 

programmer’s access to FPGAs but causes a large performance cost.  A 

comparison test has been undertaken between OpenCL and other three HLS 

languages includes Bluespec System Verilog, LegUp and Chisel about the 

performance of each architecture on FPGAs [40]. It showed that OpenCL and 

other advanced frameworks which applied a GPU-programmer-friendly 

architecture had a poor and unstable performance, while the approaches with 

low-level architecture were implemented quickly and efficiently on an FPGA. 

 



Chapter 2  Background 

Shaonan Zhang   31 

2.5 Video image Format 

In image processing on FPGAs the real-time image data is collected from the 

scene by an input device and is then processed by the FPGA on the target board 

and finally output as a digital signal stream showing the results on a display 

device. During the entire period, the image format would experience several 

translations in order to meet the different format requirements in each step of 

the processing. Therefore, it is necessary to know how to make transformations 

between the two different image formats. This part introduces the most 

common formats used for image representation.   

 

2.5.1 RGB 

The RGB colour model is an additive colour model in which red, green and blue 

light are added together in various ways to reproduce a broad array of colours. 

The name of the model comes from the initials of the three additive primary 

colours, red, green and blue. 

Typical RGB input devices are colour TV and video cameras, image scanners, 

video games, and digital cameras. Typical RGB output devices are TV sets of 

various technologies (CRT, LCD, plasma, OLED, Quantum-Dots etc.), computer 

and mobile phone displays, video projectors, multicolour LED displays and large 

screens such as Jumbotron.  

 

2.5.1.1 Bayer RGB 

The Bayer filter is a colour format popularly applied in digital cameras, 

camcorders, and scanners for creating colour images. A three-chip colour digital 
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camera requires three monochrome sensors and associated R, G & B filters to 

obtain the colour image R, G, B component but the cost is high. Whilst a single 

CCD can obtain the colour image by covering a CCD surface with a red, green 

and blue mosaic filter and then implement the output signal through specific 

processing algorithms to synthesise an RGB value for each pixel. This design 

concept is called the Bayer pattern. A filter pattern is made of 50% green and 

red and blue account for 25% respectively.  

As for sensor, the image structure of raw output is Bayer RGB. The process 

that transforms the Bayer data to RGB is called De-mosaicing. The process 

keeps the values of the red plane and blue plane and take the average of 2 

green values from the 4x4 subset (Figure 2-7). 

 

Figure 2-7 A 4x4 Bayer subset 

 

2.5.2 Gray Scale 

A grayscale image, which means the images are simply presented by different 

gray shades, is generally extracted and used because each pixel just indicates 

the amount of light received at that pixel, i.e. a Gray Scale image just carries 

intensity information.  
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The conversion between RGB and Gray Scale is given as equation (2.1): 

 Y’ =  0.299R +  0.587G +  0.114B  (2.1) 

2.5.3 YUV(YCrCb) 

YUV, is also known as Y’CrCb, Y Pb/Cb Pr/Cr, Y’CBCR or YCBCR. YUV is a 

popular colour coding method adopted by the European television systems. It 

can be categorized as YUV (PAL) and Y'CbCr (YUV compression and offset 

version). Generally, YUV (PAL) is used for colour TV sets while the Y'CbCr is 

widely used in computer systems, therefore the YUV discussed in this thesis 

refers to Y'CbCr. 

In Y'CbCr the Y (Y’) stands for the brightness (Luminance or Luma). The U, Y 

(or Cr and Cb) indicate the chroma components including the red-difference 

and blue-difference. There is a difference between Y and Y’, as the former is 

luminance, which is the non-linear encoding of light based on the Gamma-

corrected RGB primaries. 

There is a mathematical coordinate conversion formula which associates the 

Y’CbCr colour spaces with that of RGB and vice versa. 

The conversion formula between YUV and RGB is showed as equation (2.2) 

(2.3) follows (RGB values range from 0 ~ 255): 

 Y’ =  0.299R +  0.587G +  0.114B  

U = − 0.147R −  0.289G +  0.436B  

 

(2.2) 
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V = 0.615R −  0.515G −  0.100B  

Thus, 

 R = Y + 1.14V  

G = Y − 0.39U − 0.58V 

B = Y + 2.03U 

 

(2.3) 

2.5.4 Chroma Subsampling 

Digital signals are usually compressed to reduce file size and save the 

bandwidth of transmission. As the human visual system is much more sensitive 

to variations in brightness than colour [43], a video system can be optimized 

by devoting more bandwidth to the luma component (usually denoted Y'), than 

to the colour difference components Cb and Cr.  

In compressed images, for example, the 4:2:2 Y'CbCr scheme requires 2/3rds 

the bandwidth of (4:4:4) RGB. This reduction results in almost no visual 

difference as perceived by the viewer. 

2.5.5 Interlaced video 

Interlaced video is a technique for doubling the perceived frame rate of a video 

display without consuming extra bandwidth. The interlaced signal contains two 

fields of a video frame captured sequentially. This enhances motion perception 

to the viewer and reduces flicker by taking advantage of the phi phenomenon. 
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The phi phenomenon is the optical illusion of perceiving a series of images, 

when viewed in rapid succession, as continuous motion. 

This effectively doubles the time resolution (also called temporal resolution) as 

compared to non-interlaced footage (for frame rates equal to field rates). 

Interlaced signals require a display that is natively capable of showing the 

individual fields in a sequential order. CRT displays and Alternate lighting of 

surfaces (ALiS) plasma displays are made for displaying interlaced signals. 

Interlaced scan refers to one of two common methods for "painting" a video 

image on an electronic display screen (the other being progressive scan) by 

scanning or displaying each line or row of pixels. This technique uses two fields 

to create a frame. One field contains all the odd-numbered lines in the image; 

the other contains all the even-numbered lines. 

2.6 Summary 

This chapter gives an introduction to FPGAs and its related technology as well 

as devices. The image processing system is developed from the field of machine 

vision as well as image processing. Then the FPGA technology was introduced, 

and it was explained how they could be used to form SOPCs.  

An FPGA is made of a matrix of CLBs with divergent functions and tasks. There 

are two types of processors for FPGAs, the hard processor and soft processor. 

Generally, each of the chip processors is supported by different formats of on-

chip-buses provided by their companies. Based on their unique structures, 

FPGAs show distinct performance increases compared with GPUs and CPUs due 

to its high parallelism at low clock rates and good computing ability with high 

energy efficiency. A FPGA application is usually designed with the HDL, which 

differs from other programming languages such as C++. To ease the 
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programming, transformation frameworks like HLS and OpenCL are applied 

which can take high level code and produce HDL code. The image format is 

another issue should be considered during the data processing, for example 

how to make the conversation between the original RGB, YUV, Gray Scale and 

Interlaced video.
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Chapter 3 Design tools and Hardware 

Environment 

3.1 Introduction 

This chapter presents the design tools and hardware that has been used in this 

work as the technical background was given in Chapter 2. Section 3.2 

introduces the toolkit of Quartus II, whose different components have different 

contributions in building the system architecture, including both the program 

and the system design part. The system hardware environment is then 

introduced in details and the specific devices used in this research listed.  

3.2 Design Tools 

There are several common system-design service providers in the field. Quartus 

II developed by Intel was selected as it not only supports various 

FPGA/FPGASoC devices, but also provides a series of EDA tools which ensure 

good linkage between each part designed in this work. Perhaps the main reason 

for choosing Altera devices rather than Xilinx is that Altera FPGA devices have 

been used for teaching and research for many years at the University of 

Liverpool., Quartus II provides several toolkits and IPs which are targeted at 

Intel FPGAs. 

3.2.1 Quartus II 

Quartus II is a development tool developed by Intel, formally Altera. It is used 

for analysis and synthesis of HDL designs, compiling the hardware design, 
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configuring the target device with the programmer and performing timing 

analysis. Quartus includes an implementation of VHDL and Verilog for hardware 

descriptions, visual editing of logic circuits, and vector waveform simulation 

[44]. All the processes shown in Figure 2-6 can be undertaken by Quartus II or 

with its associated tools. Figure 3-1 shows the GUI of the Quartus II software. 

The Quartus II software contains several tools: Platform Designer (previously 

SOPC/Qsys Builder), SoC Embedded Design Suite (SoCEDS), DSP Builder etc. 

 

Figure 3-1 Quartus II GUI (ver 17.0) 

3.2.2 Intel Platform Designer 

Intel Platform Designer is a system integration tool which is a part of the 

Quartus II design software. It saves time in the FPGA design process by 

automatically generating interconnect logic to connect IP (intellectual property) 

functions and subsystems. It allows the various functions of the IP modules 



Chapter 3                       Design tools and Hardware Environment

 

Shaonan Zhang   39 

available in the system library to be integrated into a system in much less time 

than being programmed directly by the designer [44], for example, components 

from the Video and Image Processing (VIP) Suite IP modules can be quickly 

instantiated and connected. 

 

Figure 3-2 Qsys GUI (ver 17.0) 

3.2.2.1  Altera VIP suite 

The Video and Image Processing (VIP) Suite produced by Intel is a design tool 

and IP libraries for developing Video applications [39]. The video system is 

assembled by the Platform Designer tool of Quartus with the support of IP 

modules. The VIP IP modules offer standard interfaces to support control input, 

data input/output and external memory access. These interfaces facilitate the 

development of video systems through implementing the functions in Platform 

designer. VIP modules used in this research include the Clocked Video Input / 
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Output, Frame Buffers, etc. To understand the operation of the VIP modules 

several features of VIP suite are explained in the following sections. 

 

a) Avalon-ST Video Packet 

Although the VIP suite uses the Avalon-ST buses for transferring video streams, 

it also provides information on the video stream before each video data packet. 

The packets of the Avalon-ST protocol are split into symbols. Each of the symbol 

represents a single data unit. For all packet types on an Avalon-ST interface, 

the number of symbols is sent in parallel and the bit width of all symbols is 

fixed [39]. The symbol bit width and number of symbols sent in parallel defines 

the structure of the packets. 

The VIP suite defines the following three types of packet (shown in Table 3-1): 

Video data packets containing only uncompressed video data; Control data 

packets containing the control data which configure the cores for incoming 

video data packets; Ancillary (non-video) data packets containing ancillary 

packets from the vertical blanking period of a video frame 

Another seven packet types are reserved for user applications, and five packet 

types are reserved for future use by Intel. 

The packet type is defined by a 4-bit packet type identifier. This type identifier 

is the first value of any packet. It is the symbol in the least significant bits of 

the interface. Functions do not use any symbols in parallel with the type 

identifier. 
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Table 3-1 Packet types of VIP Packet [29] 

Type Identifier  

0 Video data packet 

1-8 User packet types 

9-12 Reserved for future Altera use 

13 Ancillary data packet 

14 Reserved for future Altera use 

15 Control data packet 

Figure 3-3 is an example of transferring 12 packets with a 24-bit parallel video 

stream using the Avalon-ST interface. 

 

Figure 3-3 Example of a 24-bit Video stream with Avalon-ST format signal timing [39] 

The data is transferring only when the valid signal is high and in the period of 

the startofpacket and endofpacket. As the ready latency is “1” in this example, 

when the ready signal falls in cycle 3, it means that it will not be ready to 

receive data in cycles 4 and 5. With the return of the ready signal in cycle 5, it 

will be ready to receive data in cycle 6. 
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For the symbols of D0, D1… shown in Table 3-1, it could be colour plane data 

from an Avalon-ST Video image packet or data from a control packet or a user 

packet [39]. The type of packet is determined by the lowest 4 bits of the first 

symbol transmitted as mentioned above. 

b) Colour Pattern 

The organization of the colour plane samples within a video data packet is 

referred to as the colour pattern. 

This parameter also defines the bit width of the symbols for all packet types on 

an Avalon-ST interface. An Avalon-ST interface must be at least four bits wide 

to fully support the Avalon-ST Video protocol. 

A colour pattern is represented as a matrix which defines a repeating pattern 

of colour plane samples that make up a pixel (or multiple pixels). The height of 

the matrix indicates the number of colour plane samples transmitted in parallel, 

the width determines how many cycles of data are transmitted before the 

pattern repeats. 

Each colour plane sample in the colour pattern maps to an Avalon-ST symbol. 

The mapping is such that colour plane samples on the left of the colour pattern 

matrix are the symbols transmitted first. Colour plane samples on the top are 

assigned to the symbols occupying the most significant bits of the Avalon-ST 

data signal. 

A colour pattern can represent more than one pixel. This is the case when 

consecutive pixels contain samples from different colour planes. There must 

always be at least one common colour plane among all pixels in the same colour 

pattern. Colour patterns representing more than one pixel are identifiable by a 

repeated colour plane name. The number of times a colour plane name is 
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repeated is the number of pixels represented [39]. Figure 3-5 below shows two 

pixels of horizontally subsampled Y' CbCr (4:2:2) where Cb and Cr alternate 

between consecutive pixels. 

 

Figure 3-4 Symbol Transmission Order [39] 

 

Figure 3-5 Horizontally Subsampled Y'CbCr [39] 

c) IPs cores Used in the system 

As previously mentioned, the Intel VIP suite includes several IP cores for real 

time image processing. To simplify the design process, a few IP cores from the 

VIP suite has been used in the system design. This section gives an introduction 

to the IP cores that have been used in the system. 

Clocked Video Input/output II 

Both Clocked Video Input and Output IP cores are used on in the system. At 

the start of the data flow process, the Clocked Video Input II (CVI II) receives 

the data from outside the FPGA either from a video decoder or from interface 

electronics for a CCD or CMOS camera. The CVI II IP converts the raw clocked 

video data into the Avalon-ST Video format, followed by the data packets. For 
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the output, after image processing, the Clocked Video Output II (CVO II) IP 

core processes the Avalon-ST Video format so that it can generate a video 

output for driving a DAC or generating appropriate digital signals. Both cores 

are compatible with video image standards (BT.656 [45], BT1120 [46], DVI 

etc.). These standards were widely used in High-Definition Multimedia Interface 

(HDMI), Serial Digital Interface (SDI) and DisplayPort. 

The CVI II’s is capable of spanning multiple clock domains as it needs to convert 

between the input pixel frequency which is a function of the image acquisition 

system (camera) and the clock frequency of the FPGA. The horizontal and 

vertical blanking signals are identified and stripped by the CVI II to leave just 

the active picture data which is forwarded to the next IP block. 

The CVO II IP has corresponding capabilities to support various video formats 

at different operating frequencies. Furthermore, through applying the active 

picture packets and Avalon-ST Video control, it inserts horizontal and vertical 

blanking and generates the correct synchronization timing to convert the 

Avalon-ST video back to a clocked video output. 

Scaler II and Clipper II 

Both the Scaler II and the Clipper II IPs are relatively simple cores among the 

IP cores used in this research. The Scaler II IP core adjusts the resolution of 

the video streams, supporting the scaling algorithms of near-point, bilinear, 

bicubic and polyphase interpolation to either increase or decrease the image 

resolution. It can receive video data in either a 4:2:2 or 4:4:4 format and 

samples and utilizes the control packets to alter the input resolution. Moreover, 

both the output resolution and filter coefficients can be changed whilst the IP 

core is running by configuring the IP cores using a processor to access the IP 
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registers via the Avalon-MM slave interface. This allows the resolution to be 

changed, in real-time, under software control. In this project, the Scaler II IP 

is used to change the video input data into several different resolutions for 

testing the custom IP developed. 

The Clipper II IP core provides a mechanism to reduce the video area, and 

change its aspect ratio, by removing the edges of the active video area. The 

specific active area can be adjusted by giving the offsets from a point or every 

border. The Clipper II IP core reads the Avalon-ST Video control packets to deal 

with any changes of input resolutions. It is used for clipping the frame to a 

regular size in this design.  

Colour Space Converter II 

The Colour Space Converter II IP core makes a video transformation between 

different colour spaces. It enables programmers to specify colours via utilizing 

three coordinate values. The IP core can be configured at run time using the 

Avalon-MM slave interface [39]. 

There are four noticeable features on this IP core. Firstly, it allows conversion 

from one space to another to be efficient and flexible. Then, it provides a few 

pre-sets conversions between standard colour spaces, such as CbCrY’: SDTV to 

Computer B’G’R’ and UVY' to Computer B'G'R'. Consequently, the entry of 

custom coefficients is permitted to be translated between any two of three-

valued colour spaces video streams. Finally, it could support up to 4 pixels in 

every transmission. 

Deinterlacer II 
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The Deinterlacer II IP core, also called the 4K HDR passthrough, provides four 

kinds of deinterlacing algorithms, consisting of Vertical Interpolation ("Bob"), 

Field weaving ("Weave"), Motion Adaptive and Motion Adaptive High Quality 

(Sobel edge interpolation). It is used to convert the Interlaced format into a 

normal progressive format [39].  

Interlaced video is a standard popularly adopted in televisions standards like 

NTSC and PAL to give a perceived higher frame rate whilst reducing the 

transmission bandwidth. However, most modern LED and LCD displays adopt 

the progressive video format. Also, any subsequent spatial image processing 

for example edge detection, normally works on the full frame (both fields) 

rather than just a single field. Thus, the conversion is necessary for interlaced 

video input. This IP core also supports the pass-through of progressive video 

up to a resolution of 4K.  

Frame Buffer II 

The Frame Buffer II IP core buffers video frames consisting of interlaced or 

non-interlaced video fields into external Random-Access Memory. This is one 

of the most complex IP cores, it allows up to four pixels for each transmission 

and supports a configurable inter buffer offset to achieve the best interlacing 

of the memory’s banks for maximum efficiency [39]. Modes of write-only and 

read-only are also supported. 

The Frame Buffer II IP supports both double and triple buffering to implement 

various functions. Frame repeating or dropping are required in triple buffering 

when the input frame rate is not the same as the display frame rate. However, 

the frame rate for double buffering is the same between the input and output. 



Chapter 3                       Design tools and Hardware Environment

 

Shaonan Zhang   47 

The Frame Buffer II IP core includes two main blocks, the writer to save input 

pixels to memory and the reader to retrieve video frames from the same 

position and then generate the output. Their operation is illustrated in Figure 

3-6.  

In addition, the Frame Buffer II IP core can be configured to be a Frame Writer 

only or a Frame Reader only. This requires it to be controlled by the processor 

continuously. This function is used to drop redundant frames when the 

processor can’t process the frames in time in a FPGASoC co-processing system. 

It also repeats the previous frame when a new frame has not been delivered 

by the processing system. 

 

Figure 3-6 Frame Buffer Block Diagram [39] 

3.2.3 ModelSim  

The ModelSim-Intel FPGA Edition software is a version of the ModelSim 

software targeted for Intel FPGAs devices. The software supports Intel gate-
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level libraries and includes behavioral simulation, HDL test benches, and Tcl 

scripting. It is a multi-language HDL simulation environment by Mentor 

Graphics, for simulation of hardware description languages such as VHDL, 

Verilog and SystemC, and includes a built-in C debugger. Simulation is 

performed using the graphical user interface (GUI), or automatically using 

scripts.  

 

3.2.5 DSP builder 

DSP Builder is a digital signal processing (DSP) design tool that allows push-

button HDL generation of DSP algorithms directly from the MathWorks Simulink 

environment on Intel FPGAs. DSP Builder for Intel FPGAs tool generates high 

quality, synthesizable VHDL/ Verilog code from MATLAB functions and Simulink 

models. The generated RTL code can be used for Intel FPGA programming. 

DSP Builder for Intel FPGAs is widely used in radar designs, wireless and 

wireline communication designs, medical imaging, and motor control 

applications. This tool allows developers to design algorithms, set the desired 

data rate, clock frequency, and offers accurate bit and cycle simulation, 

synthesize fixed- and floating-point optimized HDL, auto-verify in ModelSim-

Intel FPGA software, and auto-verify/co-simulate on hardware. DSP Builder for 

Intel FPGAs adds additional library blocks alongside existing Simulink libraries 

with the DSP Builder for Intel FPGAs (Advanced Blockset) and DSP Builder for 

Intel FPGAs (Standard Blockset) [47]. 
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3.2.4 Intel SoC Embedded Design Suite (EDS) 

The SoC EDS is generally used to develop the embedded software on Intel 

FPGA SoC devices. It is a comprehensive tool suite which embodies run-time 

software, utility programs, development tools and application examples used 

for application software development and initialising the firmware. It has the 

function of both application software development and expedite firmware. 

Currently, the EDS includes DS-5, the ARM Development Studio, which allows 

sophisticated debugging of both the ARM cores and the FPGA logic [48]. The 

EDS tool also includes both C and C++ toolchains for ARM Linux development. 

Within the command shell of EDS (a version of Cygwin [49]), it is possible to 

cross compile C/C++ programs that run on the SoC processors. 

 

Figure 3-7 Altera EDS command Shell 
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3.2.5 Timing Analyzer 

The Timing Analyzer validates the timing performance of all logic in design 

using industry-standard constraint, analysis, and reporting methodology [50]. 

The Intel Quartus Prime software generates timing analysis data by default 

during design compilation [50]. The timing analysis process involves running 

the compiler, specifying timing constraints, and viewing timing analysis reports 

like Figure 3-8.  

 

Figure 3-8 Timing report of Timing Analyzer [50] 



Chapter 3                       Design tools and Hardware Environment

 

Shaonan Zhang   51 

3.3 Hardware Environment  

Although the FPGA is considered as the core part in this real-time system, other 

hardware devices are also important for implementation of image processing. 

This section gives a brief introduction about the hardware environment used in 

this project. As previous discussed, the whole system includes 3 sub-systems: 

the video acquisition system, video processing system and video display/control 

system. Specific to hardware devices, it generally involves three types of 

devices; the video input device; the development board (DE1-SOC); and the 

video display device. Sections of the video acquisition system and the video 

display system are integrated on the development board.  

3.3.1 Development board 

As mentioned previously, the DE1-SOC Development Board with an integrated 

Cyclone V SE FPGA was selected as the development environment for this 

project, mainly on the grounds of cost and availability. This FPGA chip consists 

of 110k programmable logic elements and a Dual-core ARM Cortex-A9 

processor.  

Therefore, there are two sets of systems combined on the board, the FPGA and 

the Hard Processor System (HPS). Each of these systems is connected to a 

different set of devices (as shown in Figure 3-9). The kernel part of both 

systems (the Cyclone V FPGA and ARM Cortex-A9 processor) are integrated 

into one single chip which share interconnection buses between the FPGA and 

the ARM processor. 
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Figure 3-9 Architecture of DE1-SOC device [51] 

The details of both systems are listed in Table 3-2. As listed in the table, the 

FPGA-part system is integrated with a 64MB SDRAM chip with a 16-bit bus 

width working at 120MHz. This can provide a memory bandwidth up to 120MHz 

x 16 bits=228MB/s theoretically which is not sufficient for buffering a 24-bit 

RGB video stream with 1920x1080@60fps which requires at least 1920 x 1080 

x 24bits x 60fps =355.8MB/s bandwidth. But it is sufficient for a 

1024x768@30fps video stream which required about 1024 x 768 x 24bits x 

30fps =67.7MB/s.  
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Table 3-2 Hardware of both FPGA and HPS system [51] 

FPGA HPS 

Altera Cyclone® V SE device 800MHz Dual-core ARM Cortex-A9 

MPCore processor 

Altera Serial Configuration device 1GB DDR3 SDRAM (32-bit data bus) 

USB Blaster II (on board) for programming; JTAG 

Mode 

1 Gigabit Ethernet PHY with RJ45 

connector 

64MB SDRAM (16-bit data bus) 2-port USB Host, Normal Type-A 

USB connector 

4 Push-buttons Micro SD card socket 

10 Slide switches Accelerometer (I2C interface + 

interrupt) 

10 Red user LEDs UART to USB, USB Mini-B connector 

Six 7-segment displays Warm reset button and cold reset 

button 

Four 50MHz clock sources from clock generator One user button and one user LED 

24-bit CD-quality audio CODEC with line-in, line-out, 

and microphone-in jacks 

LTC 2x7 expansion header 

VGA DAC (8-bit high-speed triple DACs) with VGA-

out connector 

 

TV Decoder (NTSC/PAL/SECAM) and TV-in 

connector 

 

PS/2 mouse/keyboard connector  

IR receiver and IR emitter  

Two 40-pin Expansion Header with diode protection  

A/D Converter, 4-pin SPI interface with FPGA  
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Figure 3-10 DE1-SOC FPGA board Top View [51] 

 

3.3.2 Video input devices 

In the video processing system, digital or analogue cameras are used as the 

video input device to acquire images and video into the system. Therefore, 

several cameras have been considered as video input devices which include an 

NTSC analogue camera, a TRDB-D5M Camera and Logitech C270 USB webcam. 

Each camera has different interface ports and work at different resolutions, 

which means each of them have their own advantages. 
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3.3.2.1  NTSC Analog camera 

As shown in Table 3-2, the DE1-SOC board provides a TV decoder chip which 

supports NTSC/PAL/SECAM format and a TV-in connector. Therefore, an NTSC 

camera (Figure 3-11) was initially considered as the video input device.  

 

Figure 3-11 An NTSC Camera 

However, with the NTSC format video as input, it is required to deinterlace the 

video stream to normal RGB video stream for image processing. The 

deinterlacer would use a significant amount of resources on FPGA and generate 

a large latency to the system. In the meantime, after deinterlacing the video 

steam have a resolution of 720x480 which is much lower than the D5M digital 

camera.  

 

3.3.2.2  Terasic TRDB-D5M Digital Camera 

As the development board has two 40-pin expansion headers, a TRDB-D5M 

Camera [52] daughter card (Figure 3-12) could be chosen. This digital camera 

offers various resolutions up to 2592x1944@15fps or 640x480@70fps both with 

an RGB Bayer pattern. Moreover, it provides external digital controls for the 

frame rate and frame size which provides more complexity [52]. It requires a 
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colour format transformation which transforms the video stream from the RGB 

Bayer pattern to RGB for further processing. 

 

Figure 3-12 TRDB-D5M Camera Daughter Card [52] 

 

3.3.2.3  Logitech C270 USB webcam 

Another potential video input device is a USB webcam as the board provides 

two USB 2.0 ports. The Logitech C270 webcam (Figure 3-13), one of the most 

common USB webcams on the market was picked as input device. Its 

specification is listed in the Table 3-3 below. 

Table 3-3 Specification of Logitech C270 webcam [50] 

Camera Specifications: 

USB Type High Speed USB 2.0 

Video Capture (4:3 SD) 320x240, 640x480, 800x600 

Frame Rate (max) 30fps @ 640x480 

UVC-compatible Yes 

Supported output format 24 bits sRGB/YUV 
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Figure 3-13 Logitech C270 webcam [53] 

However, the USB ports are not directly accessible from the FPGA as they are 

interfaced directly to the HPS system. Therefore, it can only work in the OS on 

the HPS with both the USB driver and camera driver correctly configured in the 

operating system of the ARM processor.  

3.3.3 Video display device  

The last part of the hardware environment is a video display device. 

A video display device is an output device to present the visual results from the 

system. There are several formats of interfaces on market which includes VGA, 

DisplayPort, HDMI etc. As the DE1-SOC board contains a VGA interface port, a 

VGA supported monitor has been picked up as the video display device. The 

selected monitor works at 1440x900@60Hz which is sufficient for this research. 

3.4 Summary 

This chapter presented the design tools and hardware environment been used 

in this research. At first, as a development toolkit, Quartus II launched by Intel 

was selected to build the system’s hardware architecture. Along with the HDL 
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design procedure mentioned in last chapter, the designer initially programmed 

the core IP using Intel Platform Designer, then linked it up with the established 

IP modules available in the system library via the Altera VIP suite, which could 

save the time in the process of design. After the original logic was established, 

Modelsim was used for behavioral simulation. The waveform files would be 

generated, and the signal waveform would be output to help verify the logic 

functions. Finally, the timing analysis would be carried on with the Timing 

Analyzer. Moreover, another tool from Quartus II, the EDS was used to develop 

the embedded software on the FPGA SoC devices. This part of design will be 

further discussed in Chapter 5. 

This chapter also introduced the hardware environment. A complete real-time 

processing system consisted of the video input devices, the development board 

and the video display device. Considering the cost, the availability, the DE1-

SOC Development Board with an integrated Cyclone V SE FPGA which contained 

a Dual-core ARM Cortex-A9 processor and 110K programmable logic elements 

was used. It is a combination of the FPGA and the Hard Processor System. 

Concerning the input devices, there were three selections, the NTSC analog 

camera, the TRDB-D5M Camera and the Logitech C270 USB webcam. Each of 

them has unique advantages. As for the output device, the monitor works at 

1440x900@60Hz which was sufficient. 
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Chapter 4 Real time image processing on FPGAs 

with the HDL Approach 

4.1 Introduction 

Based on the background discussed earlier, a real-time image processing 

system has been developed and evaluated on the DE1-SOC development board. 

In this chapter, detailed descriptions of the system developed are presented 

with an emphasis on an FPGA configured using the Hardware Description 

Language (HDL) approach.  

This chapter focuses on researching the relationship between hardware 

resource usage and latency with resolution and accuracy in implementing the 

hardware algorithms using the HDL approach. Canny Edge Detection is used as 

the demonstration for the hardware algorithm implementation. There are two 

methods implemented for the demonstration, one is focused on low-latency 

and low resource usage, whilst the other focuses on accuracy. The advantages 

of both methods are given in this chapter for guidance. 

In section 4.2, an overview of the Canny Edge Detection algorithm is presented. 

Section 4.3 shows the implementation of the system algorithm with both 

methods. Section 4.4 introduces the design of the system architecture. Section 

4.5 presents results and a discussion of the system. In the final section, a 

summary of this chapter is presented. 
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4.2 The Canny Edge Detection Algorithm 

As a popular algorithm used in the pre-processing stages of machine vision 

applications, an edge detection algorithm is a perfect solution for 

implementation on an FPGA platform as it mainly involves convolution methods 

which are a mathematical way of combining two functions to form a third 

function. There are several kinds of edge detection methods which could be 

chosen, including the Sobel detector, Gauss-Laplace detector, Canny detector, 

Kirsch detector, Robert detector and Prewitt detector. They present different 

performances based on the complexity of the edge computation and the ability 

of edge extraction algorithm when the image suffers from heavy noise 

contamination. However, most of them do not offer the noise reduction solution 

with the restriction of simple gradient computation. 

The Canny Edge Detector [54] is regarded as one of the most reliable 

algorithms because it shows good performance and can achieve a low error-

rate and improves the identified edges’ localization. A typical Canny algorithm 

is comprised of the following steps.  

 

4.2.1 Gaussian Filtering 

The first step is to filter out any noise in the original image before trying to 

locate and detect any edges. As Gaussian filtering can be implemented with a 

convolution method, it is appropriate to use it in the Canny algorithm. A 2-

dimensional Gaussian function is described in equation (4.1): 
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𝐺(𝑥, 𝑦) =

1

2𝜋𝜎2
ⅇ
−(

𝑥2+𝑦2

2𝜎2 )
 

(4.1) 

where x represents the distance from the origin in the horizontal axis, y is the 

distance from the origin in the vertical axis, and σ is the standard deviation. 

To implement the Gaussian function using a convolution method, it is necessary 

to calculate the convolution mask for the Gaussian function. A convolution 

(kernel) mask is usually much smaller than the actual image. As a result, the 

mask is slid over the image and applied at each location in the image. The 

larger the kernel size is, the lower the detector’s sensitivity to noise. The larger 

the value of σ, the result becomes more smoothing with less noise. However, 

with more smoothing of the image, the less edges will be detected by the 

detector. Figure 4-1 shows the result of a Gaussian filter with various of values 

of σ. 

 

Figure 4-1 Result on different 𝝈 values after Gaussian filtering 

It is common practice to uses a 5x5 kernel with σ=1.4 which is calculated as 

shown in Figure 4-2.  
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Figure 4-2 5x5 Gaussian Filter Kernel with 𝝈 = 1.4 

 

4.2.2 Sobel edge detector 

After reducing the noise and smoothing the image, the next step is to find the 

intensity gradient of the image by performing standard Sobel edge detection. 

The Sobel operator uses a pair of 3x3 convolution masks, one estimating the 

gradient in the vertical direction (x) and the other estimating the gradient in 

the horizontal (y) which are shown in equation (4.2). 

 
𝐺𝑥

′ = [
1 0 −1
2 0 −2
1 0 −1

] 𝐺𝑦
′ = [

1 2 1
0 0 0

−1 −2 −1
] 

(4.2) 

Then, it can calculate the approximate absolute gradient magnitude (edge 

strength) at each pixel as shown by equation (4.3):  
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|𝐺′| = √𝐺𝑥

′2 + 𝐺′𝑦
2
 

(4.3) 

Simultaneously, the gradient angle of each pixel can be calculated as shown in 

equation (4.4): 

 
𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝐺𝑦
′

𝐺𝑥
′
) 

(4.4) 

Figure 4-3 shows the Sobel result after Gaussian filtering of the original image. 

 

Figure 4-3 Example of Sobel Result 

 

3) Non-maximum suppression 

After the magnitude and gradient angles of each pixel are calculated, the result 

may contain thick edges which contains spurious results on the edges. The use 
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of non-maximum suppression for each pixel in the previous result image is to 

sharpen the edges. 

Finding the gradient direction for each pixel, for a 3x3 image result, has 4 range 

of directions which is decided by the gradient angle of each pixel: 

 If the gradient angle is 0-22.5 degrees or 157.5-180 degrees, the 

direction of the pixel is horizontal.  

 If the gradient angle is from 22.5 degrees to 67.5 degrees, the direction 

of the pixel is positive diagonal.  

 If the gradient angle is from 112.5 degrees to 157.5 degrees, the 

direction of the pixel is negative diagonal.  

 If the gradient angle is from 67.5 degrees to 112.5 degrees, the direction 

of the pixel is vertical.  

As shown in Figure 4-4, each dark area represents an edge pixel. 

 

Figure 4-4 Four possible directions of the edges 



Chapter 4      Real time image processing on FPGAs with the HDL Approach

 

Shaonan Zhang   65 

Once the orientation of each pixel has been calculated, the second step is to 

compare the magnitude value of each pixel with the two pixels next to it but in 

different directions. If the magnitude of the current pixel is the largest 

compared to the other 2 pixels this pixel will be preserved as a thin edge. 

Otherwise, the value will be suppressed. Figure 4-5 shows the pixels (marked 

in red) that need to be compared for each condition. 

 

Figure 4-5 Pixels need to be compared with 

 

4) Thresholding with Hysteresis 

After application of non-maximum suppression, the remaining edge pixels 

provide a more accurate representation of the real edges in an image. However, 

some edge pixels remain which are caused by noise or colour variations. To 

account for these spurious values, it is essential to filter out edge pixels with a 

low gradient value and preserve edge pixels with a high gradient value. This is 
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accomplished by selecting high and low threshold values. If an edge pixel’s 

gradient value is higher than the high threshold value, it is marked as a strong 

edge pixel. If an edge pixel's value is smaller than the low threshold value, it 

will be suppressed. Canny [36] recommends that the ratio of the high to low 

limit be in the range two or three to one, based on predicted signal-to-noise 

ratios. Pixels which are between the two thresholds are accepted if they are 

connected to a strong edge pixel. 

The full process of a Canny Edge Detection method is shown in Figure 4-6. 

 

Figure 4-6 Stages of a Canny Edge Detection process 

The desired result of the full Canny Edge detection processing is shown in 

Figure 4-7 

 

Figure 4-7 Example of Canny Result 
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4.3 Algorithms Implementation  

The proposed Canny edge detection implementation is targeting for a FPGA 

based real time vision system, where the whole algorithm is coded using the 

Verilog hardware description language firstly. Consequently, the edge 

detector’s performance must achieve a real-time response with low latency, 

while at the same time use the limited logic resources available so that the 

system can fit in the FPGA. Therefore, it is required to discuss the methods 

used to implement the algorithm. 

 

4.3.1 Grayscale Transformation 

As mentioned previously, to implement the Canny Edge Detector, firstly it needs 

to transform the original RGB image to a Grayscale image. A Grayscale image 

is an image where each pixel of the image contains only intensity information. 

For an RGB pixel the Grayscale value of the pixel is computed as equation (4.5): 

 Y’ =  0.299R +  0.587G +  0.114B (4.5) 

As previously mentioned above, both latency and resource usage are of concern 

in the real-time system, therefore it is required to simplifying the arithmetic 

used in the system. Especially for multiplications and divisions as they may take 

several clock cycles for each calculation. If multiple multiplications and divisions 

are implemented in one algorithm block, it will increase the complexity of 

synchronizing the data.  

https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Luminous_intensity


Chapter 4      Real time image processing on FPGAs with the HDL Approach

 

Shaonan Zhang   68 

Therefore, rather than using floating point arithmetic, multiply and divide can 

be implemented using shift operations. Shifting to the left is equal to multiply 

by 2, whilst shifting to right is equal to divide by 2. It is possible to simplify the 

original equation to an approximate result which is given in equation (4.6): 

 Y’ =  0.299R +  0.587G +  0.114B ≈  0.297R +  0.586G +  0.113B 

≈  
76 × R +  150 × G +  29 × B

256

=
((64 × R + 8 × R + 2 × R) + (128 × G + 16 × G + 4 × G + 2 × G) + (32 × B − 4 × B + B))

28

=
(26 × R + 23 × R + 2 × R) + (27 × G + 24 × G + 22 × G + 2 × G) + (25 × B − 22 × B + B)

28
 

(4.6) 

As all the calculations have been implemented using a shift approach, an 

approximate RGB to Grayscale transformation can be implemented without 

using any multiplications or divisions. Furthermore, if a more accurate result 

was required it could be achieved by increasing the magnitude of the divisor. 

For example, as shown in equation (4.7): 

 Y’ =  0.299R +  0.587G +  0.114B 

≈  
306 × R +  601 × G +  117 × B

1024
 

(4.7) 

However, as the computation becomes better in accuracy, the system becomes 

more complex which results in more resources required and a longer latency.  

 



Chapter 4      Real time image processing on FPGAs with the HDL Approach

 

Shaonan Zhang   69 

4.3.2 Gaussian Filtering 

After the Grayscale value has been calculated, the first step of the Canny Edge 

Detector can be implemented, the Gaussian filter. As mentioned previously, the 

Gaussian filter can be implemented using a convolution method. In order to 

implement a convolution algorithm, it is required to use a method called window 

filtering. 

For example, for a 3x3 kernel convolution algorithm, it has a kernel as equation 

(4.8). 

 
𝑋 = [

𝑋1 𝑋2 𝑋3

𝑋4 𝑋5 𝑋6

𝑋7 𝑋8 𝑋9

] 
(4.8) 

To implement it on each pixel of a video stream, 3-line buffers are required to 

buffer 3 lines at a time, and output 3 lines at same time as shown in Figure 

4-8. 

 

Figure 4-8 Data flowchart with 3 line-buffers 

Then each pixel with its surrounding 8 pixels could form a 3x3 original image 

kernel as shown in Figure 4-9. 
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Figure 4-9 the kernel of the original image 

Using this kernel, the result of each pixel is given by equation (4.9). 

 𝑃′ = 𝑋 ∗ 𝑃 = 𝑋1 × 𝑃1 + 𝑋2 × 𝑃2+𝑋3 × 𝑃3 + 𝑋4 × 𝑃4 + 𝑋5

× 𝑃5+𝑋6 × 𝑃6 + 𝑋7 × 𝑃7 + 𝑋7 × 𝑃7+𝑋7 × 𝑃7 

(4.9) 

Continuously, as each new pixel is received at the output, the system will 

implement the desired algorithm on each pixel.  

In this case, as discussed previously, a 5x5 Gaussian filter is applied. Therefore, 

it is required to buffer 5 lines of the video stream.  

Each pixel is calculated as shown in equation (4.10). 

 

𝑃′ =
1
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∗ 𝑃 

(4.10) 

To reduce the cost and latency of the system, an approximate result with fixed 

point mathematics could be implemented as equation (4.11)  
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∗ 𝑃 

(4.11) 

4.3.3 Sobel Edge Detector & Non-maximum Suppression 

As previously discussed, the third step of the algorithm is to calculate the 

gradient and direction of each pixel. With the methods discussed previously, 

the gradients in both the vertical and horizontal and horizontal directions can 

be calculated. However, to calculate the absolute gradient of each pixel, it is 

usually to use an approximate equation (4.12) to simplify the calculation: 

 
|𝐺′| = √𝐺𝑥

′2 + 𝐺𝑦
′ 2 ≈ |𝐺𝑥

′ | + |𝐺𝑦
′ | 

(4.12) 

Afterwards, as the directions of each pixel is in one of four given conditions, a 

rapid method has been used to reduce the latency and resources used by 

avoiding the arctan calculation and division. As the four conditions of magnitude 

angles are:  

 (0°, 22.5°] 𝑜𝑟 (157.5°, 180°]  

(22.5°, 67.5°] 

(67.5°, 112.5°] 

 

(4.13) 
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(112.5°, 157.5°] 

It can be simplified as four conditions for tan θ: 

 (−0.414,0.414]   

(0.414, 2.414] 

(−0.414,−2.414] 

(−∞,−2.414) 𝑜𝑟 (2.414,+∞) 

 

(4.14) 

As 𝑡𝑎𝑛𝜃 =
𝐺𝑦

′

𝐺𝑥
′  , it can be simplified with an approximate result to avoid 

division and decimals comparison as: 

 𝐺𝑦
′

𝐺𝑥
′
> 0.414 

𝐺𝑦
′

𝐺𝑥
′
> 0.414 ≈ 0.5 

2𝐺𝑦
′ > 𝐺𝑥

′  

 

(4.15) 

In summary, the four conditions are approximated as shown in Table 4-1: 
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Table 4-1 The approximate conditions of the four directions 

Angles Tangent Value Approximate Rapid 

Method Conditions 

(0°, 22.5°] 𝑜𝑟 (157.5°, 180°]  (−0.414,0.414]   0 < |2𝐺𝑦
′ | ≤ |𝐺𝑥

′ | 

(22.5°, 67.5°] (0.414, 2.414] |𝐺𝑥
′ | <  |2𝐺𝑦

′ |

≤ |5𝐺𝑥
′ | 𝑎𝑛𝑑 

𝐺𝑦
′

𝐺𝑥
′ > 0 

(67.5°, 112.5°] 

 

(−0.414,−2.414] |𝐺𝑥
′ | <  |2𝐺𝑦

′ |

≤ |5𝐺𝑥
′ | 𝑎𝑛𝑑 

𝐺𝑦
′

𝐺𝑥
′ < 0 

(112.5°, 157.5°] (−∞,−2.414) 𝑜𝑟 (2.414,+∞) |2𝐺𝑦
′ | > |5𝐺𝑥

′ | 

As both the absolute values can easily be achieved in Verilog and using this 

method can reduce the latency and the resources used in the FPGA. However, 

as this method uses an approximate result, some information is lost during 

processing. Table 4-2 shows the angle errors in the calculation.  

Table 4-2 Angle Error with approximate value for the rapid method 

Expected 

Angle 

Expected 

Value 

Rapid Approximate 

Value 

Rapid Approximate 

Angle 

Angle 

Lost 

22.5° tan22.5° 0.5 tan26.5° 4° 

67.5° tan67.5° 2.5 tan68.2° 0.7° 

112.5° tan112.5° -2.5 tan111.8° -0.7° 

157.5° tan157.5° -0.5 tan153.5° -4° 

However, this method could be easily improved by increasing the precision. 

Thus, the 4 conditions are approximated and given in Table 4-3. Meanwhile, 

with the improvement of accuracy, the angle error can be reduced as shown in  
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Table 4-4. 

Table 4-3 The approximate conditions for the 4 directions 

Angles Approximate Accurate Method Conditions 

(0°, 22.5°] 𝑜𝑟 (157.5°, 180°]  0 < |100𝐺𝑦
′ | ≤ |41𝐺𝑥

′ | 

(22.5°, 67.5°] 
|41𝐺𝑥

′ | <  |100𝐺𝑦
′ | ≤ |241𝐺𝑥

′ | 𝑎𝑛𝑑 
𝐺𝑦

′

𝐺𝑥
′ > 0 

(−0.414,−2.414] 
|41𝐺𝑥

′ | <  |100𝐺𝑦
′ | ≤ |241𝐺𝑥

′ | 𝑎𝑛𝑑 
𝐺𝑦

′

𝐺𝑥
′ < 0 

(−∞,−2.414) 𝑜𝑟 (2.414,+∞) |100𝐺𝑦
′ | > |241𝐺𝑥

′ | 

 

Table 4-4 Angle Error with the approximate value using the accurate method 

Expected 

Value 

Accurate Approximate 

Value 

Accurate Approximate Angle Angle Lost 

Tan 22.5° 0.414 Tan 22.490° 0.01° 

Tan 67.5° 2.414 Tan 67.498° 0.002° 

 

4.3.4 Thresholding with Hysteresis 

As previous discussed, two thresholds are required to threshold the result. To 

reduce the resources used and the latency, as with the rapid method, two fixed 

thresholds are used to filter the result. Then every thin edge pixel will be directly 

considered as an edge pixel.  
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With the accurate method, the threshold is determined by the largest value of 

the magnitude from the previous result. The high threshold is set as a 1/6 of 

the largest magnitude empirically. The ratio of the low threshold versus the 

high threshold is 1:2 as Canny suggested [45]. If any pixel is between the two 

thresholds, it will be checked to see if it is surrounded by any thin or thick edge 

pixels. If it is, it will be marked as an edge pixel. If it is not, it will be suppressed.  

Figure 4-10 and Figure 4-11 show the full algorithm architectures of the two 

methods. 

 

 

Figure 4-10 Rapid method with Canny Edge Detection 

 

Figure 4-11 Accurate Method with Canny Edge Detection 
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4.4 System Architecture 

When the algorithm has been implemented in the system, there are still a few 

IPs from the VIP suite required for the full system implementation. For these 

tests the D5M camera was used so the video input received the raw video 

streaming from the D5M camera, then the Bayer Resampler resampled the 

video format from the Bayer pattern to the RGB pattern. This produces a 24-

bits RGB pattern video stream suitable for the designed Canny Edge Detection 

IP.  

A frame buffer is then necessary for buffering the video to change the frame 

rate to that of the output device. Then Video Output IP is required to transform 

the video stream from Avalon Streaming to the VGA format signals. The frame 

buffer buffered the video stream into DDR3 memory which is on the HPS side 

of the FPGA rather than the FPGA side. As the HPS IP provides an fpga2sdram 

pipeline, the Frame Buffer IP could directly read and write to the DDR3 memory 

connected to the HPS.  

Simultaneously, the designed CED IP keeps the original data for further 

processing, it combines the 24-bits original RGB data and the processed 8-bits 

edge data to a 32-bits Y-RGB video steam. The RGB data will be delayed in 

order to synchronize the processed edge data from the CED IP.  

The architecture of the system with the D5M camera is shown in Figure 4-12. 

The red arrows in the figure shows the interconnections used to buffering the 

video stream. The video format conversion of the whole system is shown in 

Figure 4-13. Figure 4-14 shows the design in the Platform Designer system 

whilst Figure 4-15 shows the interconnections of designed CED IP with the 

accurate method. 



Chapter 4      Real time image processing on FPGAs with the HDL Approach

 

Shaonan Zhang   77 

 

Figure 4-12 Architecture of the System with TRDB-D5M 

 

 

Figure 4-13 The Video Format conversion in the system 
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Figure 4-14 The Qsys (Platform Designer) design of the system 

 

Figure 4-15 Interconnection of the accurate method of Canny Edge Detection IP  

If the NTSC camera is used as the input source, a deinterlacer will be required 

in the system as shown by the red block in Figure 4-16. The system also using 

a TV decoder in the design which is not integrated in the FPGA but provided on 

the DE1-SOC board. This TV Decoder chip (Analog Device ADV7180) [42]  

needs to be configured using the I2C controller in the FPGA and it is directly 



Chapter 4      Real time image processing on FPGAs with the HDL Approach

 

Shaonan Zhang   79 

connected between the video-in port and the FPGA. The TV decoder converts 

the video from an analogue signal to a digital signal, it will be received by the 

FPGA in an interlaced format. With a few format conversions, it will be 

transformed into a 24-bits RGB video steam at 640x480 resolution with 30fps 

for performing the Canny Edge Detection. However, as its resolution is quite 

low and the deinterlacer requires large areas and generates a significant delay 

in the system, the NTSC camera was replaced by the TRDB-D5M as this allowed 

more control over the image resolutions. 

 

Figure 4-16 Architecture of the System with an NTSC Camera 

4.5  Results & Discussion 

As previous mentioned, the system buffering the video is the DDR3 memory 

which connects to the HPS in the FPGA. The HPS is able to access the video 

which is buffered in the memory for analysis using the ARM processor. A frame 
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of the original RGB data with the resolution of 1024x768 is extracted from the 

video stream and shown in Figure 4-17. Figure 4-18 shows the baseline result 

achieved using MATLAB on a PC for comparison. This enables a comparison 

between the hardware CED methods and “ground truth”. The edge pixels that 

are counted using MATLAB is 24,352. 

Figure 4-19 shows the result of the accurate method obtained from the video 

stream. Compared with the MATLAB result, it has some edge loss (circled in 

red) from the ground truth result. Counted using MATLAB, the result contains 

19,526 edges information which has 19.9% information loss of the edge pixels. 

There are probably two reasons for this problem, the first is the system is a 

real-time system, some of the lost edge pixels’ magnitude are just around the 

low threshold. Therefore, it may not be appearing in this frame but will appear 

in the next frame. The second reason is that, despite this method being with 

high accuracy, it still has not has the same precision as the MATLAB program 

which is using double precision floating point numbers. The approximate 

calculation will be less accurate.  

 

Figure 4-17 An Original RGB Frame of the video stream 
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Figure 4-18 Desired CED Result achieved using MATLAB 

 

Figure 4-19 Result of the accurate method of CED 

Figure 4-20 shows the result from the rapid method. As can be observed, there 

is greater information loss in the result (shown in the red circles). It contains 

14,025 edges counted with MATLAB which is a 40.5% information loss of the 

edge pixels. However, most of the information lost is weak edges, it still able 

to recognize the objects. In general, it still performs the CED algorithm well.   
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Figure 4-20 Result of rapid method of CED 

With this situation, the rapid method is more useful if a system is running at 

very high resolution or a system requires ultra-low latency. The accurate 

method is more suitable for a system requiring more edge information. 

Table 4-5 shows a comparison of the system resources and latency with the 

two methods at different resolutions. The latency is measured by comparing 

the processed data with the original data. It shows that the rapid method’s 

speed is faster than the accurate method by about 1,000 cycles and with 30% 

less use of ALMs (Adaptive Logic Modules) and 17.3% less cost in memory bits 

at 1024x768 resolution. However, at this resolution, the rapid method suffers 

about 40% information loss compared with the more accurate method’s 20%. 

But with either method, the memory used on this FPGA is only about 6% or 

less. With a smaller resolution, the memory used and latency both have been 

reduced slightly. But the ALMs almost remain the same. Also compared with 

the resolution of 640x480, it can be concluded that the ALMs used in the system 

is proportional to accuracy. Meanwhile, the memory used in the system is 
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proportional to the resolution. The latency is proportional to both resolution 

and accuracy. 

With this situation, the rapid method is more useful if a system is running at 

very high resolution or a system requires ultra-low latency. The accurate 

method is more suitable for a system requiring more edge information. 

Table 4-5 Utilization summary with each method in different resolution 

Canny Edge Detection 

System Frequency: 100MHz 

Resolution 1024x768 800x600 640x480 

Pixels/ frame 786432 480000 307200 

Method Rapid Accurate Rapid Accurate Rapid Accurate 

ALMs  572.4 688 521.6 685 504.2 683.1 

Memory Used(kB)  25.1 

(5%) 

30.3 

(6%) 

19.6 

(4%) 

23.6 

(5%) 

14.4 

(3%) 

19.8 

(4%) 

M10K Used 35 38 22 29 17 25 

DSP 0 0 0 0 0 0 

Latency  

(clock cycles) 

4117   5145 3221 4025 2581 3225 
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4.6 Summary 

In summary, this chapter presented the resource usage and performance for 

different resolutions and accuracy of the Canny Edge Detection algorithm 

implementation on the FPGA using a Hardware Discerption Language.  

Two implementations of CED has been presented, one is focused on low-cost 

and low latency, and the other is on accuracy. For the rapid implementation, it 

has 30% less ALMs usage and 20% less in latency than the accurate 

implementation. However, it suffers 40.5% information compared with the 

accurate version’s 19.9%. With this situation, it can be concluded that the ALMs 

used in the system is proportional to accuracy. Meanwhile, the memory used 

in the system is proportional to the resolution. The latency is proportional to 

both resolution and accuracy. With this situation, the rapid method is more 

useful if a system is running at very high resolution or a system requires ultra-

low latency. Finally, the accurate method is more suitable for a system which 

requires more edge information. 
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Chapter 5 Real time image processing on FPGAs 

with the HLS Approach 

5.1 Introduction 

In the last chapter, a real-time image processing system was developed and 

evaluated on the DE1-SOC development board. A Canny Edge Detection 

algorithm was implemented in the system that was developed using the HDL 

approach. In general, an image processing IP like CED usually take several 

months to develop. But as Intel introduce the High-Level Synthesis tool which 

could be used for FPGA programming with the C/C++ Language, this whole 

development process could be shorten into several weeks. 

This Chapter presents the implementation and results of the CED algorithm and 

Harris Corner Detection to compare with the HDL approach. It shows the 

effectiveness and existing issues of using the HLS approach. 

Section 5.2 gives an overview of the HLS Complier. Section 5.3 gives the 

introduction to the Harris Corner Detection algorithm. Section 5.4 describes the 

implementation of both algorithms. Section 5.5 presents the results comparison 

between the HDL approach and HLS approach. In the last section, a summary 

of this chapter is presented. 

5.2 HLS Complier 

The Intel HLS Compiler is a high-level synthesis (HLS) tool that takes in untimed 

C++ as input and generates production-quality RTL that is optimized for Intel 

FPGAs [55]. With this feature, this tool could accelerate the design and 

verification time over RTL for FPGA hardware design. According to Intel, 
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applications developed in C++ are typically faster than HDL and requires 80% 

fewer lines of code. The Intel HLS Compiler generates reusable, high-quality 

code that meets performance requirements and is within 10%-15% of the area 

of hand-coded RTL [55]. 

As mentioned previously, the most common way to build complex system 

designs in Intel Platform Designer is to use IP cores. The HLS Compiler provides 

the ability to create IP cores directly from HLS projects. Once the core has been 

synthesized, the HLS Compiler will generate an IP core packet which could be 

imported by Platform Designer directly. Figure 5-1 shows the whole design 

process of HLS design.  

 

Figure 5-1 HLS design process 

This requires the HLS code to include directives that indicate what type of bus 

interfaces should be present and which variables should be made available on 

them.  

5.3 Harris Corner Detection 

Apart from the Canny Edge Detector introduced in the last chapter, another 

algorithm called the Harris Corner Detector is used to evaluate the capability of 

the HLS approach. 

The Harris Corner Detector was proposed by C. Harris and M. J. Stephens is an 

algorithm targeted at feature extraction  [56]. Inspired by the autocorrelation 

C/C++ code HLS Compiler IP Core
Qsys/Platform 

Designer

Simulation/

Synthesis
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function in signal processing, this algorithm established the autocorrelation 

matrix of the pixel in the image whose eigenvalue could be denoted as the first-

order curvature of the autocorrelation function. A point which has high 

curvature values in both the X and Y directions would be considered as a corner. 

The principle of the Harris detector is derived from people’s perceptual 

judgment of the diagonal point; that is, the image has a significant change on 

the grayscale in all directions.  

Through calculating the changing value of grayscale in the moving window, the 

difference among the flat region, edge and corner could be identified. As shown 

on Figure 5-2, when the window moves in a flat region, the grayscale value 

would not have obvious change; when it moves at the edge, the value does 

not change much along the edge direction but change a lot along the direction 

perpendicular to the edge; when the window moves in the corner, the grayscale 

value changes a lot in any direction. The corner is what is needed to be 

identified. 

 

Figure 5-2 The basic principle of the Harris Corner Detection 

The corner could be defined as a junction of two edges where the brightness 

changes [57]. It is a significant concept in computer vision as it could reflect 
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the most important information within an image even though it only takes a 

small percentage, given its features of invariant through translation, rotation or 

illumination. Therefore, it is commonly used in computer vision to compress the 

amount of data for post processing. 

Based upon the classic Moravec's corner detector, the Harris Corner Detector 

made an improvement in distinguishing edges and corners more accurately 

[58]. On the one hand, it replaces the binary window function with a Gaussian 

function, which gives pixels closer to the centre point a greater weight to reduce 

the effects of noise. On the other hand, the Harris detector approximated any 

direction of the pixel’s movement through Taylor expansion, rather than only 

considering every 45 degrees in the Moravec detector.  

To calculate the changing values in the grayscale, let’s assume a grayscale 2-

dimensional image given by 𝐼  and a local window (𝑥, 𝑦)  shifted(∆𝑥, ∆𝑦) . 

Therefore, an autocorrelation function denoted by 𝑓 could be given as (5.1):  

 𝑓(𝑥, 𝑦)  =   ∑ (𝐼(𝑥𝑘, 𝑦𝑘) − 𝐼(𝑥𝑘 + ∆𝑥, 𝑦𝑘 + ∆𝑦))
2

(𝑥𝑘, 𝑦𝑘)∈𝑊

 (5.1) 

Where 𝑓(𝑥, 𝑦) presents the sum of the squares of the difference between the 

original window and moves towards the(∆𝑥, ∆𝑦) direction. The larger value of 

𝑓(𝑥, 𝑦) means the larger possibilities that the window (𝑥, 𝑦) locates at the 

corner or the edge. Next, the 𝐼(𝑥𝑘 + ∆𝑥, 𝑦𝑘 + ∆𝑦) could be approximated by a 

Taylor expansion (5.2): 

 𝐼(𝑥𝑘 + ∆𝑥, 𝑦𝑘 + ∆𝑦) ≈ 𝐼(𝑥, 𝑦) + 𝐼𝑥(𝑥, 𝑦)∆𝑥 + 𝐼𝑦(𝑥, 𝑦)∆𝑦 (5.2) 

To simplify it (5.3),  
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 𝑓(𝑥, 𝑦)  = ∑ (𝐼𝑥(𝑥, 𝑦)∆𝑥 + 𝐼𝑦(𝑥, 𝑦)∆𝑦)
2

(𝑥,𝑦)∈𝑊

 (5.3) 

Then it could be written in matrix form(5.4) 

 𝑓(𝑥, 𝑦) ≈ (∆𝑥 ∆𝑦)𝑀 (
∆𝑥
∆𝑦

)  (5.4) 

Where 𝑀 represents the structure tensor as given in (5.5): 

 𝑀 = ∑ [
𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]

(𝑥,𝑦)∈𝑊

=

[
 
 
 ∑ 𝐼𝑥

2

(𝑥,𝑦)∈𝑊
∑ 𝐼𝑥𝐼𝑦

(𝑥,𝑦)∈𝑊

∑ 𝐼𝑥𝐼𝑦
(𝑥,𝑦)∈𝑊

∑ 𝐼𝑦
2

(𝑥,𝑦)∈𝑊 ]
 
 
 
  

(5.5) 

Decomposing 𝑀 into a combination of eigenvalues and eigenvectors (5.6): 

 𝑀 = 𝐴𝐵𝐴 (5.6) 

Where 𝐴 is composed of feature vectors; 𝐵 is a 2*2 diagonal matrix whose 

diagonal is the characteristic value 𝜆1 𝜆2. It is known that the displacement 

vector is multiplied by 𝐴 to get a direction vector, when this direction vector is 

multiplied by 𝐵, the following results could occur:  

It would be identified as flat region when 𝜆1 𝜆2 are both very small; 

It would be identified as edge when 𝜆1 ≫ 𝜆2 or 𝜆1 ≪ 𝜆2; 

It would be identified as corner when 𝜆1 𝜆2 are similar and are both very large;  

Then a response function could be given to determine the corner (5.7): 
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𝜆𝑚𝑖𝑛 ≈

𝜆1 𝜆2

(𝜆1 + 𝜆2)
=

𝑑𝑒𝑡(𝑀)

𝑡𝑟𝑎𝑐𝑒(𝑀)
 

(5.7) 

This formula shows that if the small eigenvalues 𝜆1 𝜆2 are large, then both the 

two eigenvalues 𝜆1 𝜆2 are large, so the window could be identified as a corner. 

Therefore, Harris used a bit of heuristic thinking to define R as (5.8): 

 𝑅 = 𝑑𝑒𝑡(𝑀) − 𝑘(𝑡𝑟𝑎𝑐𝑒(𝑀))
2
= 𝜆1 𝜆2 − 𝑘(𝜆1 + 𝜆2)

2 (5.8) 

Where K is an empirically constants and usually valued between 0.04 and 0.06. 

Then, the corner could be identified through judging the value of R. 

Figure 5-3 and Figure 5-4 below shows the result of a chessboard image after 

filtering with the Harris Corner Detector. 

 

Figure 5-3 Black and White Chessboard image 
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Figure 5-4 Chessboard image Filtered with the Harris Corner Detector 

In summary, the full process of a Harris Corner Detection method is shown in 

Figure 5-5. 

 

Figure 5-5 Stages of a Harris Corner Detection process 
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5.4 Algorithm Implementation  

The aim of this section is to develop a real time image processing IP on an 

FPGA using the HLS approach. The Canny Edge Detector and Harris Corner 

Detector are implemented by the HLS Compiler coded in C++, however there 

are still a few differences from a general C++ program.  

Usually, a normal C++ programme will handle the existing data or values 

passed by pointers. However, a real-time image processing IP core usually runs 

continuously. As shown in Chapter 4, a CED algorithm is required to store 

several lines for convolutional processing. Using the HLS Compiler, it is required 

to use the “for” loop to store the incoming data. Simultaneously, to get several 

data for each kernel computation, it is necessary to use the #pragma unroll 

method to “unroll” the loop. Figure 5-6 shows an ‘N’ depth shift register coded 

with the HLS Compiler. 

1. #pragma unroll   

2. for (int i = N - 1; i > 0; --i) {   

3.         buffer[i]=buffer[i-1];   

4.  }   

5. buffer[0] = data_in;    

Figure 5-6 Example code of a shift register with HLS Compiler 

Meanwhile, as a FPGA design, it is required to handle signals which is not very 

common in C/C++ programming. At the moment, the HLS Compiler only 

provides support for both Avalon-ST and Avalon MM Master interfaces. In this 

project, it is required to handle packets including the Avalon-ST interface. Thus, 

the application is required to be defined as shown in Figure 5-7 where unsigned 

char means the width of the interface is 8 bits.  
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1. void exmaple(ihc::stream_in<unsigned char,  ihc::usesPackets<true> >&  data_

in, ihc::stream_out<unsigned char, ihc::usesPackets<true> >& data_out )    

Figure 5-7 Example code of application definition with the Avalon-ST interface 

In the meantime, as the packet signals include startofpacket and endofpacket. 

The startofpacket and endofpacket signals can be processed as shown in Figure 

5-8: 

1. while (!end_of_packet) {   

2.   // read in data   

3.   data = data_in.read(start_of_packet, end_of_packet);   

4.    

5.   //...   

6.   // write out data   

7.   data_out.write(data, start_of_packet, end_of_packet);   

8. }  

Figure 5-8 Example code of handling packets signals with HSL Compiler 

With the preceding information, the Canny Edge Detector algorithm is 

implemented with the same accuracy as the HDL accuracy method in the last 

chapter which is shown as Figure 5-9.  

 

Figure 5-9 Canny Edge Detection algorithm implementation with HLS approach 
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Then the Harris Corner Detector algorithm is implemented as shown in Figure 

5-10. 

 

Figure 5-10 Harris Corner Detection algorithm implementation using the HLS approach 

 

5.5 Results and Discussion 

5.5.1 Canny Edge Detector 

The original design with the HDL approach was developed with two stages. The 

first stage includes writing the high-level MATLAB model, evaluates the balance 

of the resource usage, algorithm accuracy and system latency and writes 

Verilog code. The first stage takes about 6 months for the Canny Edge Detector 

algorithm as it takes significant effort to get familiar with the HDL approach for 

algorithm implementation. 

The second stage takes about 2 months for testing the implementation and 

evaluating the results. Therefore, it takes 8 months in total to implement the 

Canny Edge Detector algorithm using the HDL approach. 
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For the HLS approach, it takes about 4 weeks to convert the original high-level 

model into HLS Complier friendly code as the first stage. However, the high-

level MATLAB model takes about 2 weeks to write. Therefore, the total time for 

the implementation of Canny Edge Detector algorithms takes about 1.5 months. 

And for the second stage, the testing takes longer than expected. Although the 

HLS Complier offers the reports for analysing the design, it still did not detail 

enough to show the resource usage and latency for a complex algorithm. As 

the HLS Complier generates the code into a design that contains both the 

Verilog and VHDL languages, it is not possible to test with the ModelSim tool 

for behavioural testing. Meanwhile, by becoming familiar with HLS Complier, it 

is able to reduce the latency and resources usage of the design by avoiding 

floating point calculations and most of the divisions. In total, the second stage 

takes almost 2.5 months using the HLS approach.  

Table 5-1 shows a comparison of the resources used and latency between the 

two approaches at different resolutions. It shows that the HLS approach is 

slower than the HDL approach with about twice the latency and requiring 84% 

more memory bits at 1024x768 resolution. For the ALMs, it required about 5 

times more than the HDL method.  

Like the HDL approach, the system buffers the video in the DDR3 memory 

which is on the HPS side. It can then access the video, which is buffered in the 

memory for result analysis, using the ARM processor. A frame of original RGB 

data is extracted from the video stream is shown in Figure 5-11. Figure 5-12 

shows the result achieved using the HLS approach from the video stream. 

Figure 5-13 shows the result of the HDL approach from the last chapter for 

comparison. However, there are no significant differences between the two 

results. 
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Table 5-1 Comparison between the HLS and the HDL approach with Canny Edge Detector 

Canny Edge Detection 

System Frequency: 100MHz 

Resolution 1024x768 800x600 

Method HDL HLS HDL HLS 

ALMs  688 2659.9 685 2651.3 

Memory Used(KB) 30.3 

(6%) 

51.3 

(10%) 

23.6 

(5%) 

42.3 

(9%) 

M10K Used 38 59 27 48 

DSP 0 0 0 0 

Latency  

(clock cycles) 

5145   9406 4025 7023 

 

 

Figure 5-11 Original RGB data 
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Figure 5-12 Canny Edge detector with HLS approach 

 

Figure 5-13 Canny Edge Detector with HDL approach 
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5.5.2 Harris Corner Detector 

The first stage of Harris Corner Detector algorithm implementation with HDL 

approach takes about 1 month in designing a high-level MATLAB model. Then 

it takes another month to write the Verilog code. It takes 2 months in total for 

the first stage which is much faster than the Canny Edge Detector 

implementation, as the experience has been achieved during the previous 

development. 

The second half takes 2 months again for testing the implementation and 

evaluating the result. Therefore, it takes 4 months in total to implement the 

Harris Corner Detector algorithm using the HDL approach. 

For the HLS approach, it takes about 3 weeks to convert the original high-level 

model into HLS Complier friendly code as the first stage. As the high-level 

MATLAB model takes about 1 month to write, the total time for the 

implementation of Harris Corner Detector algorithms is about 1.5 months. For 

the second stage, the testing takes 2 months for the Harris Corner Detector.  

Table 5-2 shows a comparison of the resources used and latency between the 

two approaches at different resolutions. It shows that the HLS approach is 

much slower than the HDL approach with almost triple the latency and requiring 

186% more memory bits at 1024x768 resolution. For the ALMs, it required 

about 2.5 times more than the HDL method.  

It should be mentioned that although the HLS approach has much larger 

resource requirements and latency than the HDL method, its major benefit is 

the significantly reduced design time. Even for a relative novice HLS designer, 

this IP module could be finished in a few weeks rather than the HDL approach 

which may take several months. Moreover, with more familiarity with the HLS 
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Compiler and FPGA design, the design time and system cost could be further 

reduced.  

Table 5-2 Comparison between the HLS and the HDL approach with Harris Corner Detector 

Harris Corner Detection 

System Frequency: 100MHz 

Resolution 1024x768 800x600 

Method HDL HLS HDL HLS 

ALMs  2796.8 6914.5 2868.3 6910.3 

Memory Used (KB) 67.1 

(12%) 

192.3 

(34%) 

52.4 

(5%) 

180.2 

(30%) 

M10K Used 66 167 65 159 

DSP 12 15 12 15 

Latency  

(clock cycles) 

4123   12067 3227 8542 

As a recently publicised tool for Intel FPGAs, the HLS tool still does not provide 

enough support on programming. This includes less support on existing 

libraries, limited documentation on the HLS Compiler, less design examples and 

a few bugs. Hopefully this will be solved with future releases of the HLS system 

with further optimization of HLS Compiler. In summary the HLS approach is 

close to replacing the traditional HDL programming approach. 
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5.6 Summary 

This chapter makes a detailed comparison of performance of two approaches 

on system design, which are the HDL and the HLS, through presenting the 

implementation of Canny Edge Detection algorithm and Harris Corner Detection 

algorithm. Being different from the former algorithms, Harris Corner Detection 

is used for point feature extraction. It largely shrinks the amount of post 

processing data as it only focuses on the corners in the image, which could 

contain significant information. Then, two approaches are implemented on two 

algorithms respectively to test the performance of both the HDL and HSL 

approaches. 

Consequently, the HSL approaches generally shows a much shorter 

development period than HDL, with 8 months for HDL and 2.5 months for HSL, 

in total, needed to implement the Canny Edge Detector, and 4 months for HDL 

and 2 months for HSL, in total, needed to implement the Harris Corner Detector. 

However, the HSL approach also has higher requirement on a device’s memory 

and shows higher latency than the HDL. According to the results, the HSL has 

twice the latency to the HDL, followed by 84% more memory bits required and 

5 times more ALMs than the latter when implementing the Canny Edge Detector. 

As far as the Harris Corner Detector is concerned, the HSL even has triple the 

latency to the HDL, followed by 186% more memory bits required and 1.5 times 

more the ALMs than the HDL. Thus, HSL and HDL shows different advantages 

in FPGA programming. As the HDL approach is suitable for a system requiring 

more accuracy or less latency and the HLS approach is suitable for a system 

requiring less development time. 
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Chapter 6 A Co-processing FPGASoC system 

6.1 Introduction  

In the previous two chapters, the HDL approach and the HLS approach have 

been researched by implementing a Canny Edge Detector and a Harris Corner 

Detector as pre-processing algorithms. In this Chapter, the FPGASoC system 

which contains both the FPGA and HPS system are used to explore the potential 

for pre and post co-processing. A customized OpenCV programme is used as 

the post processing algorithm in the system and accelerated by the FPGA using 

the pre-processing algorithms. Meanwhile, with the objective of implementing 

post processing algorithms, it is necessary to build the software environment 

for OpenCV on the FPGASoC system.  

In this chapter Section 6.2 presents an overview of the FPGASoC designs. 

Section 6.3 provides an introduction to OpenCV [59]. Section 6.4 describes the 

architecture of the system. Section 6.5 presents the results of the system and 

discusses them. In the last section, a summary of this chapter is presented. 

 

6.2 The FPGASoC System Design 

Compared with just FPGA designs, FPGASoC designs also include the HPS 

system. The HPS, which uses an ARM processor, can implement software 

programs in the system to perform actions including controlling the behaviour 

of the IP cores on the FPGA side, data processing or accessing devices on the 

HPS. The HPS can operate in two modes: bare-metal or OS mode. The bare-

metal mode can run with the ARM DS-5 tool which provides the ability for 
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debugging of the code. However, if the application involves device API or other 

3rd part libraries, it is required to run on a configured operation system for 

example embedded Linux. The embedded Linux system integration includes 

several parts; Preloader, Device Tree, U-Boot, kernel and a Root Filesystem, 

and also any hardware FPGA design and custom software applications, which 

make up an FPGASoC design as shown in Figure 6-1. The Preloader and Device 

Tree are built using Quartus II and the U-Boot, Kernel and Root Filesystem 

Linux kernel are built using the Yocto Project [60]. Then an IDE for example 

ARM DS-5 is used to load and debug the custom applications. The configured 

system can be configured on an SD card. 

 

Figure 6-1 a high-level view of the development flow [61] 

When booting from an SD card, there are several stages to initialise the system 

as shown in Figure 6-2. Table 6-1 presents a short description of the different 

boot stages: 
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Table 6-1 Descriptions of the different boot stages [61] 

Stage Description 

BootROM Performs minimal configuration and loads the Preloader into 64KB on 

chip RAM 

Preloader Configures clocking, IOCSR, pinmuxing, SDRAM and loads U-boot into 

SDRAM 

U-boot Configures FPGA, loads the Linux kernel 

Linux Runs the end application 

 

Figure 6-2 the system boot flow 

The Preloader configures the HPS component based on the information from 

the handoff folder generated by Quartus, it initializes the SDRAM and then loads 

the next stage of the boot process into the SDRAM and passes control to it. 

Figure 6-3 shows the flow for generating a preloader image. 

 

Figure 6-3 Generation of the preloader [55] 

A Device Tree is a data structure that describes the underlying hardware to the 

operating system – primarily Linux. By passing this data structure to the OS 

kernel, a single OS binary may be able to support many variations of hardware. 

This flexibility is particularly important when the hardware includes an FPGA. 

BootROM Preloader U-boot Linux
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The Device Tree Generator tool is part of Intel SoC EDS and is used to create 

device trees for SoC systems that contain FPGA designs created using System 

Builder. The generated Device Tree describes the HPS peripherals, selected 

FPGA Soft IP and peripherals that are board-dependent. Figure 6-4 shows the 

processes for device tree generation. 

 

Figure 6-4 The Device Tree generation flow [61] 

The final part is the Linux kernel execution. When the Linux kernel boots up, it 

starts off by performing low-level architecture specific initialization sequences 

(setting up the processors registers, memory management unit, interrupt 

controller, etc.). It also loads up a serial driver to output debug messages to 

show the information in the boot flow via a serial terminal. 

After that, it starts initializing all the kernel subsystems and drivers that were 

compiled into the kernel. Lastly, it attempts to mount the Root Filesystem which 

contains the shell custom programs. 

It is not necessary to rebuild U-Boot, the Linux kernel and the Root Filesystem 

for all changes to the FPGA section, it is only necessary when a driver needs to 

be updated or inserted or when an update is required to the Linux Kernel.  
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Once all the stages have been completed, it is necessary to programme or 

“flash” the image onto an SD card. Figure 6-5 shows the layout of the SD card 

required for correctly booting the system: 

 

Figure 6-5 SD card layout [61] 

Table 6-2 summarizes the information that is stored on the SD card and its 

location: 

Table 6-2 information stored on the SD card [61] 

Location File Description 

Partition 3 n/a  Preloader image 

Partition 3 n/a  U-boot image 

Partition 1 soc_system.rbf FPGA configuration file 

Partition 1 socfpga.dtb Device Tree Blob file 

Partition 1 u-boot.scr U-boot script for configuring FPGA 

Partition 2 various Linux root filesystem 

Partition 1 zImage Compressed Linux kernel image file 

When the SD card is built/updated and installed on the board, as the processor 

powers up, the HPS would load Linux into SDRAM automatically. With a PC 
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running serial console terminal software (like Putty), it is possible to control the 

boot process using the host computers USB port, via a virtual serial port to the 

board. Figure 6-6 shows the data from the virtual serial port on a host PC, in 

this case a Windows PC. If the user application has been loaded on the SD card, 

it could be loaded and executed using the serial terminal, alternatively it could 

be added to the boot script.  

 

Figure 6-6 Software Screenshot of embedded Linux command line 

6.3 Compile the Linux kernel 

As previous explained, if a new driver needs to be installed or updated, it is 

necessary to rebuild the Linux kernel. There are several steps in building the 

Linux kernel as shown in the Figure 6-7. 
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Figure 6-7 Steps for building the Linux kernel 

Before starting to build the Linux kernel, some preparation work is needed. It 

is best to use a Linux based computer for the kernel compilation, in this 

research a Ubuntu 14.04 OS was used as the host machine, there are a few 

libraries and packages that need to be installed which include: sed, wget, cvs, 

subversion, git-core, coreutils, unzip, texi2html, texinfo, libsdl1.2-dev, docbook-

utils, gawk, python-pysqlite2, diffstat, help2man, make gcc, build-essential, 

g++, desktop-file-utils, chrpath, libgl1-mesa-dev, libglu1-mesa-dev, mercurial, 

autoconf, automake, groff, libtool and xterm [61].  

Then, with the necessary programmes and libraries installed, the toolchain for 

the target device, in this case a Cyclone V FPGA-SoC, needs to be selected. The 

toolchain is a set of programming tools that are used to perform the software 

development task or to create a software product, which is usually another 

computer program or a set of related programs. Typically, a development 

toolchain includes a compiler and linker (which transform the source code into 

an executable program), libraries (which provide interfaces to the operating 

system), and a debugger (which is used to test and debug the programs 

created). In this research, the toolchain that are provided with the Intel EDS 

tool were used for building the kernel. 

The next step is downloading the source file of Linux kernel. The Linux kernel 

source is provided by Linux Kernel Organization. Companies like Intel adds 

some libraries into the source file to make it suitable for their own devices like 

the Cyclone V SoC.  

Select Toolchain 
for taget device

Download Linux 
kernel source 

file

Add 3rd party 
layer 

Confirguration
Compile the 

image
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The last step, before building the kernel image, is to configure the kernel. The 

kernel source file usually provides a graphic menu as shown in Figure 6-8. With 

this menu, it is straight forward to select the drivers needed in the system. For 

example, if a webcam like a C270 is going to be used in the system, then several 

drivers need to be added in the kernel image including: Media USB Adapters 

driver, USB Video Class driver and UVC input events device support. 

When the build is finished, the SD card is updated with the new kernel image. 

Also, U-Boot and the device tree may need to be updated for the installed driver.  

 

Figure 6-8 Configuration menu of Linux Kernel 

 

6.4 OpenCV 

With the embedded Linux running on HPS system, it is productive if the high-

level image processing application can make use of existing image processing 
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libraries. OpenCV, whilst originally target for Intel CPUs, is one of the most 

widely used image processing libraries and was used in this research. 

OpenCV is a cross-platform programming function library. It implements a 

number of computer vision algorithms, ranging from the basic filtering to 

advanced object detection. Based on the BSD license and programmed through 

C++ and C, OpenCV plays a major role of standardising the APIs for real-time 

computer vision as it provides interface bindings for languages like Python, 

Ruby, MATLAB and Java and can be used on various operation systems 

including Linux, Windows, Android and Mac OS. 

Because of the abundant algorithms and functions which can be found in 

OpenCV and as it is open-source, OpenCV is widely used to make machine 

portable algorithms. It also accelerates the speed of system development.  

OpenCV was initially established by Intel and is now maintained by Itseez [59]. 

It usually has a significant update each year and the latest version published 

on the 23rd December 2017 is OpenCV 3.4. Its application areas are very wide, 

including the Human–computer interaction (HCI), motion tracking, augmented 

reality, 2D and 3D feature toolkits, Structure from Motion (SFM) and recognition 

of objects, face, and actions. 

In this research, the OpenCV library is required to be compiled before it is 

installed into the system. It requires the same version of toolchain which is 

used for building for the Linux Kernel. The user application is also required to 

be built using the same toolchain.  
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6.5 System Implementation 

Apart from the HPS system, it still needs an FPGA design to capture the video 

stream into the HPS memory and read out the result to display on a monitor. 

The system is similar to the architecture described in the previous chapters but 

replaces the frame buffer with a separate frame writer and a separate frame 

reader. Then both IPs are configured to use the fpgas2sdram bus to access the 

DDR3 memory directly. In parallel, the ARM processor on the HPS can access 

the DDR3 memory to read the image data for processing. In addition, the frame 

writer and frame reader are required to be controlled by the ARM processor to 

control the write and read actions to adapt to the processing time of the HPS 

system. The redundant frames are dropped by the frame writer and missing 

frames are filled by repeating the previous frame by the frame reader. At the 

same time, the system has been integrated with the Canny Edge and Harris 

Corner Detection algorithms. As the fpgas2sdram only supports several modes 

i.e. 16-bit, 32-bit, 64-bit, 128-bit and 256-bit transfer mode, the 64-bit mode 

was used in this design to keep the result of Canny Edge and Harris Corner 

Detection algorithms. Both pre-processed data streams have been merged into 

64-bits word and combined with the grayscale result and the original RGB data 

of each pixel. As shown in Figure 6-9, for each 64-bit pixel, it contains the 24-

bit original RGB data, 16-bit Harris Corner intensity result, 8-bit Canny Edge 

intensity result, 8-bit Grayscale result and 8-bit reserved data. The whole 

architecture of the design is shown as Figure 6-10. 

 

Figure 6-9 64-bit word structure of the system 
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Figure 6-10 Architecture of the System  

6.6 Results and Discussion 

With the aim of demonstrating the performance improvement of the system, a 

CED algorithm is applied to the original 24-bit RGB data using an OpenCV 

application with an image resolution of 1024x768. The result compared with 

the HDL method are shown in Figure 6-11 and Figure 6-12. The performance 

of the OpenCV implementation is a little bit better as the algorithm is using the 

square root to calculate magnitude instead of using the absolute value. This 

increases the precision of the system but will also increase the processing time. 

The processing time of the OpenCV Canny algorithm takes about 86ms to 

process a frame. Therefore, the frame rate is already down to 11 fps with only 

an implementation of CED and no further high-level image processing. Whilst, 
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with the HDL method, it takes only adds a latency of 5,145 clock cycles i.e. a 

0.05ms delay at 100 MHz without reducing the frame rate. As a result, it can 

reduce by 86ms the processing time for a CED based algorithm like image 

segmentation or moving object tracking.  

 

Figure 6-11 Canny Edge Detection Result of OpenCV 

 

Figure 6-12 Canny Edge Detection Result of HDL method 
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Subsequently, another OpenCV application has been applied to test the system: 

the feature tracking algorithm with 20 points (shown in Figure 6-14) requires 

0.3691s to process a frame at the resolution of 1024x768. The feature points 

are marked with red arrows in the figure. 

 

Figure 6-13 A frame result of feature tracking application using OpenCV (Feature points are 

marked in with red arrows) 

Meanwhile, as the feature tracking application is based on the Harris Corner 

Detection algorithm which would also be implemented on the FPGA. Performing 

the Harris Corner Detection algorithm in hardware would significantly increase 

the system performance. With the objective of combining the FPGA design with 

the OpenCV application, the original application was modified to receive the 

data from the FPGA and extract the information from the memory at the same 

time. However, as the data extracted from the memory, pixel by pixel, is a 64-

bit combined word as previous mentioned, it is required to extract the different 

results separately to complete the whole data extraction process for post-
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processing. Then the result of feature tracking application using OpenCV 

accelerated by the FPGA is shown as Figure 6-14 below. The feature points are 

marked with red arrows. Compared with the original OpenCV result, it has some 

different feature points. This is because some of the feature points have a 

similar Harris Corner result as they may show up dynamically in the result. In 

the meantime, the strongest feature points remain stable. 

 

Figure 6-14 A frame result of feature tracking application using OpenCV accelerated by 

FPGA (Feature points are marked in with red arrow) 

Table 6-3 shows a comparison of the total processing time of the two methods 

at different resolutions. With the acceleration of FPGA, the total processing time 

has been reduced by 48.2%, 49.5% and 56.1% at the resolutions of 640x480, 

800x600 and 1024x768 respectively. It can extrapolate that with the higher 

resolution, the results become more effective. However, it requires more time 

for data extraction as it is proportional to the resolution. In this case, the FPGA 

has improved the performance of the application sufficiently. 
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Table 6-3 Feature Tracking Algorithm Comparison 

Feature Tracking Algorithm (OpenCV) 

Resolution Total Processing Time/Frame Rate 

ARM only Accelerated with FPGA (Data 

Extraction Time) 

640x480 0.1268s/7.89fps 0.0656s (0.0216s)/15.24fps 

800x600 0.2165s/4.62fps 0.1092s (0.0352s)/9.16fps 

1024x768 0.3691s/2.71fps 0.1624s (0.0559s)/6.16fps 

However, the capability of the integrated ARM processor is not powerful enough 

for true real-time performance. The system is still running at a low frame rate 

even with the acceleration of the FPGA. With next generation of the devices, 

the performance of the system may be improved. 

 

6.7 Summary 

To summarize, this chapter presented the FPGASoC design that combines both 

the FPGA and HPS systems. The FPGA part has integrated both the Canny Edge 

and Harris Corner Detection algorithms. The HPS part is based on a customized 

Linux with the OpenCV framework. With the comparison of only the Canny Edge 

Detection algorithm, the FPGA dominated the performance. With the feature 

tracking algorithm, the FPGA accelerated the total processing time by reducing 

it to 48.2%, 49.5% and 56.1% at the resolution of 640x480, 800x600 and 

1024x768. Thus, with the acceleration of FPGA on pre-processing algorithms, 

the performance of a high-level algorithm can be improved. 
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Chapter 7 Conclusions and Future work 

7.1  Conclusions 

Image processing applications typically require some pre-processing algorithms 

on the raw image data followed by post-processing algorithms on both the pre-

processed results, and the original data, to extract useful information from the 

image. 

The pre-processing algorithm is generally applied to the full image and can be 

time consuming unless it is undertaken in dedicated hardware such as a GPU 

or FPGA. The cost and power requirements of GPU based systems make them 

unsuitable for low cost embedded applications. 

This research investigated the use of a low cost FPGASoC device for real time 

image processing by developing a real-time image processing system with 

several approaches for the pre-processing algorithms, using the FPGA, to 

reduce the processing time. Additionally, it synchronizes the original data in 

parallel with the pre-processed data in memory for further processing, i.e. the 

pre-processed image is stored as a 64-bit word with 8 bits each for the RGB 

values and 32-bit for the pre-processing results. Simultaneously, it provides the 

infra-structure for implementing complex image processing applications on the 

integrated ARM system with support from the OpenCV library. The FPGA design 

was developed in Quartus II using the Video Image Processing (VIP) IP which 

provides several sub-systems such as frame buffer, clocked video in & out in 

Platform Designer (formally Qsys), which is Intel’s (formally Altera) tool for 

developing SOPC systems. Therefore, the programmable hardware design 

needed to develop the algorithm to be compatible with Intel’s VIP based IP 

format so that it could be compatible with the Intel VIP subsystems.  



Chapter 7  Conclusions and Future work 

Shaonan Zhang   117 

Firstly, the research shows the two implementations of Canny Edge Detection 

algorithm with the HDL approach, one is focused on low-cost and low latency, 

and the other is on higher accuracy. For the rapid implementation, it uses 30% 

less ALMs and the latency is 20% less than the accurate implementation. 

However, it suffers from 40.5% information loss compared with the accurate 

version’s 19.9%. With these results, it shows that as expected the ALMs used 

in the system is proportional to accuracy. Meanwhile, the memory used in the 

system is proportional to the resolution. Whilst the latency is proportional to 

both resolution and accuracy.  

Secondly, the HLS approach is researched by making a detailed comparison of 

the performance of two approaches on system design, which are the HDL and 

the HLS, through presenting the implementation of the Canny Edge Detection 

algorithm and the Harris Corner Detection algorithm. Then, the two approaches 

were implemented on two algorithms respectively to test the performance of 

both the HDL and HSL approaches. Consequently, the HSL approaches 

generally requires a much shorter development period than HDL, with 8 months 

for HDL and 2.5 months for HSL in total needed to implement the Canny Edge 

Detector and 4 months for HDL and 2 months for HSL in total needed to 

implement the Harris Corner Detector. However, the HSL approach also has 

higher requirement on a device’s memory and a higher latency than the HDL 

implementation. According to the results, the HSL has twice the latency of the 

HDL implementation, followed by 84% more memory bits required and 5 times 

more ALMs when implementing the Canny Edge Detector. For the Harris Corner 

Detector, the HSL has triple the latency compared to the HDL implementation, 

followed by 186% more memory bits required and 1.5 times more ALMs than 

the HDL implementation. Thus, HSL and HDL shows different advantages in 

FPGA programming as HDL approach shows more accuracy and HSL approach 

has more efficiency.  
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The next, an IP is developed with HDL method which contains the original RGB 

data, Harris Corner Detection result, Canny Edge Detection result and Grayscale 

result all synchronized together pixel by pixel. Concurrently, this design is based 

on the customized OpenCV application for post-processing implementations. 

Later with the feature tracking algorithm, the FPGA accelerates the total 

processing time by reducing it to 48.2%, 49.5% and 56.1% at the resolution 

of 640x480, 800x600 and 1024x768 differently. With the higher resolution, the 

result become more effective. Thus, with the acceleration of FPGA on pre-

processing algorithms, the performance of a high-level algorithm can be 

improved. 

To summarise the novelty in this research is the development of an embedded 

FPGASoC image processing architecture where image pre-processing takes 

place in real-time in the FPGA fabric allowing the ARM SoC processor to 

concentrate on the post processing algorithm thus reducing the time between 

the image is captured and the result presented. Such an approach will open up 

the market for low-cost real-time image processing applications as the system 

capital and running costs are significantly lower than using a PC based system. 

The comparison between the HDL and HLS approaches allows recommendation 

on which to select when developing an embedded image processing system. 

As the HDL approach is suitable for a system requiring more accuracy or less 

latency and the HLS approach is suitable for a system requires less 

development time.   
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7.2  Future work 

During the research on this project, there have been a number of ideas for 

future work.  

7.2.1  Algorithms & System implementation 

The implementation of the algorithm in this system could be improved by 

several methods, the first is implementation of another edge tracking method 

which may improve the result of broken edges. However, it may cost more time 

in processing the video stream. Another idea is to replace the Sobel detector 

with other detectors like Scharr, as it may have better result in some situations. 

Also, an Eight-directional Canny could be implemented to improve the results. 

In the meantime, more work would then be needed on customized OpenCV 

applications for testing on the system.   

Then, it should be possible to implement the other more lower level algorithms 

in parallel in the FPGA, and a multiplexor can be used under software control, 

to select which results gets written into the HPS system. This would provide 

dynamic flexibility when selecting the lower level algorithm to use whose results 

are then used by the high-level image processing algorithm. 

7.2.2  Devices & Other approach 

In this research, the whole system is developed on the Cyclone V SoC device. 

But during the development, it appears that the integrated ARM processor has 

not the performance for complex algorithms. In the meantime, the FPGA on 

chip is quite enough for pre-processing algorithms. It is necessary for further 

development with another FPGASoC device which contains a more powerful 
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ARM processor on chip. With a FPGASoC device which lays emphasis on ARM 

processor instead of FPGA, it may be more suitable for embedded vison system. 

Additionally, OpenCL based on the FPGASoC could be evaluated. The system 

will be mainly based on HPS and utilize FPGA to optimize the computation. In 

will provide another approach for low-cost real-time image processing designs. 
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Appendix A  Codes of Canny Edge Detection with 

HDL approach 

RGB to Gray Scale transformation module 

1. module rgb2grey   

2. (   input       clk,   

3.     input       rst,   

4.            

5.     input       data_en,       

6.     input       [23:0] in_data,            

7.    

8.    

9.     output [7:0] out_data   

10.    

11.         );   

12.            

13.            

14. wire [7:0] R;   

15. wire [7:0] G;   

16. wire [7:0] B;   

17.    

18.    

19. reg [15:0] R_r;   

20. reg [15:0] G_r;   

21. reg [15:0] B_r;   

22.        

23. assign B = in_data[7:0];   

24. assign G = in_data[15:8];   

25. assign R = in_data[23:16];   

26.    

27. // calculate results   

28. reg [31:0] grey;   

29. reg [7:0] grey_result;   

30. always @(posedge clk)   

31. begin   

32.     if (rst == 1'b1)   

33.     begin   

34.    

35.             R_r     <=   16'b0;   
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36.             G_r     <=   16'b0;   

37.             B_r     <=   16'b0;   

38.                

39.             grey    <=   32'b0;   

40.             grey_result <=   8'b0;   

41.     end    

42.     else if (data_en)   

43.     begin      

44.        

45.             R_r     <=   {2'b0,R,6'b0}   +{5'b0,R,3'b0}  +{7'b0,R,1'b0};   

46.                

47.             G_r     <=   {1'b0,G,7'b0}   +{4'b0,G,4'b0}  +{6'b0,G,2'b0}  +{7

'b0,G,1'b0};   

48.             B_r     <=   {3'b0,B,5'b0}   +{8'b0,B}       -{6'b0,B,2'b0};   

49.             grey    <=   R_r +   G_r +   B_r;   

50.    

51.             grey_result <= grey[15:8];   

52.     end   

53. end   

54. assign out_data=grey_result;   

55. endmodule   

 

Gaussian filter Module 

1. module gaussian_filter (   

2.     clk,   

3.     reset,   

4.    

5.     data_in,   

6.     data_en,   

7.    

8.     // Outputs   

9.     data_out   

10. );   

11.    

12.    

13. parameter WIDTH = 1024; // Image width in pixels   

14.    

15.    

16. // Inputs   
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17. input                       clk;   

18. input                       reset;   

19.    

20. input           [ 7: 0] data_in;   

21. input                       data_en;   

22.    

23.    

24. // Outputs   

25. output      [ 8: 0] data_out;   

26.    

27.    

28. // Internal Wires   

29. wire            [ 7: 0] iline2;   

30. wire            [ 7: 0] iline3;   

31. wire            [ 7: 0] iline4;   

32. wire            [ 7: 0] iline5;   

33.    

34. // Internal Registers   

35. reg         [ 7: 0] oline_1[ 4: 0];   

36. reg         [ 7: 0] oline_2[ 4: 0];   

37. reg         [ 7: 0] oline_3[ 4: 0];   

38. reg         [ 7: 0] oline_4[ 4: 0];   

39. reg         [ 7: 0] oline_5[ 4: 0];   

40.    

41.    

42. reg         [15: 0] level_1[6: 0];   

43.    

44. reg         [15: 0] level_2[ 4: 0];   

45. reg         [15: 0] level_3;   

46. reg         [15: 0] level_4;   

47.    

48.    

49. reg         [8:0] final_result;   

50.    

51. // Integers   

52. integer             i;   

53.    

54.    

55. // Gaussian Smoothing Filter   

56. //    

57. //              [ 2  4  5  4  2 ]   

58. //              [ 4  9 12  9  4 ]   

59. // 1 / 159      [ 5 12 15 12  5 ]   
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60. //              [ 4  9 12  9  4 ]   

61. //              [ 2  4  5  4  2 ]   

62. //   

63. // mask X   

64.    

65. always @(posedge clk)   

66. begin   

67.     if (reset == 1'b1)   

68.     begin   

69.         for (i = 4; i >= 0; i = i-1)   

70.         begin   

71.             oline_1[i] <= 8'h00;   

72.             oline_2[i] <= 8'h00;   

73.             oline_3[i] <= 8'h00;   

74.             oline_4[i] <= 8'h00;   

75.             oline_5[i] <= 8'h00;   

76.             level_1[i] <= 12'h000;   

77.         end   

78.    

79.    

80.     end    

81.     else if (data_en )   

82.     begin      

83.         for (i = 4; i > 0; i = i-1)   

84.         begin   

85.             oline_1[i] <= oline_1[i-1];   

86.             oline_2[i] <= oline_2[i-1];   

87.             oline_3[i] <= oline_3[i-1];   

88.             oline_4[i] <= oline_4[i-1];   

89.             oline_5[i] <= oline_5[i-1];   

90.         end   

91.             oline_1[0] <= data_in;   

92.             oline_2[0] <= iline2;   

93.             oline_3[0] <= iline3;   

94.             oline_4[0] <= iline4;   

95.             oline_5[0] <= iline5;   

96.                

97.             level_1[0] <=    {7'b0,oline_1[0], 1'b0} + {7'b0,oline_1[4], 1'b

0}   + {7'b0,oline_5[0], 1'b0} + {7'b0,oline_5[4], 1'b0};   

98.                     //times 4   

99.             level_1[1] <=    {6'b0,oline_1[1], 2'b0} + {6'b0,oline_1[3], 2'b

0} + {6'b0,oline_2[0], 2'b0} + {6'b0,oline_2[4], 2'b0};   
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100.             level_1[2] <=    {6'b0,oline_4[0], 2'b0} + {6'b0,oline_4[4], 2'

b0} + {6'b0,oline_5[1], 2'b0} + {6'b0,oline_5[3], 2'b0};   

101.                

102.                     //5                

103.             level_1[3] <=    {8'b0,oline_1[2]} + {8'b0,oline_5[2]}+  {8'b0,

oline_3[0]} + {8'b0,oline_3[4]};   

104.                     //9        

105.             level_1[4] <=    {8'b0,oline_2[1]} + {8'b0,oline_2[3]}+  {8'b0,

oline_4[1]} + {8'b0,oline_4[3]};   

106.                     //12   

107.             level_1[5] <=    {8'b0,oline_2[2]} + {8'b0,oline_4[2]} + {8'b0,

oline_3[1]} + {8'b0,oline_3[3]};   

108.                     //15   

109.             level_1[6] <=    {4'b0,oline_3[2], 4'b0} - oline_3[2];          

110.                

111.             level_2[0] <= level_1[0]+ level_1[6];   

112.                

113.             level_2[1] <= level_1[1]+ level_1[2];   

114.                

115.             // Multiplied by 5   

116.             level_2[2] <= {level_1[3], 2'b0} + level_1[3];   

117.             // Multiplied by 9   

118.             level_2[3] <= {level_1[4], 3'b0} + level_1[4];   

119.             // Multiplied by 12   

120.             level_2[4] <= {level_1[5], 3'b0} + {level_1[5], 2'b0};   

121.             level_3 <= level_2[0] + level_2[1]+ level_2[2]+ level_2[3]+ lev

el_2[4];   

122.         //  level_4 <= level_3/115;   

123.                

124.             final_result <= level_3/159;   

125.     end   

126. end   

127.    

128. assign data_out = final_result;     

129. line line_buffer1 (   

130.     .clock      (clk),   

131.     .clken      (data_en),   

132.     .shiftin        (data_in),   

133.     .shiftout   (iline2),   

134.     .taps           ()   

135. );   

136. defparam   

137.     line_buffer1.WD = 8,   
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138.     line_buffer1.SIZE   = WIDTH;   

139.    

140. line line_buffer2 (   

141.     .clock      (clk),   

142.     .clken      (data_en),   

143.     .shiftin        (iline2),   

144.     .shiftout   (iline3),   

145.     .taps           ()   

146. );   

147. defparam   

148.     line_buffer2.WD     = 8,   

149.     line_buffer2.SIZE   = WIDTH;   

150.    

151. line line_buffer3 (   

152.    

153.     .clock      (clk),   

154.     .clken      (data_en),   

155.     .shiftin        (iline3),   

156.     .shiftout   (iline4),   

157.     .taps           ()   

158. );   

159. defparam   

160.     line_buffer3.WD     = 8,   

161.     line_buffer3.SIZE   = WIDTH;   

162.    

163. line line_buffer4 (   

164.    

165.     .clock      (clk),   

166.     .clken      (data_en),   

167.     .shiftin        (iline4),   

168.     .shiftout   (iline5),   

169.     .taps           ()   

170. );   

171. defparam   

172.     line_buffer4.WD     = 8,   

173.     line_buffer4.SIZE   = WIDTH;   

174.    

175. endmodule   

Sobel filter module 

1. module sobel   
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2.    

3.    

4.            

5.     (   input       clk,   

6.         input       rst,   

7.            

8.            

9.     input       [8:0] in_data,         

10.     input   data_en,   

11.    

12.     output [11:0] out_data   

13.    

14.         );   

15.         

16. parameter WIDTH = 1024;        

17. wire [8:0] iline1;   

18. wire [8:0] iline2;   

19. reg  [8:0] oline0[2:0];   

20. reg  [8:0] oline1[2:0];   

21. reg  [8:0] oline2[2:0];   

22. reg  [11: 0]    gx;   

23. reg  [11: 0]    gy;   

24. reg         [11: 0] gx_level_1[ 2: 0];   

25. reg         [11: 0] gy_level_1[ 2: 0];    

26. reg  [11: 0]    gx_magnitude;   

27. reg  [11: 0]    gy_magnitude;   

28. reg  [11: 0]    gx_m;   

29. reg  [11: 0]    gy_m;   

30. reg  [11: 0]    g_magnitude;   

31. reg  [11: 0]    g_m;   

32. reg  [15:0]     gy_100;   

33. reg  [15:0]     gx_41;   

34. reg  [15:0]     gx_241;   

35. reg                     neg,neg1;   

36. reg      [3:0]      direction;   

37. reg  [11: 0]    fresult;   

38. integer         i;   

39.    

40.    

41. always @(posedge clk or posedge rst)   

42. begin   

43.     if (rst)   

44.     begin   
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45.    

46.         for (i = 2; i >= 0; i = i-1)   

47.         begin   

48.             oline0[i] <= 9'b0;   

49.             oline1[i] <= 9'b0;   

50.             oline2[i] <= 9'b0;   

51.             gx_level_1[i] <= 12'h0;   

52.             gy_level_1[i] <= 12'h0;   

53.    

54.         end   

55.    

56.             gx              <=   12'h000;   

57.             gy              <=   12'h000;   

58.             fresult         <=   12'h000;   

59.             gx_magnitude    <=   12'h000;   

60.             gy_magnitude    <=   12'h000;   

61.             g_magnitude     <=   12'h000;   

62.             gx_m            <=   12'h000;   

63.             gy_m            <=   12'h000;   

64.             g_m             <=   12'h000;   

65.             gy_100          <=   16'h000;   

66.             gx_41           <=   16'h000;   

67.             gx_241          <=   16'h000;   

68.             neg             <=   1'b0;   

69.             direction       <=   4'h0;   

70.     end   

71.     else if (data_en)   

72.     begin      

73.         oline0[2] <= oline0[1];   

74.         oline1[2] <= oline1[1];   

75.         oline2[2] <= oline2[1];    

76.         oline0[1] <= oline0[0];   

77.         oline1[1] <= oline1[0];   

78.         oline2[1] <= oline2[0];   

79.         oline0[0]   <= in_data;   

80.         oline1[0]   <= iline1;   

81.         oline2[0]   <= iline2;   

82.         gx_level_1[0]   <=   oline0[0] + {oline1[0],1'b0}+ oline2[0];   

83.            

84.         gx_level_1[1]   <=   oline0[2] + {oline1[2],1'b0} + oline2[2];   

85.         gx <= gx_level_1[0] - gx_level_1[1];   

86.         // Calculate Gy   

87.         gy_level_1[0]   <=   oline0[0] + {oline0[1],1'b0}+oline0[2];   
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88.        

89.            

90.         gy_level_1[1]   <=   oline2[0] + {oline2[1],1'b0}+oline2[2];   

91.         gy <= gy_level_1[0] - gy_level_1[1] ;   

92.         // Calculate the magnitude G   

93.         gx_magnitude    <=           (gx[11]) ? (~gx) + 12'h001 : gx;   

94.         gy_magnitude    <=           (gy[11]) ? (~gy) + 12'h001 : gy;   

95.         neg             <=           gx[11]^gy[11];   

96.         gy_100      <=   {gy_magnitude,6'b0}     +{gy_magnitude,5'b0}    +{g

y_magnitude,2'b0};   

97.         gx_41       <=   {gx_magnitude,5'b0}     +{gx_magnitude,3'b0}    +gx

_magnitude;   

98.         gx_241      <=   {gx_magnitude,8'b0}     -

{gx_magnitude,4'b0}    +gx_magnitude;   

99.         g_magnitude <=   gx_magnitude    +   gy_magnitude;   

100.         neg1        <=       neg;   

101.            

102.         //100gy<41gx   

103.         if(gy_100<=gx_41)   

104.         begin   

105.         direction   <=   4'b0001;   

106.         g_m         <=   g_magnitude;   

107.         end   

108.         else if((gy_100>gx_41)&&(gy_100<gx_241)&&(neg1==1'b0))   

109.         begin   

110.         direction   <=   4'b0010;   

111.         g_m         <=   g_magnitude;   

112.         end   

113.         else if((gy_100>gx_41)&&(gy_100<gx_241)&&(neg1==1'b1))   

114.         begin   

115.         direction   <=   4'b0100;   

116.         g_m         <=   g_magnitude;   

117.         end   

118.         else   

119.         begin   

120.         direction   <=   4'b1000;   

121.         g_m         <=   g_magnitude;   

122.         end   

123.         // Calculate the final result   

124.            

125.         fresult[11:8]           <=   direction;   

126.         fresult[7:0]            <=  (g_m[11:10] == 2'b0) ? g_m[9:2] : 8'hFF

;   
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127.            

128.     end   

129. end   

130.    

131.    

132. assign out_data = fresult;    

133.    

134. line u0 (   

135.   .clken(data_en),   

136.   .clock(clk),   

137.   .shiftin(in_data),   

138.   .shiftout(iline1)   

139. );   

140. defparam    

141.     u0.WD       = 9,   

142.     u0.SIZE = WIDTH;      

143. line u1 (   

144.   .clken(data_en),   

145.   .clock(clk),   

146.   .shiftin(iline1),   

147.   .shiftout(iline2)   

148. );   

149. defparam    

150.     u1.WD       = 9,   

151.     u1.SIZE = WIDTH;   

152. endmodule   

Non-Maximum Suppression Module 

1. module nm_s (   

2.     // Inputs   

3.     input       clk,   

4.     input       rst,   

5.            

6.            

7.     input   [11:0] data_in,            

8.     input   data_en,   

9.    

10.     output [11:0] data_out   

11. );   

12.    

13.    
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14. parameter WIDTH = 1024; // Image width in pixels   

15. wire [11:0] iline1;   

16. wire [11:0] iline2;   

17.    

18.    

19. reg  [11:0] oline0[2:0];   

20. reg  [11:0] oline1[2:0];   

21. reg  [11:0] oline2[2:0];   

22.    

23. reg  [11:0] r_line0[2:0];   

24. reg  [11:0] r_line1[2:0];   

25. reg  [11:0] r_line2[2:0];   

26.    

27. reg         [ 7: 0] sobel_result;   

28. reg         [ 3: 0] direction;   

29. reg         [11: 0] fresult;   

30. integer                 i;   

31.      

32. always @(posedge clk)   

33. begin   

34.     if (rst)   

35.     begin   

36.    

37.         for (i = 2; i >= 0; i = i-1)   

38.         begin   

39.             oline0[i] <= 12'h0;   

40.             oline1[i] <= 12'h0;   

41.             oline2[i] <= 12'h0;   

42.         end   

43.    

44.     end   

45.     else if (data_en)   

46.     begin      

47.         oline0[2] <= oline0[1];   

48.         oline1[2] <= oline1[1];   

49.         oline2[2] <= oline2[1];   

50.    

51.         oline0[1] <= oline0[0];   

52.         oline1[1] <= oline1[0];   

53.         oline2[1] <= oline2[0];   

54.    

55.         oline0[0]   <= data_in;   

56.         oline1[0]   <= iline1;   
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57.         oline2[0]   <= iline2;   

58.         case (oline1[1][11:8])   

59.             4'b0001 :   

60.             begin   

61.                     if((oline1[1][7:0]>oline1[2][7:0])&&(oline1[1][7:0]>olin

e1[0][7:0]))   

62.                     begin   

63.                     direction       <=   4'b0001;   

64.                     sobel_result    <=   oline1[1][7:0];   

65.                     end   

66.                     else   

67.                     begin   

68.                     direction       <=   4'b0;   

69.                     sobel_result    <=   0;   

70.                     end   

71.             end   

72.             4'b0010 :   

73.             begin   

74.                     if((oline1[1][7:0]>oline2[2][7:0])&&(oline1[1][7:0]>olin

e0[0][7:0]))   

75.                     begin   

76.                     direction       <=   4'b0010;   

77.                     sobel_result    <=   oline1[1][7:0];   

78.                     end   

79.                     else   

80.                     begin   

81.                     direction       <=   4'b0;   

82.                     sobel_result    <=   0;   

83.                     end   

84.             end   

85.             4'b0100 :   

86.             begin   

87.                     if((oline1[1][7:0]>oline2[0][7:0])&&(oline1[1][7:0]>olin

e0[2][7:0]))   

88.                     begin   

89.                     direction       <=   4'b0100;   

90.                     sobel_result    <=   oline1[1][7:0];   

91.                     end   

92.                     else   

93.                     begin   

94.                     direction       <=   4'b0;   

95.                     sobel_result    <=   0;   

96.                     end   
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97.             end   

98.             4'b1000 :   

99.             begin   

100.                     if((oline1[1][7:0]>oline0[1][7:0])&&(oline1[1][7:0]>oli

ne2[1][7:0]))   

101.                     begin   

102.                     direction       <=   4'b1000;   

103.                     sobel_result    <=   oline1[1][7:0];   

104.                     end   

105.                     else   

106.                     begin   

107.                     direction       <=   4'b0;   

108.                     sobel_result    <=   0;   

109.                     end   

110.             end   

111.             default :   

112.             begin   

113.                     direction       <=   4'b0;   

114.                     sobel_result    <=   0;   

115.             end   

116.         endcase   

117.         fresult[11:8]   <=       direction;   

118.         fresult[7:0]    <=   sobel_result;   

119.     end   

120. end   

121.    

122. assign data_out = fresult;    

123. line buffer_1 (   

124.     .clock      (clk),   

125.     .clken      (data_en),   

126.     .shiftin        (data_in),   

127.     .shiftout   (iline1),   

128.     .taps           ()   

129. );   

130. defparam   

131.     buffer_1.WD     = 12,   

132.     buffer_1.SIZE   = WIDTH;   

133.    

134. line buffer_2 (   

135.     .clock      (clk),   

136.     .clken      (data_en),   

137.     .shiftin        (iline1),   

138.     .shiftout   (iline2),   



Appendix A             Codes of Canny Edge Detection with HDL approach 

Shaonan Zhang   141 

139.     .taps           ()   

140. );   

141. defparam   

142.     buffer_2.WD     = 12,   

143.     buffer_2.SIZE   = WIDTH;   

144.    

145. endmodule   

Double Thresholding with Hysteresis Module 

1. module double_threshold_filtering (   

2.    

3.     input       clk,   

4.     input       rst,   

5.            

6.            

7.     input   [11:0] in_data,            

8.     input   data_en,   

9.    

10.     output [7:0] out_data   

11. );   

12.    

13. parameter WIDTH = 1024; // Image width in pixels   

14.    

15. wire [11:0] iline1;   

16. wire [11:0] iline2;   

17.    

18. reg  [11:0] oline0[2:0];   

19. reg  [11:0] oline1[2:0];   

20. reg  [11:0] oline2[2:0];   

21.    

22. reg         [7:0]   T_in;   

23. reg         [7:0]   H_T;   

24. reg         [7:0]   L_T;   

25.            

26.    

27.    

28. reg         [ 7: 0] result;   

29.    

30.    

31. integer                 i;   

32. always @(posedge clk)   
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33. begin   

34.     if (rst )   

35.     begin   

36.         //nm_result <=   8'h00;   

37.         H_T         <=   8'h00;   

38.         L_T         <=   8'h00;   

39.         T_in        <=   8'h00;   

40.         result      <=   8'h00;   

41.         for (i = 2; i >= 0; i = i-1)   

42.         begin   

43.             oline0[i] <= 12'b0;   

44.             oline1[i] <= 12'b0;   

45.             oline2[i] <= 12'b0;   

46.         end   

47.            

48.     end   

49.     else if (data_en)   

50.     begin   

51.        

52.         oline0[2] <= oline0[1];   

53.         oline1[2] <= oline1[1];   

54.         oline2[2] <= oline2[1];   

55.    

56.            

57.         oline0[1] <= oline0[0];   

58.         oline1[1] <= oline1[0];   

59.         oline2[1] <= oline2[0];   

60.    

61.         oline0[0]   <= in_data;   

62.         oline1[0]   <= iline1;   

63.         oline2[0]   <= iline2;   

64.        

65.         //nm_result <=   in_data;   

66.         T_in        <=   (in_data[7:0]>T_in) ? in_data[7:0] : T_in;   

67.    

68.         H_T         <=   T_in/6;   

69.    

70.         L_T         <=   {1'b0,H_T[7:1]};   

71.    

72.         if(oline1[1][7:0]<L_T)   

73.         begin   

74.         result  <=8'h00;   

75.         end   
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76.         else if (oline1[1][7:0]>H_T)   

77.         begin   

78.         result  <=8'hFF;   

79.         end   

80.         else    

81.         begin   

82.            

83.            

84.         if( (oline0[1][11:8]!=0)||(oline2[1][11:8]!=0)||   

85.             (oline0[2][11:8]!=0)||(oline2[0][11:8]!=0)||   

86.             (oline0[0][11:8]!=0)||(oline2[2][11:8]!=0)||   

87.             (oline1[0][11:8]!=0)||(oline1[2][11:8]!=0))   

88.             begin   

89.             result  <=   8'hFF;   

90.             end   

91.         else   

92.         begin   

93.             result  <=   8'h00;   

94.         end   

95.         end   

96.            

97.     end   

98. end   

99.    

100. assign  out_data    =   result;   

101.    

102. line u0 (   

103.   .clken(data_en),   

104.   .clock(clk),   

105.   .shiftin(in_data),   

106.   .shiftout(iline1)   

107. );   

108. defparam    

109.     u0.WD       = 12,   

110.     u0.SIZE = WIDTH;   

111.    

112.        

113. line u1 (   

114.   .clken(data_en),   

115.   .clock(clk),   

116.   .shiftin(iline1),   

117.   .shiftout(iline2)   

118. );   
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119. defparam    

120.     u1.WD       = 12,   

121.     u1.SIZE = WIDTH;   

122.    

123. endmodule  
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Appendix B  Codes of Canny Edge Detection with 

HLS approach  

1. #include "HLS/hls.h"   

2. #include "HLS/math.h"   

3.    

4. #include "HLS/ac_int.h"   

5.    

6.    

7. #define N 1024        

8. #define M 3   

9. #define RGB_D N*7-11   

10. //typedef ac_int<8, false> index_t;   

11.    

12.    

13. struct int_v24 {   

14. unsigned char data[3];   

15. };   

16. struct int_v32 {   

17. unsigned char data[4];   

18. };   

19.    

20. struct direction_sobel {   

21. unsigned char data;   

22. unsigned char direction;   

23. };   

24.    

25.    

26. // Default stream behavior   

27. hls_avalon_streaming_component hls_always_run_component    

28. component void filters(   

29.               ihc::stream_in<int_v24, ihc::bitsPerSymbol<8>,ihc::usesPackets

<true> >& a,   

30.               ihc::stream_out<int_v32, ihc::bitsPerSymbol<8>, ihc::usesPacke

ts<true> >& b) {   

31.                      

32.                      

33. bool start_of_packet = false;   

34. bool end_of_packet   = false;      

35.    

36.    
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37. int_v24 a1;   

38. int_v32 b1;   

39. int_v24 rgb_buffer[RGB_D];   

40. int buffer[3];   

41. int grey;   

42.    

43.    

44. int g_levelx0,g_levelx1,g_levelx2,g_levelx3,g_levelx4,g_levelx5,g_levelx6;   

45. int g_level21, g_level22, g_level23, g_level24, g_level25, g_level26,g_level

3,g_level4;   

46. int s_levelx0,s_levelx1,s_levelx2;   

47. int s_levely0,s_levely1;   

48. int s_level2x,s_level2y;   

49. int s_level3x,s_level3y;   

50. int s_level3,s_level4,s_level5;   

51. unsigned char Threshold,H_T,L_T,final_result;   

52.    

53. float s_grad;   

54.    

55. unsigned short int  line0[N], line1[N], line2[N], line3[N],line4[N];   

56. short int   gaussian_line0[N], gaussian_line1[N],gaussian_line2[N];   

57.    

58. direction_sobel sobel_result, non_max_result;   

59.    

60. direction_sobel sobel_line0[N], sobel_line1[N],sobel_line2[N];   

61. direction_sobel non_max_line0[N],non_max_line1[N],non_max_line2[N];   

62.    

63.      

64.         while(!end_of_packet) {   

65.             // Blocking read from the input stream   

66.             a1 = a.read(start_of_packet, end_of_packet);             

67.             #pragma unroll   

68.             for(int i=0;i < 3; i++)   

69.             {   

70.             buffer[i]=a1.data[i];   

71.             }   

72.             //grey result   

73.    

74.             grey=(buffer[0]*76+buffer[1]*150+buffer[2]*29)/256;   

75.             // 5 buffered lines   

76.             #pragma unroll   

77.             for (int i = N - 1; i > 0; --i) {   

78.                 line0[i] = line0[i-1];   
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79.                 line1[i] = line1[i-1];   

80.                 line2[i] = line2[i-1];   

81.                 line3[i] = line3[i-1];   

82.                 line4[i] = line4[i-1];   

83.              }   

84.             line0[0] = grey;   

85.             line1[0] = line0[N-1];   

86.             line2[0] = line1[N-1];   

87.             line3[0] = line2[N-1];   

88.             line4[0] = line3[N-1];   

89.             g_level21=  (line0[N-1]*2)      +   (line0[N-

2]*4)      +   (line0[N-3]*5)      +   (line0[N-4]*4)      +   (line0[N-

5]*2);            

90.             g_level22=  (line1[N-1]*4)      +   (line1[N-

2]*9)      +   (line1[N-3]*12)     +   (line1[N-4]*9)      +   (line1[N-

5]*4);   

91.             g_level23=  (line2[N-1]*5)      +   (line2[N-

2]*12)     +   (line2[N-3]*15)     +   (line2[N-4]*12)     +   (line2[N-

5]*5);   

92.             g_level24=  (line3[N-1]*4)      +   (line3[N-

2]*9)      +   (line3[N-3]*12)     +   (line3[N-4]*9)      +   (line3[N-

5]*4);   

93.             g_level25=  (line4[N-1]*2)      +   (line4[N-

2]*4)      +   (line4[N-3]*5)      +   (line4[N-4]*4)      +   (line4[N-

5]*2);   

94.    

95.    

96.    

97.             g_level3=       g_level21+g_level22+g_level23 +g_level24+g_level

25;   

98.             //g_level4=     g_level3/115;   

99.             g_level4=   g_level3/159;   

100.                

101.        

102.             #pragma unroll   

103.             for (int i = N - 1; i > 0; --i) {   

104.                 gaussian_line0[i] = gaussian_line0[i-1];   

105.                 gaussian_line1[i] = gaussian_line1[i-1];   

106.                 gaussian_line2[i] = gaussian_line2[i-1];   

107.               }   

108.             gaussian_line0[0] = g_level4;   

109.             gaussian_line1[0] = gaussian_line0[N-1];               

110.             gaussian_line2[0] = gaussian_line1[N-1];               
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111.         //Sobel filter    

112.             s_levelx0=gaussian_line0[N-1] +(gaussian_line1[N-

1]*2) +gaussian_line2[N-1];   

113.             s_levelx1=gaussian_line0[N-3] +(gaussian_line1[N-

3]*2) +gaussian_line2[N-3];   

114.    

115.                

116.             s_levely0=gaussian_line0[N-1]+(gaussian_line0[N-

2]*2)+gaussian_line0[N-3];   

117.             s_levely1=gaussian_line2[N-1]+(gaussian_line2[N-

2]*2)+gaussian_line2[N-3];   

118.                

119.             s_level2x=s_levelx0-s_levelx1;   

120.                            

121.             s_level2y=s_levely0-s_levely1;   

122.                

123.             s_level3=abs(s_level2x) + abs(s_level2y);   

124.                

125.    

126.             //calculate the direction   

127.                

128.             s_level4=s_level3>>2;   

129.                

130.             s_level5=(s_level4<255)?s_level4:255;   

131.                

132.             s_grad=(float)s_level2y/(float)s_level2x;   

133.                

134.             if((s_grad>=-0.415)&&(s_grad<=0.415)){   

135.                 //direction 1: -22.5 degrees to 22.5 degrees   

136.                 sobel_result.direction=1;   

137.                 sobel_result.data=s_level5;   

138.             }   

139.             else if ((s_grad>0.415)&&(s_grad<=2.414)){   

140.                    

141.                 //direction 2: 22.5 degrees to 67.5 degrees   

142.                 sobel_result.direction=2;   

143.                 sobel_result.data=s_level5;   

144.             }   

145.             else if ((s_grad<-0.415)&&(s_grad>=-2.414)){   

146.                    

147.                 //direction 3: -22.5 degrees to -67.5 degrees   

148.                 sobel_result.direction=3;   

149.                 sobel_result.data=s_level5;   



Appendix B             Codes of Canny Edge Detection with HLS approach 

Shaonan Zhang   149 

150.             }   

151.                

152.             else{   

153.                    

154.                 //direction 4: 67.5 to 90 degrees & -67.5 to -90 degrees   

155.                 sobel_result.direction=4;   

156.                 sobel_result.data=s_level5;   

157.             }   

158.                

159.                            

160.             //Buffer another 3 lines       

161.             #pragma unroll   

162.             for (int i = N - 1; i > 0; --i) {   

163.                 sobel_line0[i] = sobel_line0[i-1];   

164.                 sobel_line1[i] = sobel_line1[i-1];   

165.                 sobel_line2[i] = sobel_line2[i-1];   

166.               }   

167.             sobel_line0[0] = sobel_result;   

168.             sobel_line1[0] = sobel_line0[N-1];   

169.             sobel_line2[0] = sobel_line1[N-1];   

170.                

171.    

172.             if(sobel_line1[N-2].direction==1){   

173.    

174.                             if((sobel_line1[N-2].data>sobel_line1[N-

1].data)&&(sobel_line1[N-2].data>sobel_line1[N-3].data)){   

175.                        

176.                                 non_max_result.direction=1;   

177.                                 non_max_result.data=sobel_line1[N-

2].data;   

178.                             }   

179.                             else {   

180.                                 non_max_result.direction=0;   

181.                                 non_max_result.data=0;   

182.                                 }   

183.                         }   

184.             else if(sobel_line1[N-2].direction==2){            

185.                             if((sobel_line1[N-2].data>sobel_line0[N-

1].data)&&(sobel_line1[N-2].data>sobel_line2[N-3].data)){   

186.                                    

187.                                 non_max_result.direction=1;   

188.                                 non_max_result.data=sobel_line1[N-

2].data;   
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189.                             }   

190.                             else {   

191.                                 non_max_result.direction=0;   

192.                                 non_max_result.data=0;   

193.                             }   

194.                         }   

195.             else if(sobel_line1[N-2].direction==3){                

196.                             if((sobel_line1[N-2].data>sobel_line2[N-

1].data)&&(sobel_line1[N-2].data>sobel_line0[N-3].data)){   

197.                                    

198.                                 non_max_result.direction=1;   

199.                                 non_max_result.data=sobel_line1[N-

2].data;   

200.                             }   

201.                             else {   

202.                                 non_max_result.direction=0;   

203.                                 non_max_result.data=0;   

204.                             }   

205.                         }   

206.             else if(sobel_line1[N-2].direction==4){                

207.                             if((sobel_line1[N-2].data>sobel_line0[N-

2].data)&&(sobel_line1[N-2].data>sobel_line2[N-2].data)){   

208.                                    

209.                                 non_max_result.direction=1;   

210.                                 non_max_result.data=sobel_line1[N-

2].data;   

211.                             }   

212.                             else {   

213.                                 non_max_result.direction=0;   

214.                                 non_max_result.data=0;   

215.                             }   

216.                         }   

217.             else{   

218.                             non_max_result.direction=0;   

219.                             non_max_result.data=0;   

220.                         }   

221.                            

222.                

223.             #pragma unroll   

224.             for (int i = N - 1; i > 0; --i) {   

225.                 non_max_line0[i] = non_max_line0[i-1];   

226.                 non_max_line1[i] = non_max_line1[i-1];   

227.                 non_max_line2[i] = non_max_line2[i-1];   
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228.               }   

229.             non_max_line0[0] = non_max_result;   

230.             non_max_line1[0] = non_max_line0[N-1];   

231.             non_max_line2[0] = non_max_line1[N-1];   

232.      

233.                

234.             if(non_max_line2[N-1].data>Threshold){   

235.                 Threshold=non_max_line2[N-1].data;   

236.             }   

237.    

238.             H_T=Threshold/6;   

239.             L_T=H_T/2;   

240.                

241.   

242.             if (non_max_line1[N-2].data<L_T){   

243.                 final_result=0;   

244.             }   

245.             else if(non_max_line1[N-2].data>H_T){   

246.                 final_result=255;   

247.             }   

248.             else    

249.             {   

250.                    

251.                 if((non_max_line1[N-2].direction==1)&&( (non_max_line0[N-

1].direction==1)||(non_max_line0[N-3].direction==1)||   

252.                         (non_max_line0[N-

2].direction==1)||(non_max_line1[N-1].direction==1)||   

253.                         (non_max_line1[N-

3].direction==1)||(non_max_line2[N-1].direction==1)||   

254.                         (non_max_line2[N-

2].direction==1)||(non_max_line2[N-3].direction==1))){   

255.                         final_result=255;   

256.                         }   

257.                        

258.                    

259.                 else{   

260.                     final_result=0;   

261.                 }   

262.             }   

263.             #pragma unroll   

264.             for (int i = RGB_D - 1; i > 0; --i) {   

265.                 rgb_buffer[i] = rgb_buffer[i-1];   

266.               }   
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267.             rgb_buffer[0] = a1;   

268.                

269.                

270.             b1.data[0]=final_result;   

271.                

272.             b1.data[1]=rgb_buffer[RGB_D - 1].data[0];   

273.             b1.data[2]=rgb_buffer[RGB_D - 1].data[1];   

274.             b1.data[3]=rgb_buffer[RGB_D - 1].data[2];   

275.             b.write(b1, start_of_packet, end_of_packet);   

276.                

277.         }   

278. }   
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Appendix C  Codes of Harris Corner Detection 

with HDL approach  

Sobel Filter Module 

1. module sobel   

2.    

3.    

4.            

5.     (   input       clk,   

6.         input       rst,   

7.            

8.            

9.     input       [8:0] in_data,         

10.     input   data_en,   

11.    

12.     output [23:0] gx2_result,   

13.     output [23:0] gy2_result,   

14.     output [23:0] gxy_result   

15.    

16.         );   

17.        

18. parameter WIDTH = 1024;        

19.    

20.    

21. wire [8:0] iline1;   

22. wire [8:0] iline2;   

23.    

24. wire     [23: 0]    gx2;   

25. wire     [23: 0]    gy2;   

26. wire     [23: 0]    gxy;   

27.    

28. reg  [8:0] oline0[2:0];   

29. reg  [8:0] oline1[2:0];   

30. reg  [8:0] oline2[2:0];   

31.    

32.    

33. reg  [11: 0]    gx;   

34. reg  [11: 0]    gy;   
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35.    

36.    

37.    

38.    

39. reg         [11: 0] gx_level_1[ 2: 0];   

40.    

41.    

42. reg         [11: 0] gy_level_1[ 2: 0];   

43.    

44.    

45.    

46.    

47. reg [23: 0] gxy_r;   

48. reg [23: 0] gx2_r;   

49. reg [23: 0] gy2_r;   

50.    

51. integer         i;   

52.    

53. always @(posedge clk or posedge rst)   

54. begin   

55.     if (rst)   

56.     begin   

57.    

58.         for (i = 2; i >= 0; i = i-1)   

59.         begin   

60.             oline0[i] <= 9'b0;   

61.             oline1[i] <= 9'b0;   

62.             oline2[i] <= 9'b0;   

63.             gx_level_1[i] <= 12'h0;   

64.             gy_level_1[i] <= 12'h0;   

65.    

66.         end   

67.    

68.             gx              <=   12'h000;   

69.             gy              <=   12'h000;   

70.             gx2_r           <=   24'h000;   

71.             gy2_r           <=   24'h000;   

72.             gxy_r           <=   24'h000;   

73.    

74.    

75.     end   
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76.     else if (data_en)   

77.     begin      

78.    

79.         oline0[2] <= oline0[1];   

80.         oline1[2] <= oline1[1];   

81.         oline2[2] <= oline2[1];   

82.    

83.            

84.         oline0[1] <= oline0[0];   

85.         oline1[1] <= oline1[0];   

86.         oline2[1] <= oline2[0];   

87.    

88.         oline0[0]   <= in_data;   

89.         oline1[0]   <= iline1;   

90.         oline2[0]   <= iline2;   

91.    

92.         gx_level_1[0]   <=   oline0[0] + {oline1[0],1'b0}+ oline2[0];   

93.            

94.         gx_level_1[1]   <=   oline0[2] + {oline1[2],1'b0} + oline2[2];   

95.    

96.         gx <= gx_level_1[0] - gx_level_1[1];   

97.    

98.         // Calculate Gy   

99.    

100.         gy_level_1[0]   <=   oline0[0] + {oline0[1],1'b0}+oline0[2];   

101.         gy_level_1[1]   <=   oline2[0] + {oline2[1],1'b0}+oline2[2];   

102.         gy <= gy_level_1[0] - gy_level_1[1] ;   

103.        

104.         gx2_r <= gx2;   

105.            

106.         gy2_r <= gy2;   

107.    

108.         gxy_r <= gxy;   

109.            

110.     end   

111. end   

112.    

113.    

114.    

115. assign  gxy_result=gxy_r;   

116. assign  gx2_result=gx2_r;   
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117. assign  gy2_result=gy2_r;   

118. line u0 (   

119.   .clken(data_en),   

120.   .clock(clk),   

121.   .shiftin(in_data),   

122.   .shiftout(iline1)   

123. );   

124. defparam    

125.     u0.WD       = 9,   

126.     u0.SIZE = WIDTH;   

127.    

128.        

129. line u1 (   

130.   .clken(data_en),   

131.   .clock(clk),   

132.   .shiftin(iline1),   

133.   .shiftout(iline2)   

134. );   

135. defparam    

136.     u1.WD       = 9,   

137.     u1.SIZE = WIDTH;   

138.    

139. mult u2 (   

140.     .clock(clk),   

141.       .clken(data_en),   

142.     .dataa(gx),   

143.     .datab(gx),   

144.     .result(gx2)   

145. );     

146. mult u3 (   

147.     .clock(clk),   

148.       .clken(data_en),   

149.     .dataa(gy),   

150.     .datab(gy),   

151.     .result(gy2)   

152. );     

153. mult u4 (   

154.     .clock(clk),   

155.       .clken(data_en),   

156.     .dataa(gx),   

157.     .datab(gy),   
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158.     .result(gxy)   

159. );     

160. endmodule   

Gaussian Filter Module 

1. module gaussian_filter (   

2.     // Inputs   

3.     clk,   

4.     reset,   

5.    

6.     data_in,   

7.     data_en,   

8.    

9.     // Outputs   

10.     data_out   

11. );   

12.    

13.    

14. parameter WIDTH = 1024; // Image width in pixels   

15.    

16.    

17. // Inputs   

18. input                       clk;   

19. input                       reset;   

20.    

21. input           [ 23: 0]    data_in;   

22. input                       data_en;   

23.    

24.    

25. // Outputs   

26. output      [ 31: 0]    data_out;   

27.    

28.    

29. // Internal Wires   

30. wire            [ 31: 0]    iline2;   

31. wire            [ 31: 0]    iline3;   

32. wire            [ 31: 0]    iline4;   

33. wire            [ 31: 0]    iline5;   

34. wire            [ 31: 0]    data_in_reg;   

35. wire            [ 9: 0]     de;   
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36. wire            [ 31: 0]    level_4;   

37. // Internal Registers   

38. reg         [ 31: 0]    oline_1[ 4: 0];   

39. reg         [ 31: 0]    oline_2[ 4: 0];   

40. reg         [ 31: 0]    oline_3[ 4: 0];   

41. reg         [ 31: 0]    oline_4[ 4: 0];   

42. reg         [ 31: 0]    oline_5[ 4: 0];   

43.    

44.    

45. reg         [ 31: 0]    level_1[6: 0];   

46.    

47. reg         [ 31: 0]    level_2[ 4: 0];   

48. reg         [ 31: 0]    level_3;   

49.    

50.    

51.    

52. reg         [ 31: 0] final_result;   

53.    

54. // Integers   

55. integer             i;   

56.    

57.    

58. // Gaussian Smoothing Filter   

59. //    

60. //              [ 2  4  5  4  2 ]   

61. //              [ 4  9 12  9  4 ]   

62. // 1 / 159      [ 5 12 15 12  5 ]   

63. //              [ 4  9 12  9  4 ]   

64. //              [ 2  4  5  4  2 ]   

65. //   

66. // mask X   

67.    

68. always @(posedge clk)   

69. begin   

70.     if (reset == 1'b1)   

71.     begin   

72.         for (i = 4; i >= 0; i = i-1)   

73.         begin   

74.             oline_1[i] <= 32'h00;   

75.             oline_2[i] <= 32'h00;   

76.             oline_3[i] <= 32'h00;   
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77.             oline_4[i] <= 32'h00;   

78.             oline_5[i] <= 32'h00;   

79.             level_1[i] <= 32'h000;   

80.         end   

81.    

82.    

83.     end    

84.     else if (data_en )   

85.     begin      

86.         for (i = 4; i > 0; i = i-1)   

87.         begin   

88.             oline_1[i] <= oline_1[i-1];   

89.             oline_2[i] <= oline_2[i-1];   

90.             oline_3[i] <= oline_3[i-1];   

91.             oline_4[i] <= oline_4[i-1];   

92.             oline_5[i] <= oline_5[i-1];   

93.         end   

94.             oline_1[0] <= data_in_reg;   

95.             oline_2[0] <= iline2;   

96.             oline_3[0] <= iline3;   

97.             oline_4[0] <= iline4;   

98.             oline_5[0] <= iline5;   

99.                

100.             level_1[0] <=    {oline_1[0], 1'b0} + {oline_1[4], 1'b0} + {oli

ne_5[0], 1'b0} + {oline_5[4], 1'b0};   

101.                     //times 4   

102.             level_1[1] <=    {oline_1[1], 2'b0} + {oline_1[3], 2'b0} +   {o

line_2[0], 2'b0} + {oline_2[4], 2'b0};   

103.             level_1[2] <=    {oline_4[0], 2'b0} + {oline_4[4], 2'b0} +   {o

line_5[1], 2'b0} + {oline_5[3], 2'b0};   

104.                

105.                     //5                

106.             level_1[3] <=    oline_1[2] + oline_5[2]+    oline_3[0] + oline

_3[4];   

107.                     //9        

108.             level_1[4] <=    oline_2[1] + oline_2[3]+    oline_4[1] + oline

_4[3];   

109.                     //12   

110.             level_1[5] <=    oline_2[2] + oline_4[2] +   oline_3[1] + oline

_3[3];   

111.                     //15   
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112.             level_1[6] <=    {oline_3[2], 4'b0} - oline_3[2];           

113.                

114.                

115.    

116.                

117.                

118.             level_2[0] <= level_1[0]+ level_1[6];   

119.                

120.             level_2[1] <= level_1[1]+ level_1[2];   

121.                

122.             // Multiplied by 5   

123.             level_2[2] <= {level_1[3], 2'b0} + level_1[3];   

124.             // Multiplied by 9   

125.             level_2[3] <= {level_1[4], 3'b0} + level_1[4];   

126.             // Multiplied by 12   

127.             level_2[4] <= {level_1[5], 3'b0} + {level_1[5], 2'b0};   

128.                

129.                

130.                

131.             level_3 <= level_2[0] + level_2[1]+ level_2[2]+ level_2[3]+ lev

el_2[4];   

132.    

133.    

134.             //level_4 <= level_3>>7;   

135.                

136.             final_result <= level_4;//(level_3[31]==1'b0)?({7'b0,level_3[31

:7]}):({7'b1,level_3[31:7]});   

137.     end   

138. end   

139.    

140. assign data_in_reg  = (data_in[23]==1'b0)? ({8'b0,data_in}):({8'b1,data_in}

);   

141. assign data_out     = final_result;    

142. assign de           =   159;   

143.    

144.    

145.    

146.    

147. line line_buffer1 (   

148.     .clock      (clk),   

149.     .clken      (data_en),   



Appendix C            Codes of Harris Corner Detection with HDL approach 

Shaonan Zhang   161 

150.     .shiftin        (data_in_reg),   

151.     .shiftout   (iline2),   

152.     .taps           ()   

153. );   

154. defparam   

155.     line_buffer1.WD = 32,   

156.     line_buffer1.SIZE   = WIDTH;   

157.    

158. line line_buffer2 (   

159.     .clock      (clk),   

160.     .clken      (data_en),   

161.     .shiftin        (iline2),   

162.     .shiftout   (iline3),   

163.     .taps           ()   

164. );   

165. defparam   

166.     line_buffer2.WD     = 32,   

167.     line_buffer2.SIZE   = WIDTH;   

168.    

169. line line_buffer3 (   

170.    

171.     .clock      (clk),   

172.     .clken      (data_en),   

173.     .shiftin        (iline3),   

174.     .shiftout   (iline4),   

175.     .taps           ()   

176. );   

177. defparam   

178.     line_buffer3.WD     = 32,   

179.     line_buffer3.SIZE   = WIDTH;   

180.    

181. line line_buffer4 (   

182.    

183.     .clock      (clk),   

184.     .clken      (data_en),   

185.     .shiftin        (iline4),   

186.     .shiftout   (iline5),   

187.     .taps           ()   

188. );   

189. defparam   

190.     line_buffer4.WD     = 32,   
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191.     line_buffer4.SIZE   = WIDTH;   

192.    

193. div divde(   

194.     .clock(clk),   

195.     .clken(data_en),   

196.     .denom(de),   

197.     .numer(level_3),   

198.     .quotient(level_4),   

199.     );   

200.    

201. endmodule   

Harris Corner Detection Module 

1. module harris_m (   

2.     // Inputs   

3.     input       clk,   

4.     input       rst,   

5.            

6.            

7.     input   [31:0] gx2_in,    

8.     input   [31:0] gy2_in,   

9.     input   [31:0] gxy_in,     

10.     input   data_en,   

11.    

12.     output [63:0] data_out   

13. );   

14.    

15.    

16. parameter WIDTH = 1024; // Image width in pixels   

17.    

18. wire     [63: 0]    gxy2;   

19. wire     [63: 0]    gx2y2;   

20. wire     [63: 0]    gxy22;   

21. reg      [63: 0]    gxy2_reg;   

22. reg      [63: 0]    gx2y2_reg;   

23. reg      [63: 0]    gxy22_reg;   

24. reg         [ 31: 0]    gx2_reg;   

25. reg         [ 31: 0]    gy2_reg;   

26. reg         [ 31: 0]    gxy_reg;   

27. reg         [ 31: 0]    gxpy_reg;   
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28.    

29. reg         [ 63: 0]    R_l11;   

30. reg         [ 63: 0]    R_l12;   

31. reg         [ 63: 0]    R_l2;   

32.    

33. reg         [ 63: 0]    fresult;   

34. // State Machine Registers   

35.    

36. // Integers   

37.    

38.    

39. always @(posedge clk)   

40. begin   

41.     if (rst)   

42.     begin   

43.     gx2_reg     <=   32'h0;   

44.     gy2_reg     <=   32'h0;     

45.     gxy_reg     <=   32'h0;     

46.     gxpy_reg    <=   32'h0;   

47.     gxy2_reg    <=   64'h0;   

48.     gx2y2_reg   <=   64'h0;   

49.     gxy22_reg   <=   64'h0;   

50.        

51.    

52.     end   

53.     else if (data_en)   

54.     begin      

55.        

56.     gx2_reg     <=   gx2_in;   

57.     gy2_reg     <=   gy2_in;    

58.     gxy_reg     <=   gxy_in;    

59.     gxpy_reg    <=   gx2_in+gy2_in;   

60.        

61.        

62.     gxy2_reg    <=   gxy2;   

63.     gx2y2_reg   <=   gx2y2;   

64.     gxy22_reg   <=   gxy22;   

65.        

66.     R_l11   <=   gx2y2_reg   -   gxy2_reg;   

67.     R_l12   <=   {5'b0,gxy22_reg[63:5]};   

68.            
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69.     R_l2    <=   R_l11   -   R_l12;   

70.        

71.     fresult <=   (R_l2[63]==1'b0)?({1'b0,R_l2[62:0]}):({64'h0});   

72.    

73.     end   

74. end   

75.    

76. /***************************************************************************

**  

77.  *                            Combinational Logic                           

 *  

78.  ***************************************************************************

**/   

79.    

80. assign data_out = fresult;    

81.    

82. /***************************************************************************

**  

83.  *                              Internal Modules                            

 *  

84.  ***************************************************************************

**/   

85.    

86.    

87. mult1 u2 (   

88.     .clock(clk),   

89.     .clken(data_en),   

90.     .dataa(gx2_reg),   

91.     .datab(gy2_reg),   

92.     .result(gx2y2)   

93. );     

94. mult1 u3 (   

95.     .clock(clk),   

96.     .clken(data_en),   

97.     .dataa(gxy_reg),   

98.     .datab(gxy_reg),   

99.     .result(gxy2)   

100. );     

101. mult1 u4 (   

102.     .clock(clk),   

103.     .clken(data_en),   
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104.     .dataa(gxpy_reg),   

105.     .datab(gxpy_reg),   

106.     .result(gxy22)   

107. );     

108.    

109. endmodule   

Double threshold filtering Module 

1. module double_threshold_filtering (   

2.    

3.     input       clk,   

4.     input       rst,   

5.            

6.            

7.     input   [63:0] in_data,    

8.     input   [63:0] threshold,   

9.     input   data_en,   

10.    

11.     output [7:0] out_data   

12. );   

13.    

14. parameter WIDTH = 1024; // Image width in pixels   

15.    

16. wire [63:0] iline1;   

17. wire [63:0] iline2;   

18.    

19. reg  [63:0] oline0[2:0];   

20. reg  [63:0] oline1[2:0];   

21. reg  [63:0] oline2[2:0];   

22.    

23. reg         [ 7: 0] result;   

24.    

25.    

26. integer                 i;   

27.    

28.    

29.    

30.    

31. always @(posedge clk)   

32. begin   
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33.     if (rst )   

34.     begin   

35.         result      <=   8'h00;   

36.         for (i = 2; i >= 0; i = i-1)   

37.         begin   

38.             oline0[i] <= 64'h0;   

39.             oline1[i] <= 64'h0;   

40.             oline2[i] <= 64'h0;   

41.         end   

42.            

43.     end   

44.     else if (data_en)   

45.     begin   

46.        

47.         oline0[2] <= oline0[1];   

48.         oline1[2] <= oline1[1];   

49.         oline2[2] <= oline2[1];   

50.    

51.            

52.         oline0[1] <= oline0[0];   

53.         oline1[1] <= oline1[0];   

54.         oline2[1] <= oline2[0];   

55.    

56.         oline0[0]   <= in_data;   

57.         oline1[0]   <= iline1;   

58.         oline2[0]   <= iline2;   

59.            

60.    

61.        

62.    

63.    

64.         if ((oline1[1]>threshold)&&   

65.             //(oline1[1][63:0]>oline0[1][63:0])&&   

66.             //(oline1[1][63:0]>oline2[1][63:0])&&   

67.                

68.             (oline1[1]>oline0[2])&&   

69.             (oline1[1]>oline2[0])&&   

70.             (oline1[1]>oline0[0])&&   

71.             (oline1[1]>oline2[2])//&&   

72.                

73.             //(oline1[1][63:0]>oline1[0][63:0])&&   
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74.             //(oline1[1][63:0]>oline1[2][63:0])   

75.             )   

76.         result  <=  (oline1[1][30:18]>8'hFF)?(8'hFF):(oline1[1][25:18]);   

77.         //result    <=  (oline1[1][63:20]>16'hFFFF)?(16'hFFFF):(oline1[1][35

:20]);   

78.         else    

79.         result  <=   8'h00;   

80.    

81.            

82.     end   

83. end   

84.    

85.    

86.    

87.        

88.        

89. assign  out_data    =   result;   

90.    

91. //assign  T_in_wire=T_in;   

92.    

93. line u0 (   

94.   .clken(data_en),   

95.   .clock(clk),   

96.   .shiftin(in_data),   

97.   .shiftout(iline1)   

98. );   

99. defparam    

100.     u0.WD       = 64,   

101.     u0.SIZE = WIDTH;   

102.    

103.        

104. line u1 (   

105.   .clken(data_en),   

106.   .clock(clk),   

107.   .shiftin(iline1),   

108.   .shiftout(iline2)   

109. );   

110. defparam    

111.     u1.WD       = 64,   

112.     u1.SIZE = WIDTH;   

113.    
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114. endmodule   
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Appendix D  Codes of Harris Corner Detection 

with HLS approach  

1. #include "HLS/hls.h"   

2. #include "HLS/math.h"   

3.    

4. #include "HLS/ac_int.h"   

5.    

6.    

7. #define N 1024        

8. #define M 3   

9. #define RGB_D N*7-11   

10.    

11.    

12.    

13. struct int_v24 {   

14. unsigned char data[3];   

15. };   

16. struct int_v32 {   

17. unsigned char data[4];   

18. };   

19.    

20. struct direction_sobel {   

21. unsigned char data;   

22. unsigned char direction;   

23. };   

24.    

25. struct matrix {   

26. long  I_x2;   

27. long   I_y2;   

28. long   I_xy;   

29. };   

30.    

31. struct matrix_long {   

32. long long I_x2;   

33. long long I_y2;   

34. long long I_xy;   

35. };   

36. struct gaussian_level1 {   
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37.        

38. long  g_levelx0;   

39. long  g_levelx1;   

40. long g_levelx2;   

41. long  g_levelx3;   

42. long  g_levelx4;   

43. long  g_levelx5;   

44. long  g_levelx6;   

45.    

46. };   

47. struct gaussian_level2 {   

48.        

49. long  g_level20;   

50. long  g_level21;   

51. long  g_level22;   

52. long  g_level23;   

53. long  g_level24;   

54.    

55. };   

56.    

57.    

58.    

59. // Default stream behavior   

60. hls_avalon_streaming_component hls_always_run_component    

61. component void harris(   

62.               ihc::stream_in<int_v24, ihc::bitsPerSymbol<8>,ihc::usesPackets

<true> >& a,   

63.               ihc::stream_out<int_v24, ihc::bitsPerSymbol<8>,ihc::usesPacket

s<true> >& b   

64.              // ,ihc::stream_out<int, ihc::usesPackets<true> >& c   

65.             //  ,ihc::stream_out<int, ihc::usesPackets<true> >& d   

66.               ) {   

67.                      

68.                      

69. bool start_of_packet = false;   

70. bool end_of_packet   = false;      

71.    

72.    

73. int_v24 a1;   

74. int_v24 b1;   

75. //int b1,c1,d1;   
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76. //int_v24 rgb_buffer[RGB_D];   

77. int buffer[3];   

78. int grey;   

79.    

80. int s_levelx0,s_levelx1,s_levelx2;   

81. int s_levely0,s_levely1;   

82. int s_x,s_y;   

83.    

84. long long R,threshold,th,RX;   

85.    

86. matrix M_I,M_G;   

87. matrix_long M_R,M_S,M_F;   

88. gaussian_level1 g_Ix2_level1,g_Iy2_level1,g_Ixy_level1;   

89. gaussian_level2 g_Ix2_level2,g_Iy2_level2,g_Ixy_level2;   

90.    

91. long long x2,y2,xy,x2_y2;   

92.    

93. long long result_x2y2,result_xy2,result_xy22;   

94.    

95. long long  R_line0[N],R_line1[N],R_line2[N];   

96.    

97. matrix  line0[N], line1[N], line2[N], line3[N],line4[N];   

98.    

99. unsigned short int grey_line0[N],grey_line1[N],grey_line2[N];   

100.    

101. unsigned short int final_result;   

102.    

103.      

104.         while(!end_of_packet) {   

105.             // Blocking read from the input stream   

106.             a1 = a.read(start_of_packet, end_of_packet);             

107.             #pragma unroll   

108.             for(int i=0;i < 3; i++)   

109.             {   

110.             buffer[i]=a1.data[i];   

111.             }   

112.             //grey result   

113.    

114.             grey=(buffer[0]*76+buffer[1]*150+buffer[2]*29)>>8;   

115.                

116.                
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117.             #pragma unroll   

118.             for (int i = N - 1; i > 0; --i) {   

119.                 grey_line0[i] = grey_line0[i-1];   

120.                 grey_line1[i] = grey_line1[i-1];   

121.                 grey_line2[i] = grey_line2[i-1];   

122.               }   

123.             grey_line0[0] = grey;   

124.             grey_line1[0] = grey_line0[N-1];               

125.             grey_line2[0] = grey_line1[N-1];       

126.                

127.    

128.                

129.    

130.    

131.                

132.         //Sobel filter    

133.             s_levelx0=grey_line0[N-1] +(grey_line1[N-1]*2) +grey_line2[N-

1];   

134.             s_levelx1=grey_line0[N-3] +(grey_line1[N-3]*2) +grey_line2[N-

3];   

135.    

136.                

137.             s_levely0=grey_line0[N-1]+(grey_line0[N-2]*2)+grey_line0[N-

3];   

138.             s_levely1=grey_line2[N-1]+(grey_line2[N-2]*2)+grey_line2[N-

3];   

139.                

140.             s_x=s_levelx1-s_levelx0;   

141.                            

142.             s_y=s_levely0-s_levely1;   

143.                

144.             M_I.I_x2=s_x*s_x;   

145.             M_I.I_y2=s_y*s_y;   

146.             M_I.I_xy=s_x*s_y;   

147.    

148.             // 5 buffered lines   

149.             #pragma unroll   

150.             for (int i = N - 1; i > 0; --i) {   

151.                 line0[i] = line0[i-1];   

152.                 line1[i] = line1[i-1];   

153.                 line2[i] = line2[i-1];   
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154.                 line3[i] = line3[i-1];   

155.                 line4[i] = line4[i-1];   

156.              }   

157.             line0[0] = M_I;   

158.             line1[0] = line0[N-1];   

159.             line2[0] = line1[N-1];   

160.             line3[0] = line2[N-1];   

161.             line4[0] = line3[N-1];   

162.    

163.                

164.                

165.                

166.        

167.         //Gaussian filter   

168.         //x2   

169.             g_Ix2_level1.g_levelx0= (line0[N-1].I_x2 + line4[N-

1].I_x2 + line0[N-5].I_x2 + line4[N-5].I_x2)<<1;   

170.             g_Iy2_level1.g_levelx0= (line0[N-1].I_y2 + line4[N-

1].I_y2 + line0[N-5].I_y2 + line4[N-5].I_y2)<<1;   

171.             g_Ixy_level1.g_levelx0= (line0[N-1].I_xy + line4[N-

1].I_xy + line0[N-5].I_xy + line4[N-5].I_xy)<<1;   

172.    

173.         //x4   

174.             g_Ix2_level1.g_levelx1= (line1[N-1].I_x2 + line3[N-

1].I_x2 + line0[N-2].I_x2 + line4[N-2].I_x2)<<2;   

175.             g_Ix2_level1.g_levelx2= (line0[N-4].I_x2 + line4[N-

4].I_x2 + line1[N-5].I_x2 + line3[N-5].I_x2)<<2;   

176.             g_Iy2_level1.g_levelx1= (line1[N-1].I_y2 + line3[N-

1].I_y2 + line0[N-2].I_y2 + line4[N-2].I_y2)<<2;   

177.             g_Iy2_level1.g_levelx2= (line0[N-4].I_y2 + line4[N-

4].I_y2 + line1[N-5].I_y2 + line3[N-5].I_y2)<<2;   

178.             g_Ixy_level1.g_levelx1= (line1[N-1].I_xy + line3[N-

1].I_xy + line0[N-2].I_xy + line4[N-2].I_xy)<<2;   

179.             g_Ixy_level1.g_levelx2= (line0[N-4].I_xy + line4[N-

4].I_xy + line1[N-5].I_xy + line3[N-5].I_xy)<<2;   

180.         //x5   

181.             g_Ix2_level1.g_levelx3= line2[N-1].I_x2 + line0[N-

3].I_x2 + line4[N-3].I_x2 + line2[N-5].I_x2;   

182.             g_Iy2_level1.g_levelx3= line2[N-1].I_y2 + line0[N-

3].I_y2 + line4[N-3].I_y2 + line2[N-5].I_y2;   
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183.             g_Ixy_level1.g_levelx3= line2[N-1].I_xy + line0[N-

3].I_xy + line4[N-3].I_xy + line2[N-5].I_xy;   

184.         //x9   

185.             g_Ix2_level1.g_levelx4= line1[N-2].I_x2 + line3[N-

2].I_x2 + line1[N-4].I_x2 + line3[N-4].I_x2;   

186.             g_Iy2_level1.g_levelx4= line1[N-2].I_y2 + line3[N-

2].I_y2 + line1[N-4].I_y2 + line3[N-4].I_y2;   

187.             g_Ixy_level1.g_levelx4= line1[N-2].I_xy + line3[N-

2].I_xy + line1[N-4].I_xy + line3[N-4].I_xy;   

188.    

189.         //x12   

190.             g_Ix2_level1.g_levelx5= line2[N-2].I_x2 + line1[N-

3].I_x2 + line3[N-3].I_x2 + line2[N-4].I_x2;   

191.             g_Iy2_level1.g_levelx5= line2[N-2].I_y2 + line1[N-

3].I_y2 + line3[N-3].I_y2 + line2[N-4].I_y2;   

192.             g_Ixy_level1.g_levelx5= line2[N-2].I_xy + line1[N-

3].I_xy + line3[N-3].I_xy + line2[N-4].I_xy;   

193.            

194.         //x15   

195.            

196.             g_Ix2_level1.g_levelx6= (line2[N-3].I_x2<<4)-line2[N-3].I_x2;   

197.             g_Iy2_level1.g_levelx6= (line2[N-3].I_y2<<4)-line2[N-3].I_y2;   

198.             g_Ixy_level1.g_levelx6= (line2[N-3].I_xy<<4)-line2[N-3].I_xy;   

199.                

200.            

201.    

202.            

203.             g_Ix2_level2.g_level20= g_Ix2_level1.g_levelx0+g_Ix2_level1.g_l

evelx6;   

204.             g_Iy2_level2.g_level20= g_Iy2_level1.g_levelx0+g_Iy2_level1.g_l

evelx6;   

205.             g_Ixy_level2.g_level20= g_Ixy_level1.g_levelx0+g_Ixy_level1.g_l

evelx6;   

206.    

207.             g_Ix2_level2.g_level21= g_Ix2_level1.g_levelx1 + g_Ix2_level1.g

_levelx2;   

208.             g_Iy2_level2.g_level21= g_Iy2_level1.g_levelx1 + g_Iy2_level1.g

_levelx2;   

209.             g_Ixy_level2.g_level21= g_Ixy_level1.g_levelx1 + g_Ixy_level1.g

_levelx2;   

210.    
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211.             g_Ix2_level2.g_level22= (g_Ix2_level1.g_levelx3<<2) +g_Ix2_leve

l1.g_levelx3;   

212.             g_Iy2_level2.g_level22= (g_Iy2_level1.g_levelx3<<2) +g_Iy2_leve

l1.g_levelx3;   

213.             g_Ixy_level2.g_level22= (g_Ixy_level1.g_levelx3<<2) +g_Ixy_leve

l1.g_levelx3;   

214.    

215.             g_Ix2_level2.g_level23= (g_Ix2_level1.g_levelx4<<3) +g_Ix2_leve

l1.g_levelx4;   

216.             g_Iy2_level2.g_level23= (g_Iy2_level1.g_levelx4<<3) +g_Iy2_leve

l1.g_levelx4;   

217.             g_Ixy_level2.g_level23= (g_Ixy_level1.g_levelx4<<3) +g_Ixy_leve

l1.g_levelx4;   

218.    

219.             g_Ix2_level2.g_level24= (g_Ix2_level1.g_levelx5<<3) +(g_Ix2_lev

el1.g_levelx5<<2);   

220.             g_Iy2_level2.g_level24= (g_Iy2_level1.g_levelx5<<3) +(g_Iy2_lev

el1.g_levelx5<<2);   

221.             g_Ixy_level2.g_level24= (g_Ixy_level1.g_levelx5<<3) +(g_Ixy_lev

el1.g_levelx5<<2);   

222.                

223.                

224.             M_G.I_x2 =      (g_Ix2_level2.g_level20+g_Ix2_level2.g_level21+

g_Ix2_level2.g_level22 +g_Ix2_level2.g_level23+g_Ix2_level2.g_level24)/159; 

  

225.                

226.             M_G.I_y2 =      (g_Iy2_level2.g_level20+g_Iy2_level2.g_level21+

g_Iy2_level2.g_level22 +g_Iy2_level2.g_level23+g_Iy2_level2.g_level24)/159; 

  

227.                

228.             M_G.I_xy =      (g_Ixy_level2.g_level20+g_Ixy_level2.g_level21+

g_Ixy_level2.g_level22 +g_Ixy_level2.g_level23+g_Ixy_level2.g_level24)/159; 

  

229.    

230.             x2=M_G.I_x2;   

231.             y2=M_G.I_y2;   

232.             xy=M_G.I_xy;   

233.             x2_y2=M_G.I_x2+M_G.I_y2;   

234.                

235.                

236.             result_x2y2 =   x2*y2;   
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237.             result_xy2  =   xy*xy;   

238.             result_xy22 =   x2_y2*x2_y2;   

239.    

240.             R=(result_x2y2-result_xy2)-(result_xy22>>5);   

241.                

242.             RX=(R>0)?R:0;   

243.    

244.                

245.             if(threshold<R)   

246.             {   

247.             threshold = R;   

248.             //th=threshold>>3;   

249.             }   

250.             else{   

251.                 threshold=threshold;       

252.             }   

253.             th=threshold>>4;   

254.             //th=0;//2200000000;   

255.        

256.            

257.             #pragma unroll   

258.             for (int i = N - 1; i > 0; --i) {   

259.                 R_line0[i] = R_line0[i-1];   

260.                 R_line1[i] = R_line1[i-1];   

261.                 R_line2[i] = R_line2[i-1];   

262.               }   

263.             R_line0[0] = RX;   

264.             R_line1[0] = R_line0[N-1];             

265.             R_line2[0] = R_line1[N-1];   

266.                

267.             if(   

268.             (R_line1[N-2]>th) &&    

269.             (R_line1[N-2] > R_line0[N-3]) &&    

270.             (R_line1[N-2] > R_line0[N-1]) &&    

271.             (R_line1[N-2] > R_line2[N-1]) &&    

272.             (R_line1[N-2] > R_line2[N-3])   

273.    

274.             ){   

275.                

276.             final_result=255;   

277.             }   
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278.             else   

279.             {   

280.             final_result=0;}   

281.            

282.    

283.            

284.            

285.             b1.data[0]=final_result;   

286.             b1.data[1]=final_result;   

287.             b1.data[2]=final_result;   

288.             b.write(b1, start_of_packet, end_of_packet);   

289.    

290.                

291.         }   

292. }   

293.    

294.    

295. int main (void) {   

296.        

297.   bool pass = true;   

298.    

299.     

300.    

301.   if (pass) {   

302.     printf("PASSED\n");   

303.   } else {   

304.     printf("FAILED\n");   

305.   }   

306.    

307.   return 0;   

308. }   
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Appendix E Customized “Good feature to track” 

OpenCV Code  

1. #define soc_cv_av   

2. #include <iostream>   

3. #include <stdio.h>   

4. #include <unistd.h>   

5. #include <fcntl.h>   

6. #include <sys/mman.h>   

7. #include <sys/types.h>   

8. #include <inttypes.h>   

9. #include <memory.h>   

10. #include <pthread.h>   

11. #include <stdlib.h>   

12. #include <time.h>   

13. #include <sys/time.h>   

14. #include "/home/shaonan/intelFPGA/17.0/embedded/ip/altera/hps/altera_hps/hwl

ib/include/hwlib.h"   

15. #include "/home/shaonan/intelFPGA/17.0/embedded/ip/altera/hps/altera_hps/hwl

ib/include/soc_cv_av/socal/socal.h"   

16. #include "/home/shaonan/intelFPGA/17.0/embedded/ip/altera/hps/altera_hps/hwl

ib/include/soc_cv_av/socal/hps.h"   

17. #include "/home/shaonan/intelFPGA/17.0/embedded/ip/altera/hps/altera_hps/hwl

ib/include/soc_cv_av/socal/alt_gpio.h"   

18. #include "hps_0.h"   

19.    

20. #include "math.h"   

21.    

22. #include "opencv2/imgproc.hpp"   

23. #include "opencv2/imgcodecs.hpp"   

24. #include "opencv2/objdetect.hpp"   

25.    

26. #define HW_REGS_BASE ( ALT_STM_OFST )   

27. #define HW_REGS_SPAN ( 0x04000000 )   

28. #define HW_REGS_MASK ( HW_REGS_SPAN - 1 )   

29.    

30.    

31.    

32. #define ALT_AXI_FPGASLVS_OFST (0xC0000000)  // axi_master   
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33. #define HW_FPGA_AXI_SPAN (0x40000000)  // Bridge span   

34. #define HW_FPGA_AXI_MASK ( HW_FPGA_AXI_SPAN - 1 )   

35. //1024x768   

36.    

37. #define Buffer0 ( 0x04000000 )   

38. #define Buffer1 ( 0x04600000 )   

39. #define Buffer2 ( 0x04C00000 )   

40.    

41. #define mapped_Buffer0 ( 0x06000000 )   

42. #define mapped_Buffer1 ( 0x06600000 )   

43. #define mapped_Buffer2 ( 0x06C00000 )   

44.    

45. //1024x768   

46.    

47. #define Reader1_Buffer0 ( 0x12000000 )   

48. #define Reader1_Buffer1 ( 0x12240000 )   

49. #define Reader1_Buffer2 ( 0x12480000 )   

50.    

51.    

52. #define Buffer_r0 ( 0x10000000 )   

53. #define Buffer_r1 ( 0x10240000 )   

54. #define Buffer_r2 ( 0x10480000 )   

55.    

56. //640   

57. /*  

58. #define Buffer0 ( 0x04000000 )  

59. #define Buffer1 ( 0x04258000 )  

60. #define Buffer2 ( 0x044B0000 )  

61.   

62. #define mapped_Buffer0 ( 0x06000000 )  

63. #define mapped_Buffer1 ( 0x06258000 )  

64. #define mapped_Buffer2 ( 0x064B0000 )  

65.   

66. //640  

67. #define Reader1_Buffer0 ( 0x12000000 )  

68. #define Reader1_Buffer1 ( 0x120E1000 )  

69. #define Reader1_Buffer2 ( 0x121C2000 )  

70.   

71.   

72. #define Buffer_r0 ( 0x10000000 )  

73. #define Buffer_r1 ( 0x100E1000 )  
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74. #define Buffer_r2 ( 0x101C2000 )  

75. */   

76. /*  

77. //800  

78. #define Buffer0 ( 0x04000000 )  

79. #define Buffer1 ( 0x043A9800 )  

80. #define Buffer2 ( 0x04753000 )  

81.   

82. #define mapped_Buffer0 ( 0x06000000 )  

83. #define mapped_Buffer1 ( 0x063A9800 )  

84. #define mapped_Buffer2 ( 0x06753000 )  

85.   

86.   

87. //800  

88. #define Reader1_Buffer0 ( 0x12000000 )  

89. #define Reader1_Buffer1 ( 0x1215F900 )  

90. #define Reader1_Buffer2 ( 0x122BF200 )  

91.   

92.   

93. #define Buffer_r0 ( 0x10000000 )  

94. #define Buffer_r1 ( 0x1015F900 )  

95. #define Buffer_r2 ( 0x102BF200 )  

96. */   

97. //1024x768   

98.    

99. #define WIDTH       (1024)   

100. #define HEIGHT      (768)   

101. //640   

102. //#define WIDTH     (640)   

103. //#define HEIGHT        (480)   

104.        

105. //800   

106. //#define WIDTH     (800)   

107. //#define HEIGHT        (600)   

108. #define resolution  ( WIDTH*HEIGHT )   

109.    

110.    

111. #define buffer_size0    ( resolution*3*8 )   

112. #define buffer_size ( resolution*3*3 )   

113.    

114. #define frame_size  ( resolution*3 )   
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115. #define page_size   ( resolution*8 )   

116.    

117. #define processing_area ( resolution )   

118. using namespace cv;   

119. using namespace std;   

120.    

121.    

122. static volatile  unsigned int  *frame_reader_addr=NULL;   

123. static volatile  unsigned int  *frame_writer_addr=NULL;   

124.    

125. static volatile  unsigned int  *frame_reader_addr_base=NULL;   

126. static volatile  unsigned int  *frame_writer_addr_base=NULL;   

127.    

128.    

129.    

130.    

131.         Mat img(HEIGHT,WIDTH,CV_16UC1);   

132.    

133.         Mat eig(HEIGHT,WIDTH,CV_32FC1);   

134.    

135.         Mat frame(HEIGHT,WIDTH,CV_8UC3);   

136.         Mat frame_gray(HEIGHT,WIDTH,CV_8UC1);   

137.         Mat dst(HEIGHT,WIDTH,CV_8UC3);   

138.         Mat edge1,dst_scaled;   

139.         RNG rng(12345);   

140.    

141.    

142.    

143.   int blockSize = 2;   

144.   int apertureSize = 3;   

145.   double k = 0.04;   

146. int thresh = 200;   

147. int max_thresh = 255;   

148.    

149. struct greaterThanPtr :   

150.         public std::binary_function<const float *, const float *, bool>   

151. {   

152.     bool operator () (const float * a, const float * b) const   

153.     // Ensure a fully deterministic result of the sort   

154.     { return (*a > *b) ? true : (*a < *b) ? false : (a > b); }   

155. };   
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156.    

157. /////////////////////////////////////////////////////////   

158. // VIP Frame Buffer(writer/reader): configure   

159.    

160. void    frame_reader_conf(){   

161.     frame_reader_addr[0]=0x01;   

162.        

163.     frame_reader_addr[5]=0x800300; //1024   

164.     //frame_reader_addr[5]=0x5001E0; //640   

165.     //frame_reader_addr[5]=0x640258;    //800   

166.     frame_reader_addr[6]=Buffer_r0;        

167. }   

168.    

169. void    frame_writer_conf(){   

170.    

171.    

172.     frame_writer_addr[0]=0x01;   

173.     frame_writer_addr[8]=0x00010001;   

174.        

175. }   

176.    

177.    

178.    

179.    

180.    

181.    

182.    

183.    

184. void goodfeature(  OutputArray _corners,   

185.                               int maxCorners, double minDistance,   

186.                               InputArray _mask    

187.                               )   

188. {   

189.     

190.    

191.     Mat  tmp;   

192.        

193.    

194.     if (frame_gray.empty()||eig.empty())   

195.     {   

196.         _corners.release();   
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197.         return;   

198.     }   

199.      

200.    

201.     dilate( eig, tmp, Mat());   

202.    

203.     Size imgsize = frame_gray.size();   

204.     std::vector<const float*> tmpCorners;   

205.    

206.     // collect list of pointers to features - put them into temporary image

   

207.     Mat mask = _mask.getMat();   

208.     for( int y = 1; y < imgsize.height - 1; y++ )   

209.     {   

210.         const float* eig_data = (const float*)eig.ptr(y);   

211.         const float* tmp_data = (const float*)tmp.ptr(y);   

212.         const uchar* mask_data = mask.data ? mask.ptr(y) : 0;   

213.    

214.         for( int x = 1; x < imgsize.width - 1; x++ )   

215.         {   

216.             float val = eig_data[x];   

217.             if( val != 0 && val == tmp_data[x] && (!mask_data || mask_data[

x]) )   

218.                 tmpCorners.push_back(eig_data + x);   

219.         }   

220.     }   

221.    

222.     std::vector<Point2f> corners;   

223.     size_t i, j, total = tmpCorners.size(), ncorners = 0;   

224.    

225.     cout<<"** Total of corners detected: "<<total<<endl;   

226.        

227.     if (total == 0)   

228.     {   

229.         _corners.release();   

230.         return;   

231.     }   

232.    

233.     std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() );   

234.    

235.     if (minDistance >= 1)   
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236.     {   

237.          // Partition the image into larger grids   

238.         int w = frame_gray.cols;   

239.         int h = frame_gray.rows;   

240.    

241.         const int cell_size = cvRound(minDistance);   

242.         const int grid_width = (w + cell_size - 1) / cell_size;   

243.         const int grid_height = (h + cell_size - 1) / cell_size;   

244.    

245.         std::vector<std::vector<Point2f> > grid(grid_width*grid_height);   

246.    

247.         minDistance *= minDistance;   

248.    

249.         for( i = 0; i < total; i++ )   

250.         {   

251.             int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());   

252.             int y = (int)(ofs / eig.step);   

253.             int x = (int)((ofs - y*eig.step)/sizeof(float));   

254.    

255.             bool good = true;   

256.    

257.             int x_cell = x / cell_size;   

258.             int y_cell = y / cell_size;   

259.    

260.             int x1 = x_cell - 1;   

261.             int y1 = y_cell - 1;   

262.             int x2 = x_cell + 1;   

263.             int y2 = y_cell + 1;   

264.    

265.             // boundary check   

266.             x1 = std::max(0, x1);   

267.             y1 = std::max(0, y1);   

268.             x2 = std::min(grid_width-1, x2);   

269.             y2 = std::min(grid_height-1, y2);   

270.    

271.             for( int yy = y1; yy <= y2; yy++ )   

272.             {   

273.                 for( int xx = x1; xx <= x2; xx++ )   

274.                 {   

275.                     std::vector <Point2f> &m = grid[yy*grid_width + xx];   

276.    
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277.                     if( m.size() )   

278.                     {   

279.                         for(j = 0; j < m.size(); j++)   

280.                         {   

281.                             float dx = x - m[j].x;   

282.                             float dy = y - m[j].y;   

283.    

284.                             if( dx*dx + dy*dy < minDistance )   

285.                             {   

286.                                 good = false;   

287.                                 goto break_out;   

288.                             }   

289.                         }   

290.                     }   

291.                 }   

292.             }   

293.    

294.             break_out:   

295.    

296.             if (good)   

297.             {   

298.                 grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x

, (float)y));   

299.    

300.                 corners.push_back(Point2f((float)x, (float)y));   

301.                 ++ncorners;   

302.    

303.                 if( maxCorners > 0 && (int)ncorners == maxCorners )   

304.                     break;   

305.             }   

306.         }   

307.     }   

308.     else   

309.     {   

310.         for( i = 0; i < total; i++ )   

311.         {   

312.             int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());   

313.             int y = (int)(ofs / eig.step);   

314.             int x = (int)((ofs - y*eig.step)/sizeof(float));   

315.    

316.             corners.push_back(Point2f((float)x, (float)y));   
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317.             ++ncorners;   

318.             if( maxCorners > 0 && (int)ncorners == maxCorners )   

319.                 break;   

320.         }   

321.     }   

322.    

323.     Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type()

 : CV_32F);   

324. }   

325.    

326.    

327.    

328. void goodFeaturesToTrack_Demo( )   

329. {   

330.     int maxCorners = 20;   

331.   //if( maxCorners < 1 ) { maxCorners = 1; }   

332.    

333.   /// Parameters for Shi-Tomasi algorithm   

334.   vector<Point2f> corners;   

335.   double minDistance = 10;   

336.    

337.    

338.   /// Copy the source image   

339.    

340.    

341.   /// Apply corner detection   

342.   goodfeature( corners,   

343.                maxCorners,   

344.                minDistance,   

345.                Mat()   

346.         );   

347.    

348.    

349.   /// Draw corners detected   

350.   cout<<"** Number of corners detected: "<<corners.size()<<endl;   

351.   int r = 6;   

352.   for( size_t i = 0; i < corners.size(); i++ )   

353.      { circle( dst, corners[i], r, Scalar(rng.uniform(0,255), rng.uniform(0

,255), rng.uniform(0,255)), -1, 8, 0 ); }   

354.    

355.  //    
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356.    

357.   /// Set the neeed parameters to find the refined corners   

358.   Size winSize = Size( 5, 5 );   

359.   Size zeroZone = Size( -1, -1 );   

360.   TermCriteria criteria = TermCriteria( TermCriteria::EPS + TermCriteria::C

OUNT, 40, 0.001 );   

361.    

362.   /// Calculate the refined corner locations   

363.   cornerSubPix( frame_gray, corners, winSize, zeroZone, criteria );   

364.    

365.   /// Write them down   

366.   for( size_t i = 0; i < corners.size(); i++ )   

367.      { cout<<" -

- Refined Corner ["<<i<<"]  ("<<corners[i].x<<","<<corners[i].y<<")"<<endl; 

}   

368. }   

369.    

370.    

371.    

372. static long get_tick_count(void)   

373. {   

374.     struct timespec now;   

375.     clock_gettime(CLOCK_MONOTONIC, &now);   

376.     //return now.tv_sec*1000000 + now.tv_nsec/1000;   

377.     return now.tv_sec*1000000 + now.tv_nsec/1000;   

378. }   

379.    

380.    

381. void processing(uint8_t *ptr,uint8_t *ptr1,uint8_t *ptr2,uint16_t *ptr3)   

382. {   

383.     uint8_t *data0,*data1,*data2;   

384.     uint16_t *ptrx;   

385.     uint16_t *data3;   

386.     int i,j=0,k=0,l=0,m=0;   

387.     data0=ptr;   

388.     data1=ptr1;   

389.     data2=ptr2;   

390.     data3=ptr3;   

391.     ptrx=(uint16_t *)ptr;   

392.     for(i=0;i<=page_size;i+=8){   

393.     data1[j]=data0[i];   
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394.     data1[j+1]=data0[i+1];   

395.     data1[j+2]=data0[i+2];   

396.    

397.     data2[k]=data0[i+3];   

398.    

399.     data3[k]=ptrx[l+2];   

400.     j+=3;   

401.     k++;   

402.     l+=4;          

403.     }   

404.    

405.    

406. }   

407.    

408.    

409.    

410. void* read_data(){   

411.    

412.     //int edgeThresh = 20;   

413.     //int edgeThreshScharr=1;   

414.    

415.         uint8_t *data0,*data1,*data2;   

416.         uint16_t *data3;   

417.         //unsigned char *data_base=NULL;   

418.            

419.         uint32_t time_start,time_elapsed;   

420.         data0=(uint8_t *)malloc(page_size);   

421.         data1=(uint8_t *)malloc(frame_size);   

422.         data2=(uint8_t *)malloc(resolution);   

423.         data3=(uint16_t *)malloc(resolution);      

424.         //data_base=data0;   

425.             time_start = get_tick_count();   

426.         while(1)   

427.         {      

428.            

429.         while (frame_writer_addr[5]<0x80000000){};   

430.            

431.        

432.         printf("frame_writer_addr[6]=0x%X\n",frame_writer_addr[6]);   

433.    

434.        
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435.         switch(frame_writer_addr[6]){   

436.             case Buffer0:   

437.             memcpy((void*)data0,(void*)mapped_Buffer0,page_size);          

438.             break;   

439.             case Buffer1:   

440.             memcpy((void*)data0,(void*)mapped_Buffer1,page_size);          

441.             break;   

442.             case Buffer2:   

443.             memcpy((void*)data0,(void*)mapped_Buffer2,page_size);      

444.             break;   

445.             default:   

446.             break;   

447.         }   

448.         frame_writer_addr[8]=0x00010001;   

449.        

450.         processing(data0,data1,data2,data3);   

451.    

452.    

453. /*1024  

454.         Mat frame(768,1024,CV_8UC3,data1);  

455.         Mat frame_gray(768,1024,CV_8UC1,data2);  

456.         Mat img(768,1024,CV_16UC1,data3);  

457. */   

458.         Mat frame(HEIGHT,WIDTH,CV_8UC3,data1);   

459.    

460.    

461.         //Mat frame_gray(HEIGHT,WIDTH,CV_8UC1,data2);   

462.         //Mat img(HEIGHT,WIDTH,CV_16UC1,data3);   

463.    

464.         //img.convertTo(eig, CV_32FC1,1,0);   

465.         cvtColor( frame, frame_gray, COLOR_RGB2GRAY );   

466.         frame.copyTo(dst);   

467.         goodFeaturesToTrack_Demo();   

468.         //imwrite("opencv.jpg",dst);   

469.    

470.    

471.            

472.         while(frame_reader_addr[7]<0x04000000){};   

473.            

474.    

475.    
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476.         memcpy((void *)Reader1_Buffer0 , dst.ptr(), frame_size);   

477.         //memcpy((void *)Reader1_Buffer0 , (void *)data1, frame_size);   

478.             frame_reader_addr[5]=0x800300; //1024   

479.             //frame_reader_addr[5]=0x5001E0; //640   

480.             //frame_reader_addr[5]=0x640258;    //800   

481.    

482.             frame_reader_addr[6]=Buffer_r0 ;   

483.                

484.             time_elapsed = get_tick_count() - time_start;   

485.             if (time_elapsed)   

486.             printf("time_elapsed whole processing  =%.5f s\r\n", (float)tim

e_elapsed/1000000);   

487.        

488.             time_start = get_tick_count();   

489.        

490.         //printf("frame writer counter=%d\n",frame_writer_addr[3]);   

491.         //if (frame_writer_addr[3]<30){   

492.         //imwrite( "opencv.jpg", dst );   

493.         //imwrite( "rgb.jpg")   

494.         //}   

495.            

496. }   

497. free(data0);   

498.            

499. }   

500.    

501.    

502.    

503.    

504. int main(int argc,char ** argv)   

505. {   

506.    

507.    

508.    

509.    

510.    

511.      void *lw_axi_virtual_base=NULL;   

512.      void *virtual_base=NULL;   

513.     int fd;   

514.    

515.    
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516.    

517.     if( ( fd = open( "/dev/mem", ( O_RDWR | O_SYNC ) ) ) == -1 )   

518.         {   

519.             printf( "ERROR: could not open \"/dev/mem\"...\n" );   

520.             return( 1 );   

521.         }   

522.    

523.            

524.            

525.    

526.     printf("Memory mapped successed\n");   

527.        

528.     lw_axi_virtual_base = mmap( NULL, HW_REGS_SPAN, ( PROT_READ | PROT_WRIT

E ), MAP_SHARED, fd, HW_REGS_BASE );    

529.     printf("lw_virtual_base=0x%X\n",lw_axi_virtual_base);   

530.     if( lw_axi_virtual_base == MAP_FAILED ) {   

531.         printf( "ERROR: mmap() failed...\n" );   

532.         close( fd );   

533.         return( 1 );   

534.     }   

535.        

536.    

537.     //IP control    

538.     frame_writer_addr= ( unsigned int *)((uint8_t *)lw_axi_virtual_base + (

 ( ALT_LWFPGASLVS_OFST + ALT_VIP_CL_VFB_3_BASE ) & ( HW_REGS_MASK ) ));   

539.     frame_reader_addr= ( unsigned int *) ((uint8_t *)lw_axi_virtual_base + 

( ( ALT_LWFPGASLVS_OFST + ALT_VIP_CL_VFB_0_BASE ) & ( HW_REGS_MASK ) ));   

540.        

541.        

542.    

543.     frame_writer_conf();   

544.     printf("writer configure successed\n");   

545.    

546.     frame_reader_conf();   

547.    

548.     printf("reader configure successed\n");   

549.        

550.    

551.     frame_writer_addr_base=( unsigned int *) mmap( (void *)mapped_Buffer0 ,

 buffer_size0, ( PROT_READ | PROT_WRITE ), MAP_SHARED, fd, Buffer0 );   

552.         if( frame_writer_addr_base == MAP_FAILED ) {   
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553.         printf( "ERROR: mmap() failed...\n" );   

554.         close( fd );   

555.         return( 1 );   

556.     }   

557.    

558.     frame_reader_addr_base= ( unsigned int *) mmap( (void *)Reader1_Buffer0

 , buffer_size, ( PROT_READ | PROT_WRITE ), MAP_SHARED, fd, Buffer_r0 );   

559.         if( frame_reader_addr_base == MAP_FAILED ) {   

560.         printf( "ERROR: mmap() failed...\n" );   

561.         close( fd );   

562.         return( 1 );   

563.     }   

564.        

565.        

566.     printf("frame_reader_addr_base=0x%X\n",frame_reader_addr_base);   

567.     printf("frame_writer_addr_base=0x%X\n",frame_writer_addr_base);   

568.    

569.        

570.    

571.     read_data();   

572.        

573.    

574.    

575.     close( fd );   

576.    

577.    

578.    

579.   return 0;   

580. }   

 


