

UNIVERSITY OF LIVERPOOL

Real Time Image Processing on FPGAs

A THESIS SUBMITTED TO THE UNIVERSITY OF LIVERPOOL FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN THE FACULTY OF SCIENCE AND ENGINEERING

Department of Electrical Engineering and Electronics

Shaonan Zhang

January 2018

Abstract

Shaonan Zhang i

Abstract

In recent years, due to improvements in semiconductor technology, FPGA

devices and embedded systems have both been gaining popularity in numerous

areas, from vehicle-mounted systems to the latest iPhones. Recently, as Intel

(Altera) and Xilinx both released their new generations of ARM A9 processor

integrated FPGAs, they have become very popular platforms which combine the

hardware features of an FPGA and an embedded systems software’s flexibility.

This makes it suitable platforms to apply complex algorithms for real time

processing of video images.

Feature tracking is a popular topic in image processing and usually includes one

or more pre-processing methods such as corner detection, colour

segmentation, etc. that could be undertaken on the FPGA with little latency.

After the pre-processing, complex post-processing algorithms running on the

ARM processors, that use the results from the pre-processing, can be

implemented in the embedded systems.

The research described in this thesis investigated the use of low cost FPGASoC

devices for real time image processing by developing a real-time image

processing system with several methods for implementing the pre-processing

algorithms within the FPGA. The thesis also provides the details of an

embedded Linux based FPGASoC design and introduces the OpenCV library and

demonstrates the use of OpenCV co-processing with the FPGA. The tested

system used a low cost FPGASoC board, the DE1-SOC, which is manufactured

by Terasic Inc. As a platform which contains a Cyclone V FPGA designed by

Intel with a dual-core ARM A9 processor, the application developed is based on

a customized OpenCV programme running on the ARM processors and

Abstract

Shaonan Zhang ii

concurrently receives the pre-processing result processed by the FPGA. With

the FPGA acceleration, the developed system outperforms a software-only

system by reducing the total processing time by 48.2%, 49.5% and 56.1% at

resolutions of 640x480, 800x600 and 1024x768 separately.

This reduction in processing time allows an improvement in the performance of

systems using the results from the real-time image processing system.

Acknowledgements

Shaonan Zhang iii

Acknowledgements

I would like to express my special thanks for my supervisor, Professor Jeremy

S. Smith for his guidance and support for my research and my thesis writing.

Meanwhile, I would like to thank my colleagues and their help. I also wish to

thank my parents for their supports on my PhD study. Then I would like to

thank Zhe Yang, who gave me a lot of help during the first two years of my

research. Additionally, I would like to thank the members of staff of the

Department of Electrical Engineering and Electronics, especially Professor A.

Marshall for use of the Departmental Facilities and Equipment. Finally, thanks

to all my other friends for their encouragement and help.

Glossary

Shaonan Zhang iv

Glossary

ALiS—Alternate Lighting of Surfaces

ALU—Arithmetic Logic Unit

ASIC—Application Specific Integrated Circuit

CLB—Configurable Logic Block

CPU—Central Processing Unit

CRT—The Cathode Ray Tube

DSP—Digital Signal Processing

EDS—Embedded Development Suite

FPC—Flexible PIC Concentrators

FPGA—Field-Programmable Gate Array

FPGASoC—Field-Programmable Gate Array System on a Chip

GPU—Graphic Processing Unit

HDL—Hardware Description Language

HDMI—High-Definition Multimedia Interface

HLS – High Level Synthesis

HPS—Hardware Processing System

LCD—Liquid-crystal display

IP—Intellectual Property

Glossary

Shaonan Zhang v

OpenCV—Open Source Computer Vision Library

OpenCL— Open Computing Language

PAL—Phase Alternation Line

PIC—Physical Interface Cards

PC—Personal Computer

RTL—Register Transfer Logic

SD—Secure Digital

SOPC—System On a Programmable-Chip

USB—Universal Serial Bus

UVC—USB Video device Class

U-Boot—the Universal Boot Loader

VIP—Video Image Processing

Contents

Shaonan Zhang vi

Contents

ABSTRACT ... I

ACKNOWLEDGEMENTS ... III

GLOSSARY ... IV

CONTENTS .. VI

TABLE OF FIGURES ... X

TABLE OF TABLES ... XIII

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATION .. 1

1.2 EXISTING TECHNOLOGIES AND SYSTEM PERFORMANCE ... 3

1.2.1 CPU & GPU .. 3

1.2.2 FPGA VS CPU VS GPU .. 4

1.2.3 SOPC .. 8

1.2.4 EMBEDDED SYSTEMS & FPGASOC .. 10

1.3 THESIS CONTRIBUTION .. 11

1.4 THESIS OUTLINE .. 13

CHAPTER 2 BACKGROUND ... 15

2.1 INTRODUCTION ... 15

2.2 MACHINE VISION & IMAGE PROCESSING .. 15

2.3 FIELD PROGRAMMABLE GATE ARRAY (FPGA) .. 17

2.3.1 ON CHIP PROCESSORS .. 20

2.3.2 ON CHIP BUSES .. 21

2.4 FPGA PROGRAMMING .. 24

2.4.1 HDL .. 25

2.4.2 HIGH-LEVEL SYNTHESIS ... 29

2.4.3 OPENCL ... 30

2.5 VIDEO IMAGE FORMAT .. 31

2.5.1 RGB .. 31

Contents

Shaonan Zhang vii

2.5.2 GRAY SCALE ... 32

2.5.3 YUV(YCRCB) .. 33

2.5.4 CHROMA SUBSAMPLING ... 34

2.5.5 INTERLACED VIDEO.. 34

2.6 SUMMARY .. 35

CHAPTER 3 DESIGN TOOLS AND HARDWARE ENVIRONMENT .. 37

3.1 INTRODUCTION ... 37

3.2 DESIGN TOOLS .. 37

3.2.1 QUARTUS II .. 37

3.2.2 INTEL PLATFORM DESIGNER ... 38

3.2.3 MODELSIM .. 47

3.2.5 DSP BUILDER .. 48

3.2.4 INTEL SOC EMBEDDED DESIGN SUITE (EDS) .. 49

3.2.5 TIMING ANALYZER .. 50

3.3 HARDWARE ENVIRONMENT ... 51

3.3.1 DEVELOPMENT BOARD .. 51

3.3.2 VIDEO INPUT DEVICES ... 54

3.3.3 VIDEO DISPLAY DEVICE .. 57

3.4 SUMMARY .. 57

CHAPTER.4 REAL TIME IMAGE PROCESSING ON FPGAS WITH THE HDL APPROACH ... 59

4.1 INTRODUCTION ... 59

4.2 THE CANNY EDGE DETECTION ALGORITHM .. 60

4.2.1 GAUSSIAN FILTERING .. 60

4.2.2 SOBEL EDGE DETECTOR .. 62

4.3 ALGORITHMS IMPLEMENTATION .. 67

4.3.1 GRAYSCALE TRANSFORMATION .. 67

4.3.2 GAUSSIAN FILTERING .. 69

4.3.3 SOBEL EDGE DETECTOR & NON-MAXIMUM SUPPRESSION .. 71

4.3.4 THRESHOLDING WITH HYSTERESIS.. 74

Contents

Shaonan Zhang viii

4.4 SYSTEM ARCHITECTURE .. 76

4.5 RESULTS & DISCUSSION .. 79

4.6 SUMMARY .. 84

CHAPTER.5 REAL TIME IMAGE PROCESSING ON FPGAS WITH THE HLS APPROACH .. 85

5.1 INTRODUCTION ... 85

5.2 HLS COMPLIER ... 85

5.3 HARRIS CORNER DETECTION .. 86

5.4 ALGORITHM IMPLEMENTATION.. 92

5.5 RESULTS AND DISCUSSION ... 94

5.5.1 CANNY EDGE DETECTOR .. 94

5.5.2 HARRIS CORNER DETECTOR ... 98

5.6 SUMMARY ... 100

CHAPTER.6 A CO-PROCESSING FPGASOC SYSTEM ... 101

6.1 INTRODUCTION .. 101

6.2 THE FPGASOC SYSTEM DESIGN .. 101

6.3 COMPILE THE LINUX KERNEL .. 106

6.4 OPENCV .. 108

6.5 SYSTEM IMPLEMENTATION ... 110

6.6 RESULTS AND DISCUSSION .. 111

6.7 SUMMARY ... 115

CHAPTER.7 CONCLUSIONS AND FUTURE WORK .. 116

7.1 CONCLUSIONS .. 116

7.2 FUTURE WORK .. 119

7.2.1 ALGORITHMS & SYSTEM IMPLEMENTATION ... 119

7.2.2 DEVICES & OTHER APPROACH.. 119

REFERENCES .. ERROR! BOOKMARK NOT DEFINED.

APPENDIX A CODES OF CANNY EDGE DETECTION WITH HDL APPROACH ... 128

APPENDIX B CODES OF CANNY EDGE DETECTION WITH HLS APPROACH ... 145

APPENDIX C CODES OF HARRIS CORNER DETECTION WITH HDL APPROACH .. 153

Contents

Shaonan Zhang ix

APPENDIX D CODES OF HARRIS CORNER DETECTION WITH HLS APPROACH ... 169

APPENDIX E CUSTOMIZED “GOOD FEATURE TO TRACK” OPENCV CODE .. 178

Table of Figures

Shaonan Zhang x

Table of Figures

FIGURE 1-1 A COMPARISON OF THE STRUCTURES OF CPU AND GPU .. 5

FIGURE 2-1 A REAL TIME IMAGE PROCESSING SYSTEM... 17

FIGURE 2-2 AN ADAPTIVE LOGIC MODULE (ALM) BLOCK DIAGRAM .. 18

FIGURE 2-3 BASIC STRUCTURE OF FPGA ... 19

FIGURE 2-4 A TYPICAL AVALON-ST SIGNALS BETWEEN SOURCE AND SINK .. 22

FIGURE 2-5 ALTERA/INTEL SOC FPGA DEVICE BLOCK DIAGRAM .. 24

FIGURE 2-6 DESIGN FLOW FOR FPGA DESIGNS .. 26

FIGURE 2-7 A 4X4 BAYER SUBSET ... 32

FIGURE 3-1 QUARTUS II GUI (VER 17.0) ... 38

FIGURE 3-2 QSYS GUI (VER 17.0) .. 39

FIGURE 3-3 EXAMPLE OF A 24-BIT VIDEO STREAM WITH AVALON-ST FORMAT SIGNAL TIMING 41

FIGURE 3-4 SYMBOL TRANSMISSION ORDER ... 43

FIGURE 3-5 HORIZONTALLY SUBSAMPLED Y'CBCR ... 43

FIGURE 3-6 FRAME BUFFER BLOCK DIAGRAM ... 47

FIGURE 3-7 ALTERA EDS COMMAND SHELL.. 49

FIGURE 3-8 TIMING REPORT OF TIMING ANALYZER ... 50

FIGURE 3-9 ARCHITECTURE OF DE1-SOC DEVICE .. 52

FIGURE 3-10 DE1-SOC FPGA BOARD TOP VIEW ... 54

FIGURE 3-11 AN NTSC CAMERA ... 55

FIGURE 3-12 TRDB-D5M CAMERA DAUGHTER CARD .. 56

FIGURE 3-13 LOGITECH C270 WEBCAM .. 57

FIGURE 4-1 RESULT ON DIFFERENT 𝝈 VALUES AFTER GAUSSIAN FILTERING ... 61

FIGURE 4-2 5X5 GAUSSIAN FILTER KERNEL WITH 𝝈 = 1.4 ... 62

FIGURE 4-3 EXAMPLE OF SOBEL RESULT .. 63

Table of Figures

Shaonan Zhang xi

FIGURE 4-4 FOUR POSSIBLE DIRECTIONS OF THE EDGES .. 64

FIGURE 4-5 PIXELS NEED TO BE COMPARED WITH .. 65

FIGURE 4-6 STAGES OF A CANNY EDGE DETECTION PROCESS .. 66

FIGURE 4-7 EXAMPLE OF CANNY RESULT .. 66

FIGURE 4-8 DATA FLOWCHART WITH 3 LINE-BUFFERS .. 69

FIGURE 4-9 THE KERNEL OF THE ORIGINAL IMAGE .. 70

FIGURE 4-10 RAPID METHOD WITH CANNY EDGE DETECTION .. 75

FIGURE 4-11 ACCURATE METHOD WITH CANNY EDGE DETECTION .. 75

FIGURE 4-12 ARCHITECTURE OF THE SYSTEM WITH TRDB-D5M... 77

FIGURE 4-13 THE VIDEO FORMAT CONVERSION IN THE SYSTEM ... 77

FIGURE 4-14 THE QSYS (PLATFORM DESIGNER) DESIGN OF THE SYSTEM ... 78

FIGURE 4-15 INTERCONNECTION OF THE ACCURATE METHOD OF CANNY EDGE DETECTION IP 78

FIGURE 4-16 ARCHITECTURE OF THE SYSTEM WITH AN NTSC CAMERA ... 79

FIGURE 4-17 AN ORIGINAL RGB FRAME OF THE VIDEO STREAM ... 80

FIGURE 4-18 DESIRED CED RESULT ACHIEVED USING MATLAB .. 81

FIGURE 4-19 RESULT OF THE ACCURATE METHOD OF CED... 81

FIGURE 4-20 RESULT OF RAPID METHOD OF CED ... 82

FIGURE 5-1 HLS DESIGN PROCESS .. 86

FIGURE 5-2 THE BASIC PRINCIPLE OF THE HARRIS CORNER DETECTION ... 87

FIGURE 5-3 BLACK AND WHITE CHESSBOARD IMAGE ... 90

FIGURE 5-4 CHESSBOARD IMAGE FILTERED WITH THE HARRIS CORNER DETECTOR .. 91

FIGURE 5-5 STAGES OF A HARRIS CORNER DETECTION PROCESS ... 91

FIGURE 5-6 EXAMPLE CODE OF A SHIFT REGISTER WITH HLS COMPILER .. 92

FIGURE 5-7 EXAMPLE CODE OF APPLICATION DEFINITION WITH THE AVALON-ST INTERFACE 93

FIGURE 5-8 EXAMPLE CODE OF HANDLING PACKETS SIGNALS WITH HSL COMPILER ... 93

FIGURE 5-9 CANNY EDGE DETECTION ALGORITHM IMPLEMENTATION WITH HLS APPROACH 93

Table of Figures

Shaonan Zhang xii

FIGURE 5-10 HARRIS CORNER DETECTION ALGORITHM IMPLEMENTATION USING THE HLS APPROACH 94

FIGURE 5-11 ORIGINAL RGB DATA ... 96

FIGURE 5-12 CANNY EDGE DETECTOR WITH HLS APPROACH.. 97

FIGURE 5-13 CANNY EDGE DETECTOR WITH HDL APPROACH ... 97

FIGURE 6-1 A HIGH-LEVEL VIEW OF THE DEVELOPMENT FLOW ... 102

FIGURE 6-2 THE SYSTEM BOOT FLOW .. 103

FIGURE 6-3 GENERATION OF THE PRELOADER ... 103

FIGURE 6-4 THE DEVICE TREE GENERATION FLOW ... 104

FIGURE 6-5 SD CARD LAYOUT ... 105

FIGURE 6-6 SOFTWARE SCREENSHOT OF EMBEDDED LINUX COMMAND LINE .. 106

FIGURE 6-7 STEPS FOR BUILDING THE LINUX KERNEL ... 107

FIGURE 6-8 CONFIGURATION MENU OF LINUX KERNEL .. 108

FIGURE 6-9 64-BIT WORD STRUCTURE OF THE SYSTEM .. 110

FIGURE 6-10 ARCHITECTURE OF THE SYSTEM .. 111

FIGURE 6-11 CANNY EDGE DETECTION RESULT OF OPENCV ... 112

FIGURE 6-12 CANNY EDGE DETECTION RESULT OF HDL METHOD .. 112

FIGURE 6-13 A FRAME RESULT OF FEATURE TRACKING APPLICATION USING OPENCV 113

FIGURE 6-14 A FRAME RESULT OF FEATURE TRACKING APPLICATION USING OPENCV ACCELERATED BY FPGA

 .. 114

Table of Tables

Shaonan Zhang xiii

Table of Tables

TABLE 1-1 COMPARISON OF POWER CONSUMPTION FOR CANNY EDGE DETECTOR IMPLEMENTATIONS 8

TABLE 3-1 PACKET TYPES OF VIP PACKET ... 41

TABLE 3-2 HARDWARE OF BOTH FPGA AND HPS SYSTEM .. 53

TABLE 3-3 SPECIFICATION OF LOGITECH C270 WEBCAM ... 56

TABLE 4-1 THE APPROXIMATE CONDITIONS OF THE FOUR DIRECTIONS .. 73

TABLE 4-2 ANGLE ERROR WITH APPROXIMATE VALUE FOR THE RAPID METHOD .. 73

TABLE 4-3 THE APPROXIMATE CONDITIONS FOR THE 4 DIRECTIONS ... 74

TABLE 4-4 ANGLE ERROR WITH THE APPROXIMATE VALUE USING THE ACCURATE METHOD 74

TABLE 4-5 UTILIZATION SUMMARY WITH EACH METHOD IN DIFFERENT RESOLUTION ... 83

TABLE 5-1 COMPARISON BETWEEN THE HLS AND THE HDL APPROACH WITH CANNY EDGE DETECTOR 96

TABLE 5-2 COMPARISON BETWEEN THE HLS AND THE HDL APPROACH WITH HARRIS CORNER DETECTOR 99

TABLE 6-1 DESCRIPTIONS OF THE DIFFERENT BOOT STAGES .. 103

TABLE 6-2 INFORMATION STORED ON THE SD CARD .. 105

TABLE 6-3 FEATURE TRACKING ALGORITHM COMPARISON ... 115

Chapter 1 Introduction

Shaonan Zhang 1

Chapter 1 Introduction

1.1 Motivation

Image processing and computer vision has become a popular research area in

both electrical engineering and computer science in recent decades. Although

it has been widely applied in many fields, industry has shown more interest in

real time image processing in recent years. Using classical serial computer

architectures, it often takes significant time to process the data. To achieve

real-time performance with low latency, distributed systems such as multi-core

CPUs. GPUs, FPGAs or ASICs are used to improve the performance.

FPGAs can achieve real-time performance in many applications that general

serial processors cannot without sacrificing resolution [1]. FPGAs usually have

lower costs of system fabrication and maintenance compared with CPUs and

GPUs. An FPGA’s reconfiguration characteristics provides more flexibility than

ASICs which cannot be reprogrammed after they have been fabricated.

In 2010, Altera, now owned by Intel, introduced their 28nm technology

FPGASoC. In this generation, Altera integrated a Hardware Processor Systems

(HPS) which includes a dual core ARM Coretex-A9 processor, into their low-cost

product range the Cyclone V FPGA [2]. This 925 MHz ARM hard processor core

is a good replacement for the synthesised soft NIOS II processor core on the

Cyclone IV with a maximum frequency of 190MHz [2]. The FPGASoC combines

the benefits of FPGA hardware for fast data processing and relative high-

performance embedded software flexibility. By integrating both systems into a

Chapter 1 Introduction

Shaonan Zhang 2

single component, it reduces the hardware complexity, physical size, power

consumption, and cost of the final system.

Many complex image processing applications, for instance object tracking and

face detection, are not only based on time consuming convolution algorithms

like edge detection and corner detection, but also require the original raw data

to make high level decisions. Thus, the FPGA provide a good solution for parallel

processing which can keep the original image data whilst undertaking low level

convolution algorithms, for example edge detection, with low latency.

Therefore, with the combination of an FPGA and an ARM processor, Intel’s

FPGASoC, has the potential to implement complex image processing

applications, in real-time, on a low-cost board making it suitable for embedded

image processing tasks.

This research investigated the use of low cost FPGASoC devices for real time

image processing by developing a real-time image processing system with

several methods for implementing pre-processing algorithms within the FPGA.

The thesis also provides the details of an embedded Linux based FPGASoC

design and introduces the OpenCV library and demos the use of OpenCV co-

processing with the FPGA. The results demonstrate the improved performance

obtained by using the combined FPGA – ARM combination compared with just

using the ARM processor.

Chapter 1 Introduction

Shaonan Zhang 3

1.2 Existing Technologies and System Performance

1.2.1 CPU & GPU

Various types of architecture are used for real-time image processing platforms.

One of the popular architectures uses a PC as the host system. This approach

has been a very popular architecture for real time image processing for several

decades. Every functional hardware module can be implemented separately via

an expansion interface, for example a graphic card or USB camera.

As this technology has been developed over decades, there are many

applications which focus on the PC. For example, Kang and Doraiswami

developed a system which used an USB interface board and a webcam, allowing

the PC to capture video for endoscopic applications [3]. The system

implemented several image processing modules including contrast

enhancement, Canny Edge Detection and the Hough Transform on the PC using

MATLAB for real time image processing.

Many computer-based vision systems now use the software approach, using a

generic CPU and GPU to perform all the image processing tasks. With the rapid

increase of the processing capabilities of GPUs, the software approach now

offers greater processing capability to handle more complex image processing

tasks in real-time.

There is another example that Balfour et al. presented a vision-based closed

loop control system for welding applications where a PC associated with a video

capture card and a graphic card was used to perform real-time video

acquisition, image analysis, display and process control [4]. However, these are

not ideal for compact embedded vision systems as it requires a host computer

Chapter 1 Introduction

Shaonan Zhang 4

and a graphic card and therefore has a high-power consumption associated

with these systems.

1.2.2 FPGA vs CPU vs GPU

The advantages and disadvantages of FPGA based image processing systems

against CPUs & GPUs is now discussed. FPGAs are usually considered as a low-

level and parallel device which provides flexibility so that it can be programmed

to implement any logical circuit. Thus, it is also sometimes used to prototype

ASIC designs.

However, FPGA design is usually considered too difficult or niche to use when

compared with GPUs and CPUs, even for the senior designers whose proficiency

is in software programming languages, as FPGA systems need to be developed

using hardware languages [5]. The most common hardware languages for

FPGAs are Verilog [6] and VHDL [7], which are called hardware description

languages (HDLs). The main difference between these languages and

traditional software languages is that HDLs describe hardware i.e. registers and

Boolean logic functions, whereas software languages such as C describes the

sequential instructions without knowing about the precise hardware

implementation details. As a result, researchers and application scientists tend

to choose software design because of the relative ease of development and the

sheer number of abstractions and classifications available which significantly

increase productivity.

Due to their earlier development, both CPUs and GPUs shared a great number

of established libraries which have plenty of resources for designers to

productively implement various tasks. FPGAs only provide a limited number of

“IP” libraries and component features for users’ designs.

Chapter 1 Introduction

Shaonan Zhang 5

However, these issues are just the first question to consider when designers

choose whether to use FPGAs, GPUs or CPUs to build a system. The following

is a comparison of implementations between FPGAs, GPUs and CPUs.

1.2.2.1 Structure

A significant element which impacts the choice of FPGAs, CPUs and GPUs is the

structure. A suitable architecture for the targeted application can significantly

improve its performance and reduce the system cost. For image processing,

which can be considered as 2D signal processing, a high memory bandwidth

for the memory intensive processing operations is required [5]. Figure 1-1

shows the architecture of a CPU and a GPU. Both CPU and GPU have the control

units, ALUs (Arithmetic Logic Unit), DRAM (Dynamic Random-Access Memory)

and Cache. But the difference between CPU and GPU is a large proportion of

GPU chip is the ALUs

Figure 1-1 A Comparison of the Structures of CPU and GPU [8]

FPGAs show good performance on parallelism. Since it can implement a non-

von-Neumann massive-parallel architecture [8], its calculated results can be

fed directly to the next processing stage without temporary storage in the main

memory. Hence, the requirement for memory bandwidth is much lower than

Chapter 1 Introduction

Shaonan Zhang 6

when implemented with a GPU or CPU. Therefore, it is thought to have better

performance in image processing applications as its algorithms can exploit a

great degree of parallelism [8].

The differences between CPUs and GPUs are caused by their different design

goals as they are targeted at two different scenarios. CPUs need to be very

versatile to deal with a variety of different data types. This makes the CPU's

internal structure extremely complicated. Whilst what GPUs face is a large-scale

data which is highly unified and mutually independent and normally operate in

a pure computing environment with limited external interrupts. Comparing with

the processing cores of both, the FPGAs programmable block is much simpler.

Which hardware to choose depends on the complexity of the task required. For

example, if a real time image processing system requires high resolution and

complex calculations, GPU is more suitable for the work. But if the system only

requires convolution based low level algorithms, FPGA become more suitable.

1.2.2.2 Performance

There are various elements which should be considered when measuring how

a system performs. As far as real-time image processing is concerned, factors

like speed and energy efficiency are significant.

As mentioned by Asano, et al. [8], how fast a CPU, GPU or FPGA can achieve

varies for each application. Generally speaking, FPGAs demonstrate extremely

high parallelism at a lower clock rate; in comparison, the GPU is endowed with

a high clock speed, also with relatively high parallelism, but is limited by poor

memory management. CPUs, on the contrary, show relatively high clock

speeds, facilitate memory management but their parallelism is limited. For an

image processing system which contains numerous inherent parallelisms, the

Chapter 1 Introduction

Shaonan Zhang 7

advantage of a CPU is not obvious. This leaves a comparison between GPUs

and FPGA. For example, GPUs have better implementation in normalized cross-

correlation [9] and two-dimensional filters [8]; while FPGAs were identified as

having outstanding performance in matched filter computations [10], K-Means

clustering tasks and stereo vision [8].

To assess energy efficiency, Fowers et al. implemented a sliding window

operation, sum of absolution differences and corrector and determined that,

“the FPGA used orders of magnitude less energy than other devices in many

situations” [11]. Table 1-1 shows a comparison of power consumption and

energy usage of FPGA, CPU and GPU implementing a Canny Edge Detector at

different resolutions. The researchers use a CPU Intel Core2 Duo E6600, 2.4

GHz; a GPU GeForce GTX 580, 1.54 GHz and a 28 nm Arria V 5AGXFB3 FPGA

device for comparison [12]. The power consumption of FPGA remains almost

the same at 1.5 Watts as the effect of the change of system is negligible. In

the meantime, the power consumption of CPU and GPU stays around 150 Watts

and 240 Watts. Thus, the energy consumptions of CPU are over one thousand

times higher than the FPGA. With the advantages in architecture, the energy

efficiency of the GPU is better than the CPU, but still it is incomparable with the

FPGA. FPGA still leads with a factor of hundreds. However, with higher

resolutions, the energy consumption of the FPGA is increasing fast which is

98.2 Millijoules at 3936x3936 which is 14.7 times higher than the performance

at 1024x1024. But for the GPU, it increases by a factor of 2.5, the difference of

power consumption between FPGA and GPU is reduced gradually.

Chapter 1 Introduction

Shaonan Zhang 8

Table 1-1 Comparison of power consumption for Canny Edge Detector Implementations

[12]

Resolution CPU GPU FPGA

Power(W) Energy(J) Power(W) Energy(J) Power(W) Energy(mJ)

512x512 141 2.8 231 0.5 1.5 1.7

1024x1024 147 8.8 244 6.08 1.5 6.7

3936x3936 153 213.1 251 15.0 1.5 98.2

1.2.3 SOPC

Several years ago, with the advances of semiconductor technology, it became

possible to integrate the entire embedded/computer system including

processors, memory and other system units into a single programmable chip -

FPGA. This technology is called "System-on-a-Programmable-Chip" (SOPC)

[13]. As a new approach, it provided another architecture capable of

implementing a standalone embedded vision system.

Endowed with both a reconfigurable and compact nature, SOPCs provide high

flexibility and performance with low risks; as its design can easily be adapted

into various types of FPGAs and therefore present a wide range of performance.

Concerns about problems like changing the architecture of the system are

unnecessary as all the components of the SOPC could be separately

implemented as individual non-device-specific soft IP cores which included the

processors. Moreover, the utilization of soft processor core, for instance Nios II

from Altera and Microblaze [14] from Xilinx, has accessed the system

architecture’s configurability to make a trade-off between performance and

area via adjusting the architecture [15]. Furthermore, SOPCs have other

Chapter 1 Introduction

Shaonan Zhang 9

advantages like low cost and short development time compared with the ASIC

approach [16]. For example, Hau et al. designed a rapid prototyping of an

automated video surveillance system [17]. The system was designed with the

Altera video processing and embedded design framework (VIP, UIP) and

implemented on an Altera DE2-70 board which contained an Altera Cyclone IV

FPGA. By using high performance and parallel hardware accelerators, the

system demonstrated a real-time object detection algorithm. In addition, by

the implementation of a software processor (NIOS II), user controls and

application flexibility were achieved by applying high level programming

language (C++). Wu et al. designed a real-time image processing system [18].

The system was integrated into a low-cost programmable chip and the system

performance was maximized by using the cache and streaming transfer within

the system. The effective bus-mastering scheme was also demonstrated. The

system was implemented with an Altera Apex 20K programmable board, a

SDRAM, a CameraLink CMOS camera with a custom designed camera interface

card for video capture and a VGA monitor for video display. Both the systems

described above are designed with hardware/software co-design method and

implemented with a NIOS II CPU. Both systems were implemented with a SOPC

approach and used the Avalon bus interface [19] to reduce the complexity of

development and enhance the performance of the systems.

One of the key challenges that both systems had to overcome was the

bandwidth of the external memory that stored the image. This memory, acting

as a frame buffer would have to allow the image capture unit to write the image

to the memory, the display unit to read data from the memory and the CPU to

read and write data from the frame buffer. Also, if this memory is also used by

the CPU for program and variable storage these accesses would also be sharing

the available bandwidth.

Chapter 1 Introduction

Shaonan Zhang 10

1.2.4 Embedded Systems & FPGASoC

Another type of architecture is embedded systems which consist of one or more

microprocessors/microcontrollers to control the whole system and perform the

image acquisition and processing tasks. These microprocessors could be

general purpose microprocessors or DSP microprocessors [20]. In recent years,

the ARM processor has become the most popular microprocessor in embedded

systems. With the availability of the ARM processors for System on a Chip (SOC)

applications, it can build the whole system in a single device. For software

development, it can use either Linux or Android as the Operating System

platform where several open source libraries such as OpenCV and Python

libraries can be installed to simplify the application development. However, as

the more significant complexity of hardware architecture of microprocessors, it

is result in a relatively less significant in speed [21].

In 2014, Guennouni et al have developed an application for multiple objects

detection based on OpenCV libraries [22]. The system is based on cascade

object detection algorithm for multiple object detection. Then Varfolomieiev et

al have developed an improved algorithm of median flow for visual object

tracking and its implementation on an ARM platform [23]. The algorithm has

been implemented using the OpenCV library and tested on BeagleBoard-xM

based on ARM processor. The algorithm uses the “good feature to track”

algorithm and an edge detection algorithm. However, those pre-processing

algorithms involved in these designs are more suitable for FPGA implementation

instead of ARM processor.

Recently, as mentioned, a newer generation of FPGASoC has been introduced.

These provide an upgraded version of the SOPC. They inherit the benefits of

Chapter 1 Introduction

Shaonan Zhang 11

SOPC and provide higher CPU performance because the CPU is hardwired

rather than implemented using the FPGA logic blocks. Russell and Fishchaber

designed a sign recognition system based on OpenCV using a Zynq SOC board

[24]. The system uses the Xilinx Zynq-7020 chip to acquire 1920x1080 video

with the VITA-2000 sensor attached to Flexible Physical Interface Cards (PIC)

Concentrators (FPC) slot. The system was designed within six weeks and could

process a frame in 5 seconds.

Typically, these image processing applications apply some low-level image

processing tasks to pre-process the image. For example, the image may be

Gaussian filtered to reduce noise in the image and then edge detection

algorithms applied to highlight the edges of features in the image. Then higher-

level algorithms use the information from the low-level information to make

decisions about the object contents. For example, in vehicle traffic sign analysis,

the edges will be analysed to determine the shapes of the signs, i.e. whether

they are circular, square, rectangular etc. to aid in their classification.

1.3 Thesis Contribution

This research investigated the use of a low cost FPGASoC device for real time

image processing by developing a real-time image processing system with

several approaches for the pre-processing algorithms, using the FPGA, to

reduce the processing time. Additionally, it synchronizes the original data in

parallel with the pre-processed data in memory for further processing, i.e. the

pre-processed image is stored as a 64-bit word with 8 bits each for the RGB

values and 32-bit for the pre-processing results. Simultaneously, it provides the

Chapter 1 Introduction

Shaonan Zhang 12

infra-structure for implementing complex image processing applications on the

integrated ARM system supported by the OpenCV library. The FPGA design was

developed in Quartus II using the Video Image Processing (VIP) IP which

provides several sub-systems such as frame buffer, clocked video in & out in

Platform Designer (formally Qsys), which is Intel’s (formally Altera) tool for

developing SOPC systems. Therefore, the programmable hardware design

needed to the algorithm development to be compatible with Intel’s VIP based

IP format so that it could be compatible with the Intel VIP subsystems.

This research applied two approaches, a Hardware Description Languages

(HDL) approach and High-Level Synthesis (HLS) approach, to develop the

algorithm IP for the FPGA. Firstly, the research shows the two methods to

implement the Canny Edge Detection algorithm with the HDL approach. With

both methods, it would show the correlations of resource usage and latency

with accuracy and resolution.

Secondly, the HLS approach is researched by developing the Canny Edge

Detector algorithm and Harris Corner Detection algorithm. With this approach,

it would improve the productivity and reduce the difficulty of FPGA

programming.

The next, the high-level processing details of an embedded Linux based

FPGASoC design and the associated libraries are presented. Then an IP is

developed using the HDL method which contains the original RGB data, Harris

Corner Detection result, Canny Edge Detection result and Grayscale result all

synchronized together, pixel by pixel, as a 64-bit word for each pixel.

Concurrently, this design is based on the customized OpenCV application for

post-processing implementations.

Chapter 1 Introduction

Shaonan Zhang 13

To summarise the novelty in this research, it is the development of an

embedded FPGASoC image processing architecture where convolution-based

image pre-processing takes place, in real-time, in the FPGA fabric allowing the

ARM SoC processor to concentrate on the post processing algorithm thus

reducing the time between the image is captured and the result presented.

Such an approach will open up the market for low-cost real-time image

processing applications as the system capital and running costs are significantly

lower than using a PC based system. The comparison between the HDL and

HLS approaches allows recommendation on which to select when developing

an embedded image processing system.

1.4 Thesis Outline

This thesis is structured as follows.

Chapter 2 describes the background knowledge of the systems referred to in

this thesis and the development environment.

Chapter 3 provides details of the design tools and hardware devices used in

this research. It introduces the design tools and includes details of the Intel

Video and Image Processing Suite (VIP).

Chapter 4 presents the FPGA image pre-processing design with the HDL

approach and the HLS approach. It introduces the Canny Edge Detection (CED)

algorithm and then describes the implementation of an accurate version and a

simplified version of the CED algorithm using the hardware description

language (HDL).

Chapter 1 Introduction

Shaonan Zhang 14

Chapter 5 presents the FPGA image pre-processing design with the HLS

approach. It presents details of the implementation of the CED algorithm using

the HLS approach. It also introduces the Harris Corner Detection (HCD)

algorithm. Then it compares the results of both the CED and HCD

implementation with the HDL approach and presents a discussion of the results.

It also presents the system architecture in detail and discusses the results

obtained.

Chapter 6 introduces an embedded Linux based FPGASoC design. It provides

details of the FPGASoC design and introduces the OpenCV library. It also

presents details of implementation of HCD and CED together in one IP. After

that, it demonstrates the use of the FPGA to accelerate the OpenCV design in

the FPGASoC design.

Finally, Chapter 7 presents the conclusions and potential for future research.

Chapter 2 Background

Shaonan Zhang 15

Chapter 2 Background

2.1 Introduction

This chapter presents the background knowledge of the systems referred to in

this thesis and the development environment. The second section of this

chapter briefly introduces the field of computer vision and image processing

and describes the background to this technology. The third section presents

the characteristics of FPGAs, including their history of development, internal

structures, core technology and representative products. The next section

focuses on the comparison between FPGAs and architectural approaches. The

following section discusses the design flow for FPGA designs and provides

information on the existing FPGA design methods. Finally, the video image

format adopted is described.

2.2 Machine Vision & Image Processing

With the development of modern electronics, it is possible to make the

computer ‘see’ things. This can be achieved by imitating the eye’s function via

image perception and content interpretation, this is called computer vision. The

principle of computer vision is analysing images and then extracting relevant

information from the scene [25], which could be a two-dimensional scene or a

three-dimensional scene.

Nowadays, computer vision extends far beyond basic image processing. It also

integrates communication and graphical techniques, processor and computer

aided design as well as information handling and control. Using these sub-

Chapter 2 Background

Shaonan Zhang 16

systems help to build a computer vision application, for instance motion

detection, image restoration, recognition and scene reconstruction etc. People

usually set it goals of identifying various types of objects which could occurred

in the scene.

Machine vison (MV), is frequently defined as the application of computer vision

for manufacturing and industry [26]. For instance, MV shows good performance

in automatic inspection and analysis tasks. It has become a significant

technology in industry as it allows the replacement of humans in the visual

inspection process with the associated cost reductions and increases in

accuracy. Also, machine vision systems allow inspection tasks to be completed

in hazardous work environments that are not suitable for manual work. Machine

vision encompasses mechanical engineering, control, electric lighting, optical

imaging, sensors, analogue and digital video technology, and industrial

automation, etc. Besides, as a category of computer vision which mainly

depends on machine-based image processing, it also has requirements of

computer networks and digital input/output equipment when it controls other

manufacturing devices.

With that in mind, image processing is the process of extracting information

from the scene, converting an image signal into a digital signal and then

electronically processing it. It is also considered as a collation of intensity data

with its spatial arrangement [27]. It is usually a video frame or an image as the

input for an image processing application. A real-time image processing system

is required to implement specific image processing algorithms to verify the real-

time performance before applying it into a computer vision system [18]. The

specific task of a real-time system is processing the data required in the given

interval, then analysing its performance to estimate the ability of it to process

the data (image) in real time. A real-time system generally has three basic

Chapter 2 Background

Shaonan Zhang 17

functions, video acquisition, processing and display or control system as shown

as Figure 2-1. At the first step, the image data is acquired from a

digital/analogue camera or other video input devices. Then the processing

system can be subdividing into a pre-processing system and a post-processing

system. The pre-processing system includes the video format transformation

which will be discussed in Section 2.5, pre-processing algorithms such as edge

detection or image segmentation based on FPGA in this research with HDL or

HLS programming method will be discussed in Section 2.3 and Section 2.4,

respectively. For post-processing system, it will be discussed in details in

Chapter 6.

Lastly there could be a video output which presents the processed results on a

visual display or it could directly generate a control signal to other systems.

Figure 2-1 A real time image processing system

2.3 Field Programmable Gate Array (FPGA)

A formidable processing system is extremely important for building a

satisfactory real-time image processing system. As mentioned previously,

several architectures could be chosen as the processing hardware. The FPGA

was firstly introduced in the 1980s by Xilinx and was named by Actel in 1988.

Video
Acquisition

System

Pre-
Processing

System

Post-
Processing

System

Display
System or
Control
System

Chapter 2 Background

Shaonan Zhang 18

During more than 30 years of development, the FPGA has increased more than

10 000 times in logic capacity and 100 times in speed [28]. As its name

suggests, FPGAs are designed as reconfigurable semiconductor devices. They

are built with a matrix of logic blocks or adaptive logic modules (ALMs) of

various types, such as multiplier blocks, memory and general logic; the ALMs

are surrounded and connected by the programmable routing fabric, which is

illustrated in Figure 2-3; then the array is surrounded by I/O blocks that

interface the device to the outside world. Each ALM is made up of both registers

and lookup tables (LUTs) [29] shown as Figure 2-2.

Figure 2-2 An Adaptive Logic Module (ALM) Block Diagram [29]

When the FPGA is configured for the specific digital circuits, each item of the

CLBs would be assigned a simple independent logic function. The CLBs utilize

the LUTs to implement the Boolean logic function and then it is connected by

the routing fabric to make the structure of the whole digital circuit. The I/O

blocks consequently link the logic matrix to the outside. With an increase of the

order of magnitudes of logic functions, the FPGA device, in theory, is able to

be programmed into any kind of logic circuits. However, it will never be as fast

Chapter 2 Background

Shaonan Zhang 19

as dedicated hardwired circuit, or as energy efficient, when using the same

semi-conductor technology.

Figure 2-3 Basic Structure of FPGA [30]

Currently, there is a new trend in the FPGA field; that is to further develop the

approach of coarse-grained architecture, synthesizing traditional FPGAs’

interconnects and logic blocks together with embedded microprocessors and

their related peripherals. This is how the System on a Programmable Chip

(SOPC) [13] was developed. This kind of architecture utilizes the soft processor

cores developed by the FPGA logic vendor, for instance the MicroBlaze (Xilinx)

and Nios II (Intel/Altera).

The more recently introduced alternative approach based on hard processors

could be found in the Xilinx Zynq-7000 All Programmable SoC [31] and Altera

Cyclone V FPGA SOC [32] (shown in Figure 3-9), both integrate FPGA hardware

with a dual-core ARM-A9 processor. Another example is the Microsemi

SmartFusion which integrates the ARM Cortex-M3 hard processor core as well

as analogue peripherals, such as multi-channel DACs and ADC with the flash-

based FPGA fabric [33]. In the next section, these processors will be described.

Chapter 2 Background

Shaonan Zhang 20

2.3.1 On chip processors

As previously mentioned, there are two types of processors provided by FPGA

manufacturers: hard processor and soft processor. A hard processor means an

integrated processor like an ARM processor in hardware within the IC, whilst a

soft processor is implemented within the FPGA fabric. Hard processors generally

offer better performance (speed), lower power consumption and higher

density. However, a soft processor system can have highly configurable

features by using a specialized instruction set. Also, a programmable quantity

of processors can be instantiated, as needed, with each tuned to the required

area and performance specifications.

There are several processors commonly used in SOPC designs. Firstly, the soft

processors, such as the Nios and Nios II developed by Intel/Altera, Microblaze

developed by Xilinx and OpenRISC developed by OpenCores. Nios II [34] is a

32-bit soft-processor architecture designed specifically for the Intel/Altera

family of FPGAs. Nios II incorporates many enhancements over the original

Nios architecture, making it more suitable for a wide range of embedded

computing applications, from DSP systems to control applications. Similar to

the original Nios, Nios II has a RISC soft-core architecture which is implemented

entirely in the programmable logic and memory blocks of the Intel/Altera

FPGAs. The soft-core nature of the Nios II processor lets the system designer

specify and generate a custom Nios II core, tailored for specific application

requirements. System designers can extend the Nios II's basic functionality by

adding a predefined memory management unit or defining custom instructions

and custom peripherals [34].

As a competitor product, the MicroBlaze [35] is a soft microprocessor core

designed by Xilinx for Xilinx FPGAs. It is implemented entirely in the general-

purpose memory and logic fabric of Xilinx FPGAs. In terms of its instruction set

Chapter 2 Background

Shaonan Zhang 21

architecture, MicroBlaze is similar to the RISC-based DLX architecture which is

described in the popular computer architecture book by Patterson and

Hennessy [36]. With few exceptions, the MicroBlaze can issue a new instruction

every cycle, maintaining single-cycle throughput under most circumstances

[35].

On the other hand, hard processors are usually developed by specialized

semiconductor companies. The PLD vendors purchases their IP licenses,

fabricating and optimizing the processors into their specific FPGA family such

as Altera's Cyclone V and Xilinx’s Xilinx Zynq-7000 which include a 1.0 GHz and

800 MHz dual-core ARM Cortex-A9 respectively.

The Cortex-A9 [37] is a 32-bit hard processor with the ARMv7-A architecture

which made it high-performance and low-power. Compared with soft-core

processors, the hardware devices inside the chip which improve its performance

includes, but is not limited to, an AMBA Level 2 Cache Controller, a global timer,

the Floating-Point Unit and Direct Memory Access (DMA) [37]. When integrated

inside an FPGA, the Cortex-A9 also provides the Advanced Extensible Interface

(AXI) interconnects which directly connects to the FPGA allowing data exchange

between the ARM processors and the FPGA logic. More details of on chip buses

is presented in the next section.

2.3.2 On chip buses

Each of the processors use their own, different, on-chip bus. General speaking,

a bus, in this context, is a public communication trunk that transfers information

between the various functional components of a computer. The on-chip bus is

the most common method to connect IP cores in an SoC, through which the

Chapter 2 Background

Shaonan Zhang 22

data communication could be transferred between the IP cores. Two standards

of on-chip buses, Avalon Interface [19] and AMBA [38] are mentioned here.

The former, the Avalon Interface bus, was launched by Altera to allow all

peripherals to interface with its own IP and softcore processors. There are

several types of Avalon Interfaces, for example the Avalon Streaming Interface

(Avalon-ST) and the Avalon Memory Mapped Interface (Avalon-MM), the

Avalon Conduit Interface and the Avalon Tri-State Conduit Interface (Avalon-

TC) [19].

Avalon-ST interfaces support data paths requiring the following features: Low

latency, high throughput point-to-point data transfer, Multiple channel support

with flexible packet interleaving, error, and start and end of packet support for

data bursts and automatic interface adaptation [19].

Figure 2-4 shows the signals that are typically included in an Avalon-ST

interface. As this figure indicates, a typical Avalon-ST source interface drives

the valid, data, error, and channel signals to the sink. The ready signal from

the sink to source indicates when the sink is able to receive data.

Figure 2-4 A typical Avalon-ST signals between Source and Sink [39]

Avalon Memory-Mapped (Avalon-MM) interfaces can be used to implement read

and write interfaces for master and slave components. The components include

Chapter 2 Background

Shaonan Zhang 23

microprocessors, memories and DMAs which typically use memory-mapped

interfaces to perform read or write operations [19]. Avalon-MM interfaces range

from simple to complex. SRAM interfaces that have fixed-cycle read and write

transfers have simple Avalon-MM interfaces, but pipelined interfaces capable of

burst transfers are more complex [19]. Many components may have both

Avalon-ST and Avalon-MM interfaces where the ST interfaces are used in a

data-flow system to receive and transmit streaming data whilst the MM

Interface is used to write configuration information to the IP Component and

monitor its status.

The AMBA bus is another on-chip bus developed by ARM. It has four levels of

hierarchy: Advanced high-performance bus (AHB), advanced system bus (ASB),

advanced peripheral bus (APB) and most recently the advanced extensible

interface (AXI). Generally, the high-performance system bus (AHB or ASB) is

mainly used to meet high bandwidth requirements between high-speed devices

such as the CPU, DMA and memory. While, most of the low-speed external

devices of system are connected by the low bandwidth bus APB; then the

system bus and the peripherals bus are connected by a bridge (AHB/ASB-APB-

Bridge). The AXI3 or AXI 1.0 interface is used on ARM Cortex-A processors

including the Cortex-A9 which also provide the interconnections between the

FPGA and the HPS in the Cyclone V SOC [40] as shown in Figure 2-5.

Chapter 2 Background

Shaonan Zhang 24

Figure 2-5 Altera/Intel SoC FPGA Device Block Diagram [40]

The design of the internal architecture only begins when the bus system is

selected. Designers consequently work on the data and control paths, the

hardware/software co-design, processor optimisation and both on-chip and off-

chip components definition etc. these could be designed using different tools.

2.4 FPGA Programming

FPGA configuration/programming is also not like a general CPU program which

is based on instructions that are decoded by hardware; it contains a complete

configuration of the FPGA hardware. This limits the methods that can be used

for FPGA programming. In this section, the languages used for FPGA

programming and the design flow are discussed.

Chapter 2 Background

Shaonan Zhang 25

2.4.1 HDL

Hardware description languages (HDL) are languages used to describe the

electronic system hardware behaviour, structure and data flow. It is a method

popularly applied in the design of ASICs and FPGAs. There has been over 40-

years of history of evolution since HDLs were developed and they have been

widely used in all of the design stages of electronic systems, such as simulation,

verification, modelling and synthesis, etc. Hundreds of hardware description

languages appeared by the 1980s, which played a significant role in promoting

design automation. However, these languages generally varied from each other

as they were targeted at a specific design area. As a result, the numerous

languages made it difficult for the user to choose an appropriate system.

Therefore, an urgent need emerged for a standard hardware description

language to be generally accepted. To meet this requirement two languages

VHDL and Verilog emerged. So far, they both are regarded as two of the most

common languages for ASIC and FPGAs designers.

HDLs function in every stage of the design flow, ensuring the correct

implementation of the system design. Figure 2-6 shows the design flow for

FPGA designs. An abstract requirement would eventually be transformed into

the specific configuration bitstream for the FPGA after certain programming

procedures.

The design flow begins at the architecture design. Before that, some

preparatory work should be carried out, such as the sepcification of the project,

system design, FPGA chip selection and lists of IPs which could be used.

Chapter 2 Background

Shaonan Zhang 26

Figure 2-6 Design flow for FPGA designs [41]

Generally, the top-down design method is used to divide the system into several

basic units. Then, each basic unit is divided into the lower-level basic units, this

operation would go on until the Electronic Design Automation (EDA) element

library can be used directly.

The procedure of the HDL design entry and the test environment design are

carried out simultaneously. The former is the process of presenting the

designed system or circuit in the form required by the HDL system and then

inputting it to the EDA tool. The method most widely used, in practice, is the

HDL language text input, which can be divided into ordinary HDL and behaviour

HDL. Ordinary HDL (i.e. structural HDL and Register Transfer Logic (RTL) HDL)

is mainly used in simple small designs. While in medium and large projects,

Chapter 2 Background

Shaonan Zhang 27

behavioural HDL is implemented using the mainstream languages of either

Verilog HDL or VHDL or a combination of both.

The design will then undergo behavioural simulation. Its function is to verify

the logic function of the designed system before synthesis for the target

hardware. At this stage, there is no propagation delay information in the

simulation just a logic functional simulation. Before the behavioural simulation,

the waveform files and test vectors should be established via a Waveform Editor

or HDL. The simulation results will generate the report file and then output the

signal waveform, from which the changes of each node can be observed. If an

error is found, the designer will go back to the last design step for modification.

The common simulation tools are ModelSim from Model Tech, VCS from

Sysnopsys and NC-Verilog as well as NC-VHDL from Cadence.

Synthesis is then undertaken. The objective of synthesis is to translate the

description on a higher level of abstraction into a lower level description. It

optimizes the logical connections generated by the description and timing

requirements and flattens the hierarchical design for implementation in the

FPGA.

Synthesis refers to compiling the design into a logical netlist which consist of

the basic logic units such as AND gates, OR gates, NOT gates, D type flip-flops

rather than a true gate level circuit. As the synthesis needs to make use of the

FPGA manufacturer's layout and wiring function it is generated according to the

standard gate structure net table which is generated after the synthesis. To be

able to convert into a standard portable structure network table, the writing of

the HDL description must conform to the style required by a specific package.

The stages of synthesis are as follows. It configures the integrated generated

logical network table to a specific FPGA chip. During this procedure, the layout

Chapter 2 Background

Shaonan Zhang 28

and routing is the most important process as it configures the hardware

primitives and the underlying units in the logical netlist to the inherent hardware

structure of the chip. This operation often needs to make choices between the

best performance (speed) and the best area usage.

At present, the structure of a FPGA is very complex, especially for timing

constraints. The timing-driven engine needs to be used for layout and routing.

After finishing the routing, the software tool will automatically generate a report

to provide information about the use of each part of the design. Moreover, as

only FPGA manufacturers truly understand the chip structure, the tools for

layout and routing must be provided by the FPGA manufacturers.

The final process for the design is timing analysis, referring to the annotation

of the delay information of the layout and routing to the design network table

to detect any timing violations. Based on the result, the designer could identify

the highest working frequency of the design in that chip, check whether the

timing constraints are satisfied and analyse the clock quality. The system must

be modified and returned to the HDL design entry stage if the constraints are

not being satisfied.

In summary, as mentioned previously, HDL languages are not easy to learn.

There is an obvious difference between them and other programming

languages. It requires designers to learn and master this language. It also

requires a large effort for the design process rather than just coding. Therefore,

a suitable tool which could link the high-level programming language with HDL

seems to be necessary.

Chapter 2 Background

Shaonan Zhang 29

2.4.2 High-Level Synthesis

The recent development of the High-Level Synthesis (HLS) allows an alternative

method to implement the same design goals, without using HDL languages.

HLS is a process that translates a high-level program, normally written in

C/C++, at a behavioural or algorithmic level into a low-level automatic digital

description, for instance, code in HDL. The popular HLS tools include Xilinx’s

Vivado HLS and Intel’s HLS Complier, both can automatically translate C/C++

into Verilog or VHDL. What’s more, the HLS aims to allow the programmer to

generate the design at a higher level which relieves then from the pressure of

learning a new HDL. Therefore, it brings noticeable benefits when utilised, such

as promoting the design speed and shortening the development time. It is also

causing less descriptive mistakes which makes the programming and any

modifications easier.

However, the compiler does not always make the best choice when it interprets

the code. An incorrect and ineffective interpretation would consequently impact

the performance of system. So certain compiler directives, such as busses

input/output and loop pipelining /unrolling, needs to be added in the basic code

to ensure proper implementation by the compiler.

While, effective programming requires far more than simply implementing the

HLS. The programmer should have an in-depth understanding of an HDL to

master the HLS. On the other hand, a HLS could be a great assistant if the HDL

is well understood, even though people commonly thought the best way to

program efficiently is to use the low-level language directly. Additionally,

designers need to be aware that there is a noticeable distinction between

simulation results and hardware results. The HLS tools don’t guarantee the

cycle accuracy. To deal with this, the programmer should have further HDL

language knowledge; and the extra debugging skills.

Chapter 2 Background

Shaonan Zhang 30

2.4.3 OpenCL

As well as the choice between HDL and HLS when programming an FPGA,

people could also implement their design using OpenCL. OpenCL is a framework

of program development for parallel programming on heterogeneous platforms.

This environment was originally developed for GPUs but now it has developed

into a synthesize platform which includes GPUs, CPUs, FPGAs and other

processors. It consists of a language (based on C99 and C++11) for writing

kernels (functions running on OpenCL devices) and a set of application

programming interfaces (APIs) to control and define the platform. OpenCL

provides standard parallel computing based on task and data segmentation.

When implementing OpenCL on FPGAs, it uses the structure of FPGAs for a

small application optimized processor core. This approach asks programmers

to define the parallelism clearly and explicitly instead of the automatic

parallelization in HLS. Consequently, programmers tend to reduce the massive

parallelism on FPGA to the GPU’s level; this operation eases the GPU

programmer’s access to FPGAs but causes a large performance cost. A

comparison test has been undertaken between OpenCL and other three HLS

languages includes Bluespec System Verilog, LegUp and Chisel about the

performance of each architecture on FPGAs [40]. It showed that OpenCL and

other advanced frameworks which applied a GPU-programmer-friendly

architecture had a poor and unstable performance, while the approaches with

low-level architecture were implemented quickly and efficiently on an FPGA.

Chapter 2 Background

Shaonan Zhang 31

2.5 Video image Format

In image processing on FPGAs the real-time image data is collected from the

scene by an input device and is then processed by the FPGA on the target board

and finally output as a digital signal stream showing the results on a display

device. During the entire period, the image format would experience several

translations in order to meet the different format requirements in each step of

the processing. Therefore, it is necessary to know how to make transformations

between the two different image formats. This part introduces the most

common formats used for image representation.

2.5.1 RGB

The RGB colour model is an additive colour model in which red, green and blue

light are added together in various ways to reproduce a broad array of colours.

The name of the model comes from the initials of the three additive primary

colours, red, green and blue.

Typical RGB input devices are colour TV and video cameras, image scanners,

video games, and digital cameras. Typical RGB output devices are TV sets of

various technologies (CRT, LCD, plasma, OLED, Quantum-Dots etc.), computer

and mobile phone displays, video projectors, multicolour LED displays and large

screens such as Jumbotron.

2.5.1.1 Bayer RGB

The Bayer filter is a colour format popularly applied in digital cameras,

camcorders, and scanners for creating colour images. A three-chip colour digital

Chapter 2 Background

Shaonan Zhang 32

camera requires three monochrome sensors and associated R, G & B filters to

obtain the colour image R, G, B component but the cost is high. Whilst a single

CCD can obtain the colour image by covering a CCD surface with a red, green

and blue mosaic filter and then implement the output signal through specific

processing algorithms to synthesise an RGB value for each pixel. This design

concept is called the Bayer pattern. A filter pattern is made of 50% green and

red and blue account for 25% respectively.

As for sensor, the image structure of raw output is Bayer RGB. The process

that transforms the Bayer data to RGB is called De-mosaicing. The process

keeps the values of the red plane and blue plane and take the average of 2

green values from the 4x4 subset (Figure 2-7).

Figure 2-7 A 4x4 Bayer subset

2.5.2 Gray Scale

A grayscale image, which means the images are simply presented by different

gray shades, is generally extracted and used because each pixel just indicates

the amount of light received at that pixel, i.e. a Gray Scale image just carries

intensity information.

Chapter 2 Background

Shaonan Zhang 33

The conversion between RGB and Gray Scale is given as equation (2.1):

 Y’ = 0.299R + 0.587G + 0.114B (2.1)

2.5.3 YUV(YCrCb)

YUV, is also known as Y’CrCb, Y Pb/Cb Pr/Cr, Y’CBCR or YCBCR. YUV is a

popular colour coding method adopted by the European television systems. It

can be categorized as YUV (PAL) and Y'CbCr (YUV compression and offset

version). Generally, YUV (PAL) is used for colour TV sets while the Y'CbCr is

widely used in computer systems, therefore the YUV discussed in this thesis

refers to Y'CbCr.

In Y'CbCr the Y (Y’) stands for the brightness (Luminance or Luma). The U, Y

(or Cr and Cb) indicate the chroma components including the red-difference

and blue-difference. There is a difference between Y and Y’, as the former is

luminance, which is the non-linear encoding of light based on the Gamma-

corrected RGB primaries.

There is a mathematical coordinate conversion formula which associates the

Y’CbCr colour spaces with that of RGB and vice versa.

The conversion formula between YUV and RGB is showed as equation (2.2)

(2.3) follows (RGB values range from 0 ~ 255):

 Y’ = 0.299R + 0.587G + 0.114B

U = − 0.147R − 0.289G + 0.436B

(2.2)

Chapter 2 Background

Shaonan Zhang 34

V = 0.615R − 0.515G − 0.100B

Thus,

 R = Y + 1.14V

G = Y − 0.39U − 0.58V

B = Y + 2.03U

(2.3)

2.5.4 Chroma Subsampling

Digital signals are usually compressed to reduce file size and save the

bandwidth of transmission. As the human visual system is much more sensitive

to variations in brightness than colour [43], a video system can be optimized

by devoting more bandwidth to the luma component (usually denoted Y'), than

to the colour difference components Cb and Cr.

In compressed images, for example, the 4:2:2 Y'CbCr scheme requires 2/3rds

the bandwidth of (4:4:4) RGB. This reduction results in almost no visual

difference as perceived by the viewer.

2.5.5 Interlaced video

Interlaced video is a technique for doubling the perceived frame rate of a video

display without consuming extra bandwidth. The interlaced signal contains two

fields of a video frame captured sequentially. This enhances motion perception

to the viewer and reduces flicker by taking advantage of the phi phenomenon.

Chapter 2 Background

Shaonan Zhang 35

The phi phenomenon is the optical illusion of perceiving a series of images,

when viewed in rapid succession, as continuous motion.

This effectively doubles the time resolution (also called temporal resolution) as

compared to non-interlaced footage (for frame rates equal to field rates).

Interlaced signals require a display that is natively capable of showing the

individual fields in a sequential order. CRT displays and Alternate lighting of

surfaces (ALiS) plasma displays are made for displaying interlaced signals.

Interlaced scan refers to one of two common methods for "painting" a video

image on an electronic display screen (the other being progressive scan) by

scanning or displaying each line or row of pixels. This technique uses two fields

to create a frame. One field contains all the odd-numbered lines in the image;

the other contains all the even-numbered lines.

2.6 Summary

This chapter gives an introduction to FPGAs and its related technology as well

as devices. The image processing system is developed from the field of machine

vision as well as image processing. Then the FPGA technology was introduced,

and it was explained how they could be used to form SOPCs.

An FPGA is made of a matrix of CLBs with divergent functions and tasks. There

are two types of processors for FPGAs, the hard processor and soft processor.

Generally, each of the chip processors is supported by different formats of on-

chip-buses provided by their companies. Based on their unique structures,

FPGAs show distinct performance increases compared with GPUs and CPUs due

to its high parallelism at low clock rates and good computing ability with high

energy efficiency. A FPGA application is usually designed with the HDL, which

differs from other programming languages such as C++. To ease the

Chapter 2 Background

Shaonan Zhang 36

programming, transformation frameworks like HLS and OpenCL are applied

which can take high level code and produce HDL code. The image format is

another issue should be considered during the data processing, for example

how to make the conversation between the original RGB, YUV, Gray Scale and

Interlaced video.

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 37

Chapter 3 Design tools and Hardware

Environment

3.1 Introduction

This chapter presents the design tools and hardware that has been used in this

work as the technical background was given in Chapter 2. Section 3.2

introduces the toolkit of Quartus II, whose different components have different

contributions in building the system architecture, including both the program

and the system design part. The system hardware environment is then

introduced in details and the specific devices used in this research listed.

3.2 Design Tools

There are several common system-design service providers in the field. Quartus

II developed by Intel was selected as it not only supports various

FPGA/FPGASoC devices, but also provides a series of EDA tools which ensure

good linkage between each part designed in this work. Perhaps the main reason

for choosing Altera devices rather than Xilinx is that Altera FPGA devices have

been used for teaching and research for many years at the University of

Liverpool., Quartus II provides several toolkits and IPs which are targeted at

Intel FPGAs.

3.2.1 Quartus II

Quartus II is a development tool developed by Intel, formally Altera. It is used

for analysis and synthesis of HDL designs, compiling the hardware design,

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 38

configuring the target device with the programmer and performing timing

analysis. Quartus includes an implementation of VHDL and Verilog for hardware

descriptions, visual editing of logic circuits, and vector waveform simulation

[44]. All the processes shown in Figure 2-6 can be undertaken by Quartus II or

with its associated tools. Figure 3-1 shows the GUI of the Quartus II software.

The Quartus II software contains several tools: Platform Designer (previously

SOPC/Qsys Builder), SoC Embedded Design Suite (SoCEDS), DSP Builder etc.

Figure 3-1 Quartus II GUI (ver 17.0)

3.2.2 Intel Platform Designer

Intel Platform Designer is a system integration tool which is a part of the

Quartus II design software. It saves time in the FPGA design process by

automatically generating interconnect logic to connect IP (intellectual property)

functions and subsystems. It allows the various functions of the IP modules

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 39

available in the system library to be integrated into a system in much less time

than being programmed directly by the designer [44], for example, components

from the Video and Image Processing (VIP) Suite IP modules can be quickly

instantiated and connected.

Figure 3-2 Qsys GUI (ver 17.0)

3.2.2.1 Altera VIP suite

The Video and Image Processing (VIP) Suite produced by Intel is a design tool

and IP libraries for developing Video applications [39]. The video system is

assembled by the Platform Designer tool of Quartus with the support of IP

modules. The VIP IP modules offer standard interfaces to support control input,

data input/output and external memory access. These interfaces facilitate the

development of video systems through implementing the functions in Platform

designer. VIP modules used in this research include the Clocked Video Input /

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 40

Output, Frame Buffers, etc. To understand the operation of the VIP modules

several features of VIP suite are explained in the following sections.

a) Avalon-ST Video Packet

Although the VIP suite uses the Avalon-ST buses for transferring video streams,

it also provides information on the video stream before each video data packet.

The packets of the Avalon-ST protocol are split into symbols. Each of the symbol

represents a single data unit. For all packet types on an Avalon-ST interface,

the number of symbols is sent in parallel and the bit width of all symbols is

fixed [39]. The symbol bit width and number of symbols sent in parallel defines

the structure of the packets.

The VIP suite defines the following three types of packet (shown in Table 3-1):

Video data packets containing only uncompressed video data; Control data

packets containing the control data which configure the cores for incoming

video data packets; Ancillary (non-video) data packets containing ancillary

packets from the vertical blanking period of a video frame

Another seven packet types are reserved for user applications, and five packet

types are reserved for future use by Intel.

The packet type is defined by a 4-bit packet type identifier. This type identifier

is the first value of any packet. It is the symbol in the least significant bits of

the interface. Functions do not use any symbols in parallel with the type

identifier.

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 41

Table 3-1 Packet types of VIP Packet [29]

Type Identifier

0 Video data packet

1-8 User packet types

9-12 Reserved for future Altera use

13 Ancillary data packet

14 Reserved for future Altera use

15 Control data packet

Figure 3-3 is an example of transferring 12 packets with a 24-bit parallel video

stream using the Avalon-ST interface.

Figure 3-3 Example of a 24-bit Video stream with Avalon-ST format signal timing [39]

The data is transferring only when the valid signal is high and in the period of

the startofpacket and endofpacket. As the ready latency is “1” in this example,

when the ready signal falls in cycle 3, it means that it will not be ready to

receive data in cycles 4 and 5. With the return of the ready signal in cycle 5, it

will be ready to receive data in cycle 6.

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 42

For the symbols of D0, D1… shown in Table 3-1, it could be colour plane data

from an Avalon-ST Video image packet or data from a control packet or a user

packet [39]. The type of packet is determined by the lowest 4 bits of the first

symbol transmitted as mentioned above.

b) Colour Pattern

The organization of the colour plane samples within a video data packet is

referred to as the colour pattern.

This parameter also defines the bit width of the symbols for all packet types on

an Avalon-ST interface. An Avalon-ST interface must be at least four bits wide

to fully support the Avalon-ST Video protocol.

A colour pattern is represented as a matrix which defines a repeating pattern

of colour plane samples that make up a pixel (or multiple pixels). The height of

the matrix indicates the number of colour plane samples transmitted in parallel,

the width determines how many cycles of data are transmitted before the

pattern repeats.

Each colour plane sample in the colour pattern maps to an Avalon-ST symbol.

The mapping is such that colour plane samples on the left of the colour pattern

matrix are the symbols transmitted first. Colour plane samples on the top are

assigned to the symbols occupying the most significant bits of the Avalon-ST

data signal.

A colour pattern can represent more than one pixel. This is the case when

consecutive pixels contain samples from different colour planes. There must

always be at least one common colour plane among all pixels in the same colour

pattern. Colour patterns representing more than one pixel are identifiable by a

repeated colour plane name. The number of times a colour plane name is

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 43

repeated is the number of pixels represented [39]. Figure 3-5 below shows two

pixels of horizontally subsampled Y' CbCr (4:2:2) where Cb and Cr alternate

between consecutive pixels.

Figure 3-4 Symbol Transmission Order [39]

Figure 3-5 Horizontally Subsampled Y'CbCr [39]

c) IPs cores Used in the system

As previously mentioned, the Intel VIP suite includes several IP cores for real

time image processing. To simplify the design process, a few IP cores from the

VIP suite has been used in the system design. This section gives an introduction

to the IP cores that have been used in the system.

Clocked Video Input/output II

Both Clocked Video Input and Output IP cores are used on in the system. At

the start of the data flow process, the Clocked Video Input II (CVI II) receives

the data from outside the FPGA either from a video decoder or from interface

electronics for a CCD or CMOS camera. The CVI II IP converts the raw clocked

video data into the Avalon-ST Video format, followed by the data packets. For

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 44

the output, after image processing, the Clocked Video Output II (CVO II) IP

core processes the Avalon-ST Video format so that it can generate a video

output for driving a DAC or generating appropriate digital signals. Both cores

are compatible with video image standards (BT.656 [45], BT1120 [46], DVI

etc.). These standards were widely used in High-Definition Multimedia Interface

(HDMI), Serial Digital Interface (SDI) and DisplayPort.

The CVI II’s is capable of spanning multiple clock domains as it needs to convert

between the input pixel frequency which is a function of the image acquisition

system (camera) and the clock frequency of the FPGA. The horizontal and

vertical blanking signals are identified and stripped by the CVI II to leave just

the active picture data which is forwarded to the next IP block.

The CVO II IP has corresponding capabilities to support various video formats

at different operating frequencies. Furthermore, through applying the active

picture packets and Avalon-ST Video control, it inserts horizontal and vertical

blanking and generates the correct synchronization timing to convert the

Avalon-ST video back to a clocked video output.

Scaler II and Clipper II

Both the Scaler II and the Clipper II IPs are relatively simple cores among the

IP cores used in this research. The Scaler II IP core adjusts the resolution of

the video streams, supporting the scaling algorithms of near-point, bilinear,

bicubic and polyphase interpolation to either increase or decrease the image

resolution. It can receive video data in either a 4:2:2 or 4:4:4 format and

samples and utilizes the control packets to alter the input resolution. Moreover,

both the output resolution and filter coefficients can be changed whilst the IP

core is running by configuring the IP cores using a processor to access the IP

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 45

registers via the Avalon-MM slave interface. This allows the resolution to be

changed, in real-time, under software control. In this project, the Scaler II IP

is used to change the video input data into several different resolutions for

testing the custom IP developed.

The Clipper II IP core provides a mechanism to reduce the video area, and

change its aspect ratio, by removing the edges of the active video area. The

specific active area can be adjusted by giving the offsets from a point or every

border. The Clipper II IP core reads the Avalon-ST Video control packets to deal

with any changes of input resolutions. It is used for clipping the frame to a

regular size in this design.

Colour Space Converter II

The Colour Space Converter II IP core makes a video transformation between

different colour spaces. It enables programmers to specify colours via utilizing

three coordinate values. The IP core can be configured at run time using the

Avalon-MM slave interface [39].

There are four noticeable features on this IP core. Firstly, it allows conversion

from one space to another to be efficient and flexible. Then, it provides a few

pre-sets conversions between standard colour spaces, such as CbCrY’: SDTV to

Computer B’G’R’ and UVY' to Computer B'G'R'. Consequently, the entry of

custom coefficients is permitted to be translated between any two of three-

valued colour spaces video streams. Finally, it could support up to 4 pixels in

every transmission.

Deinterlacer II

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 46

The Deinterlacer II IP core, also called the 4K HDR passthrough, provides four

kinds of deinterlacing algorithms, consisting of Vertical Interpolation ("Bob"),

Field weaving ("Weave"), Motion Adaptive and Motion Adaptive High Quality

(Sobel edge interpolation). It is used to convert the Interlaced format into a

normal progressive format [39].

Interlaced video is a standard popularly adopted in televisions standards like

NTSC and PAL to give a perceived higher frame rate whilst reducing the

transmission bandwidth. However, most modern LED and LCD displays adopt

the progressive video format. Also, any subsequent spatial image processing

for example edge detection, normally works on the full frame (both fields)

rather than just a single field. Thus, the conversion is necessary for interlaced

video input. This IP core also supports the pass-through of progressive video

up to a resolution of 4K.

Frame Buffer II

The Frame Buffer II IP core buffers video frames consisting of interlaced or

non-interlaced video fields into external Random-Access Memory. This is one

of the most complex IP cores, it allows up to four pixels for each transmission

and supports a configurable inter buffer offset to achieve the best interlacing

of the memory’s banks for maximum efficiency [39]. Modes of write-only and

read-only are also supported.

The Frame Buffer II IP supports both double and triple buffering to implement

various functions. Frame repeating or dropping are required in triple buffering

when the input frame rate is not the same as the display frame rate. However,

the frame rate for double buffering is the same between the input and output.

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 47

The Frame Buffer II IP core includes two main blocks, the writer to save input

pixels to memory and the reader to retrieve video frames from the same

position and then generate the output. Their operation is illustrated in Figure

3-6.

In addition, the Frame Buffer II IP core can be configured to be a Frame Writer

only or a Frame Reader only. This requires it to be controlled by the processor

continuously. This function is used to drop redundant frames when the

processor can’t process the frames in time in a FPGASoC co-processing system.

It also repeats the previous frame when a new frame has not been delivered

by the processing system.

Figure 3-6 Frame Buffer Block Diagram [39]

3.2.3 ModelSim

The ModelSim-Intel FPGA Edition software is a version of the ModelSim

software targeted for Intel FPGAs devices. The software supports Intel gate-

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 48

level libraries and includes behavioral simulation, HDL test benches, and Tcl

scripting. It is a multi-language HDL simulation environment by Mentor

Graphics, for simulation of hardware description languages such as VHDL,

Verilog and SystemC, and includes a built-in C debugger. Simulation is

performed using the graphical user interface (GUI), or automatically using

scripts.

3.2.5 DSP builder

DSP Builder is a digital signal processing (DSP) design tool that allows push-

button HDL generation of DSP algorithms directly from the MathWorks Simulink

environment on Intel FPGAs. DSP Builder for Intel FPGAs tool generates high

quality, synthesizable VHDL/ Verilog code from MATLAB functions and Simulink

models. The generated RTL code can be used for Intel FPGA programming.

DSP Builder for Intel FPGAs is widely used in radar designs, wireless and

wireline communication designs, medical imaging, and motor control

applications. This tool allows developers to design algorithms, set the desired

data rate, clock frequency, and offers accurate bit and cycle simulation,

synthesize fixed- and floating-point optimized HDL, auto-verify in ModelSim-

Intel FPGA software, and auto-verify/co-simulate on hardware. DSP Builder for

Intel FPGAs adds additional library blocks alongside existing Simulink libraries

with the DSP Builder for Intel FPGAs (Advanced Blockset) and DSP Builder for

Intel FPGAs (Standard Blockset) [47].

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 49

3.2.4 Intel SoC Embedded Design Suite (EDS)

The SoC EDS is generally used to develop the embedded software on Intel

FPGA SoC devices. It is a comprehensive tool suite which embodies run-time

software, utility programs, development tools and application examples used

for application software development and initialising the firmware. It has the

function of both application software development and expedite firmware.

Currently, the EDS includes DS-5, the ARM Development Studio, which allows

sophisticated debugging of both the ARM cores and the FPGA logic [48]. The

EDS tool also includes both C and C++ toolchains for ARM Linux development.

Within the command shell of EDS (a version of Cygwin [49]), it is possible to

cross compile C/C++ programs that run on the SoC processors.

Figure 3-7 Altera EDS command Shell

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 50

3.2.5 Timing Analyzer

The Timing Analyzer validates the timing performance of all logic in design

using industry-standard constraint, analysis, and reporting methodology [50].

The Intel Quartus Prime software generates timing analysis data by default

during design compilation [50]. The timing analysis process involves running

the compiler, specifying timing constraints, and viewing timing analysis reports

like Figure 3-8.

Figure 3-8 Timing report of Timing Analyzer [50]

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 51

3.3 Hardware Environment

Although the FPGA is considered as the core part in this real-time system, other

hardware devices are also important for implementation of image processing.

This section gives a brief introduction about the hardware environment used in

this project. As previous discussed, the whole system includes 3 sub-systems:

the video acquisition system, video processing system and video display/control

system. Specific to hardware devices, it generally involves three types of

devices; the video input device; the development board (DE1-SOC); and the

video display device. Sections of the video acquisition system and the video

display system are integrated on the development board.

3.3.1 Development board

As mentioned previously, the DE1-SOC Development Board with an integrated

Cyclone V SE FPGA was selected as the development environment for this

project, mainly on the grounds of cost and availability. This FPGA chip consists

of 110k programmable logic elements and a Dual-core ARM Cortex-A9

processor.

Therefore, there are two sets of systems combined on the board, the FPGA and

the Hard Processor System (HPS). Each of these systems is connected to a

different set of devices (as shown in Figure 3-9). The kernel part of both

systems (the Cyclone V FPGA and ARM Cortex-A9 processor) are integrated

into one single chip which share interconnection buses between the FPGA and

the ARM processor.

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 52

Figure 3-9 Architecture of DE1-SOC device [51]

The details of both systems are listed in Table 3-2. As listed in the table, the

FPGA-part system is integrated with a 64MB SDRAM chip with a 16-bit bus

width working at 120MHz. This can provide a memory bandwidth up to 120MHz

x 16 bits=228MB/s theoretically which is not sufficient for buffering a 24-bit

RGB video stream with 1920x1080@60fps which requires at least 1920 x 1080

x 24bits x 60fps =355.8MB/s bandwidth. But it is sufficient for a

1024x768@30fps video stream which required about 1024 x 768 x 24bits x

30fps =67.7MB/s.

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 53

Table 3-2 Hardware of both FPGA and HPS system [51]

FPGA HPS

Altera Cyclone® V SE device 800MHz Dual-core ARM Cortex-A9

MPCore processor

Altera Serial Configuration device 1GB DDR3 SDRAM (32-bit data bus)

USB Blaster II (on board) for programming; JTAG

Mode

1 Gigabit Ethernet PHY with RJ45

connector

64MB SDRAM (16-bit data bus) 2-port USB Host, Normal Type-A

USB connector

4 Push-buttons Micro SD card socket

10 Slide switches Accelerometer (I2C interface +

interrupt)

10 Red user LEDs UART to USB, USB Mini-B connector

Six 7-segment displays Warm reset button and cold reset

button

Four 50MHz clock sources from clock generator One user button and one user LED

24-bit CD-quality audio CODEC with line-in, line-out,

and microphone-in jacks

LTC 2x7 expansion header

VGA DAC (8-bit high-speed triple DACs) with VGA-

out connector

TV Decoder (NTSC/PAL/SECAM) and TV-in

connector

PS/2 mouse/keyboard connector

IR receiver and IR emitter

Two 40-pin Expansion Header with diode protection

A/D Converter, 4-pin SPI interface with FPGA

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 54

Figure 3-10 DE1-SOC FPGA board Top View [51]

3.3.2 Video input devices

In the video processing system, digital or analogue cameras are used as the

video input device to acquire images and video into the system. Therefore,

several cameras have been considered as video input devices which include an

NTSC analogue camera, a TRDB-D5M Camera and Logitech C270 USB webcam.

Each camera has different interface ports and work at different resolutions,

which means each of them have their own advantages.

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 55

3.3.2.1 NTSC Analog camera

As shown in Table 3-2, the DE1-SOC board provides a TV decoder chip which

supports NTSC/PAL/SECAM format and a TV-in connector. Therefore, an NTSC

camera (Figure 3-11) was initially considered as the video input device.

Figure 3-11 An NTSC Camera

However, with the NTSC format video as input, it is required to deinterlace the

video stream to normal RGB video stream for image processing. The

deinterlacer would use a significant amount of resources on FPGA and generate

a large latency to the system. In the meantime, after deinterlacing the video

steam have a resolution of 720x480 which is much lower than the D5M digital

camera.

3.3.2.2 Terasic TRDB-D5M Digital Camera

As the development board has two 40-pin expansion headers, a TRDB-D5M

Camera [52] daughter card (Figure 3-12) could be chosen. This digital camera

offers various resolutions up to 2592x1944@15fps or 640x480@70fps both with

an RGB Bayer pattern. Moreover, it provides external digital controls for the

frame rate and frame size which provides more complexity [52]. It requires a

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 56

colour format transformation which transforms the video stream from the RGB

Bayer pattern to RGB for further processing.

Figure 3-12 TRDB-D5M Camera Daughter Card [52]

3.3.2.3 Logitech C270 USB webcam

Another potential video input device is a USB webcam as the board provides

two USB 2.0 ports. The Logitech C270 webcam (Figure 3-13), one of the most

common USB webcams on the market was picked as input device. Its

specification is listed in the Table 3-3 below.

Table 3-3 Specification of Logitech C270 webcam [50]

Camera Specifications:

USB Type High Speed USB 2.0

Video Capture (4:3 SD) 320x240, 640x480, 800x600

Frame Rate (max) 30fps @ 640x480

UVC-compatible Yes

Supported output format 24 bits sRGB/YUV

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 57

Figure 3-13 Logitech C270 webcam [53]

However, the USB ports are not directly accessible from the FPGA as they are

interfaced directly to the HPS system. Therefore, it can only work in the OS on

the HPS with both the USB driver and camera driver correctly configured in the

operating system of the ARM processor.

3.3.3 Video display device

The last part of the hardware environment is a video display device.

A video display device is an output device to present the visual results from the

system. There are several formats of interfaces on market which includes VGA,

DisplayPort, HDMI etc. As the DE1-SOC board contains a VGA interface port, a

VGA supported monitor has been picked up as the video display device. The

selected monitor works at 1440x900@60Hz which is sufficient for this research.

3.4 Summary

This chapter presented the design tools and hardware environment been used

in this research. At first, as a development toolkit, Quartus II launched by Intel

was selected to build the system’s hardware architecture. Along with the HDL

Chapter 3 Design tools and Hardware Environment

Shaonan Zhang 58

design procedure mentioned in last chapter, the designer initially programmed

the core IP using Intel Platform Designer, then linked it up with the established

IP modules available in the system library via the Altera VIP suite, which could

save the time in the process of design. After the original logic was established,

Modelsim was used for behavioral simulation. The waveform files would be

generated, and the signal waveform would be output to help verify the logic

functions. Finally, the timing analysis would be carried on with the Timing

Analyzer. Moreover, another tool from Quartus II, the EDS was used to develop

the embedded software on the FPGA SoC devices. This part of design will be

further discussed in Chapter 5.

This chapter also introduced the hardware environment. A complete real-time

processing system consisted of the video input devices, the development board

and the video display device. Considering the cost, the availability, the DE1-

SOC Development Board with an integrated Cyclone V SE FPGA which contained

a Dual-core ARM Cortex-A9 processor and 110K programmable logic elements

was used. It is a combination of the FPGA and the Hard Processor System.

Concerning the input devices, there were three selections, the NTSC analog

camera, the TRDB-D5M Camera and the Logitech C270 USB webcam. Each of

them has unique advantages. As for the output device, the monitor works at

1440x900@60Hz which was sufficient.

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 59

Chapter 4 Real time image processing on FPGAs

with the HDL Approach

4.1 Introduction

Based on the background discussed earlier, a real-time image processing

system has been developed and evaluated on the DE1-SOC development board.

In this chapter, detailed descriptions of the system developed are presented

with an emphasis on an FPGA configured using the Hardware Description

Language (HDL) approach.

This chapter focuses on researching the relationship between hardware

resource usage and latency with resolution and accuracy in implementing the

hardware algorithms using the HDL approach. Canny Edge Detection is used as

the demonstration for the hardware algorithm implementation. There are two

methods implemented for the demonstration, one is focused on low-latency

and low resource usage, whilst the other focuses on accuracy. The advantages

of both methods are given in this chapter for guidance.

In section 4.2, an overview of the Canny Edge Detection algorithm is presented.

Section 4.3 shows the implementation of the system algorithm with both

methods. Section 4.4 introduces the design of the system architecture. Section

4.5 presents results and a discussion of the system. In the final section, a

summary of this chapter is presented.

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 60

4.2 The Canny Edge Detection Algorithm

As a popular algorithm used in the pre-processing stages of machine vision

applications, an edge detection algorithm is a perfect solution for

implementation on an FPGA platform as it mainly involves convolution methods

which are a mathematical way of combining two functions to form a third

function. There are several kinds of edge detection methods which could be

chosen, including the Sobel detector, Gauss-Laplace detector, Canny detector,

Kirsch detector, Robert detector and Prewitt detector. They present different

performances based on the complexity of the edge computation and the ability

of edge extraction algorithm when the image suffers from heavy noise

contamination. However, most of them do not offer the noise reduction solution

with the restriction of simple gradient computation.

The Canny Edge Detector [54] is regarded as one of the most reliable

algorithms because it shows good performance and can achieve a low error-

rate and improves the identified edges’ localization. A typical Canny algorithm

is comprised of the following steps.

4.2.1 Gaussian Filtering

The first step is to filter out any noise in the original image before trying to

locate and detect any edges. As Gaussian filtering can be implemented with a

convolution method, it is appropriate to use it in the Canny algorithm. A 2-

dimensional Gaussian function is described in equation (4.1):

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 61

𝐺(𝑥, 𝑦) =

1

2𝜋𝜎2
ⅇ
−(

𝑥2+𝑦2

2𝜎2)

(4.1)

where x represents the distance from the origin in the horizontal axis, y is the

distance from the origin in the vertical axis, and σ is the standard deviation.

To implement the Gaussian function using a convolution method, it is necessary

to calculate the convolution mask for the Gaussian function. A convolution

(kernel) mask is usually much smaller than the actual image. As a result, the

mask is slid over the image and applied at each location in the image. The

larger the kernel size is, the lower the detector’s sensitivity to noise. The larger

the value of σ, the result becomes more smoothing with less noise. However,

with more smoothing of the image, the less edges will be detected by the

detector. Figure 4-1 shows the result of a Gaussian filter with various of values

of σ.

Figure 4-1 Result on different 𝝈 values after Gaussian filtering

It is common practice to uses a 5x5 kernel with σ=1.4 which is calculated as

shown in Figure 4-2.

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 62

Figure 4-2 5x5 Gaussian Filter Kernel with 𝝈 = 1.4

4.2.2 Sobel edge detector

After reducing the noise and smoothing the image, the next step is to find the

intensity gradient of the image by performing standard Sobel edge detection.

The Sobel operator uses a pair of 3x3 convolution masks, one estimating the

gradient in the vertical direction (x) and the other estimating the gradient in

the horizontal (y) which are shown in equation (4.2).

𝐺𝑥

′ = [
1 0 −1
2 0 −2
1 0 −1

] 𝐺𝑦
′ = [

1 2 1
0 0 0

−1 −2 −1
]

(4.2)

Then, it can calculate the approximate absolute gradient magnitude (edge

strength) at each pixel as shown by equation (4.3):

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 63

|𝐺′| = √𝐺𝑥

′2 + 𝐺′𝑦
2

(4.3)

Simultaneously, the gradient angle of each pixel can be calculated as shown in

equation (4.4):

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝐺𝑦
′

𝐺𝑥
′
)

(4.4)

Figure 4-3 shows the Sobel result after Gaussian filtering of the original image.

Figure 4-3 Example of Sobel Result

3) Non-maximum suppression

After the magnitude and gradient angles of each pixel are calculated, the result

may contain thick edges which contains spurious results on the edges. The use

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 64

of non-maximum suppression for each pixel in the previous result image is to

sharpen the edges.

Finding the gradient direction for each pixel, for a 3x3 image result, has 4 range

of directions which is decided by the gradient angle of each pixel:

 If the gradient angle is 0-22.5 degrees or 157.5-180 degrees, the

direction of the pixel is horizontal.

 If the gradient angle is from 22.5 degrees to 67.5 degrees, the direction

of the pixel is positive diagonal.

 If the gradient angle is from 112.5 degrees to 157.5 degrees, the

direction of the pixel is negative diagonal.

 If the gradient angle is from 67.5 degrees to 112.5 degrees, the direction

of the pixel is vertical.

As shown in Figure 4-4, each dark area represents an edge pixel.

Figure 4-4 Four possible directions of the edges

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 65

Once the orientation of each pixel has been calculated, the second step is to

compare the magnitude value of each pixel with the two pixels next to it but in

different directions. If the magnitude of the current pixel is the largest

compared to the other 2 pixels this pixel will be preserved as a thin edge.

Otherwise, the value will be suppressed. Figure 4-5 shows the pixels (marked

in red) that need to be compared for each condition.

Figure 4-5 Pixels need to be compared with

4) Thresholding with Hysteresis

After application of non-maximum suppression, the remaining edge pixels

provide a more accurate representation of the real edges in an image. However,

some edge pixels remain which are caused by noise or colour variations. To

account for these spurious values, it is essential to filter out edge pixels with a

low gradient value and preserve edge pixels with a high gradient value. This is

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 66

accomplished by selecting high and low threshold values. If an edge pixel’s

gradient value is higher than the high threshold value, it is marked as a strong

edge pixel. If an edge pixel's value is smaller than the low threshold value, it

will be suppressed. Canny [36] recommends that the ratio of the high to low

limit be in the range two or three to one, based on predicted signal-to-noise

ratios. Pixels which are between the two thresholds are accepted if they are

connected to a strong edge pixel.

The full process of a Canny Edge Detection method is shown in Figure 4-6.

Figure 4-6 Stages of a Canny Edge Detection process

The desired result of the full Canny Edge detection processing is shown in

Figure 4-7

Figure 4-7 Example of Canny Result

Greyscale
Image

Gaussian
Filtering

Sobel Edge
Detector
Filtering

Non-
maximum

Suppression

Hysteresis
Thresholding

Binary Edges

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 67

4.3 Algorithms Implementation

The proposed Canny edge detection implementation is targeting for a FPGA

based real time vision system, where the whole algorithm is coded using the

Verilog hardware description language firstly. Consequently, the edge

detector’s performance must achieve a real-time response with low latency,

while at the same time use the limited logic resources available so that the

system can fit in the FPGA. Therefore, it is required to discuss the methods

used to implement the algorithm.

4.3.1 Grayscale Transformation

As mentioned previously, to implement the Canny Edge Detector, firstly it needs

to transform the original RGB image to a Grayscale image. A Grayscale image

is an image where each pixel of the image contains only intensity information.

For an RGB pixel the Grayscale value of the pixel is computed as equation (4.5):

 Y’ = 0.299R + 0.587G + 0.114B (4.5)

As previously mentioned above, both latency and resource usage are of concern

in the real-time system, therefore it is required to simplifying the arithmetic

used in the system. Especially for multiplications and divisions as they may take

several clock cycles for each calculation. If multiple multiplications and divisions

are implemented in one algorithm block, it will increase the complexity of

synchronizing the data.

https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Luminous_intensity

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 68

Therefore, rather than using floating point arithmetic, multiply and divide can

be implemented using shift operations. Shifting to the left is equal to multiply

by 2, whilst shifting to right is equal to divide by 2. It is possible to simplify the

original equation to an approximate result which is given in equation (4.6):

 Y’ = 0.299R + 0.587G + 0.114B ≈ 0.297R + 0.586G + 0.113B

≈
76 × R + 150 × G + 29 × B

256

=
((64 × R + 8 × R + 2 × R) + (128 × G + 16 × G + 4 × G + 2 × G) + (32 × B − 4 × B + B))

28

=
(26 × R + 23 × R + 2 × R) + (27 × G + 24 × G + 22 × G + 2 × G) + (25 × B − 22 × B + B)

28

(4.6)

As all the calculations have been implemented using a shift approach, an

approximate RGB to Grayscale transformation can be implemented without

using any multiplications or divisions. Furthermore, if a more accurate result

was required it could be achieved by increasing the magnitude of the divisor.

For example, as shown in equation (4.7):

 Y’ = 0.299R + 0.587G + 0.114B

≈
306 × R + 601 × G + 117 × B

1024

(4.7)

However, as the computation becomes better in accuracy, the system becomes

more complex which results in more resources required and a longer latency.

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 69

4.3.2 Gaussian Filtering

After the Grayscale value has been calculated, the first step of the Canny Edge

Detector can be implemented, the Gaussian filter. As mentioned previously, the

Gaussian filter can be implemented using a convolution method. In order to

implement a convolution algorithm, it is required to use a method called window

filtering.

For example, for a 3x3 kernel convolution algorithm, it has a kernel as equation

(4.8).

𝑋 = [

𝑋1 𝑋2 𝑋3

𝑋4 𝑋5 𝑋6

𝑋7 𝑋8 𝑋9

]
(4.8)

To implement it on each pixel of a video stream, 3-line buffers are required to

buffer 3 lines at a time, and output 3 lines at same time as shown in Figure

4-8.

Figure 4-8 Data flowchart with 3 line-buffers

Then each pixel with its surrounding 8 pixels could form a 3x3 original image

kernel as shown in Figure 4-9.

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 70

Figure 4-9 the kernel of the original image

Using this kernel, the result of each pixel is given by equation (4.9).

 𝑃′ = 𝑋 ∗ 𝑃 = 𝑋1 × 𝑃1 + 𝑋2 × 𝑃2+𝑋3 × 𝑃3 + 𝑋4 × 𝑃4 + 𝑋5

× 𝑃5+𝑋6 × 𝑃6 + 𝑋7 × 𝑃7 + 𝑋7 × 𝑃7+𝑋7 × 𝑃7

(4.9)

Continuously, as each new pixel is received at the output, the system will

implement the desired algorithm on each pixel.

In this case, as discussed previously, a 5x5 Gaussian filter is applied. Therefore,

it is required to buffer 5 lines of the video stream.

Each pixel is calculated as shown in equation (4.10).

𝑃′ =
1

159

[

 2
 4
 5

4
9
12

5
12
15

4
9
12

2
4
5

 4
 2

9
4
 12
 5

 9
 4

 4
 2]

∗ 𝑃

(4.10)

To reduce the cost and latency of the system, an approximate result with fixed

point mathematics could be implemented as equation (4.11)

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 71

𝑃′ ≈
1

128

[

 2
 4
 5

4
9
12

5
12
15

4
9
12

2
4
5

 4
 2

9
4
 12
 5

 9
 4

 4
 2]

∗ 𝑃

(4.11)

4.3.3 Sobel Edge Detector & Non-maximum Suppression

As previously discussed, the third step of the algorithm is to calculate the

gradient and direction of each pixel. With the methods discussed previously,

the gradients in both the vertical and horizontal and horizontal directions can

be calculated. However, to calculate the absolute gradient of each pixel, it is

usually to use an approximate equation (4.12) to simplify the calculation:

|𝐺′| = √𝐺𝑥

′2 + 𝐺𝑦
′ 2 ≈ |𝐺𝑥

′ | + |𝐺𝑦
′ |

(4.12)

Afterwards, as the directions of each pixel is in one of four given conditions, a

rapid method has been used to reduce the latency and resources used by

avoiding the arctan calculation and division. As the four conditions of magnitude

angles are:

 (0°, 22.5°] 𝑜𝑟 (157.5°, 180°]

(22.5°, 67.5°]

(67.5°, 112.5°]

(4.13)

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 72

(112.5°, 157.5°]

It can be simplified as four conditions for tan θ:

 (−0.414,0.414]

(0.414, 2.414]

(−0.414,−2.414]

(−∞,−2.414) 𝑜𝑟 (2.414,+∞)

(4.14)

As 𝑡𝑎𝑛𝜃 =
𝐺𝑦

′

𝐺𝑥
′ , it can be simplified with an approximate result to avoid

division and decimals comparison as:

 𝐺𝑦
′

𝐺𝑥
′
> 0.414

𝐺𝑦
′

𝐺𝑥
′
> 0.414 ≈ 0.5

2𝐺𝑦
′ > 𝐺𝑥

′

(4.15)

In summary, the four conditions are approximated as shown in Table 4-1:

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 73

Table 4-1 The approximate conditions of the four directions

Angles Tangent Value Approximate Rapid

Method Conditions

(0°, 22.5°] 𝑜𝑟 (157.5°, 180°] (−0.414,0.414] 0 < |2𝐺𝑦
′ | ≤ |𝐺𝑥

′ |

(22.5°, 67.5°] (0.414, 2.414] |𝐺𝑥
′ | < |2𝐺𝑦

′ |

≤ |5𝐺𝑥
′ | 𝑎𝑛𝑑

𝐺𝑦
′

𝐺𝑥
′ > 0

(67.5°, 112.5°]

(−0.414,−2.414] |𝐺𝑥
′ | < |2𝐺𝑦

′ |

≤ |5𝐺𝑥
′ | 𝑎𝑛𝑑

𝐺𝑦
′

𝐺𝑥
′ < 0

(112.5°, 157.5°] (−∞,−2.414) 𝑜𝑟 (2.414,+∞) |2𝐺𝑦
′ | > |5𝐺𝑥

′ |

As both the absolute values can easily be achieved in Verilog and using this

method can reduce the latency and the resources used in the FPGA. However,

as this method uses an approximate result, some information is lost during

processing. Table 4-2 shows the angle errors in the calculation.

Table 4-2 Angle Error with approximate value for the rapid method

Expected

Angle

Expected

Value

Rapid Approximate

Value

Rapid Approximate

Angle

Angle

Lost

22.5° tan22.5° 0.5 tan26.5° 4°

67.5° tan67.5° 2.5 tan68.2° 0.7°

112.5° tan112.5° -2.5 tan111.8° -0.7°

157.5° tan157.5° -0.5 tan153.5° -4°

However, this method could be easily improved by increasing the precision.

Thus, the 4 conditions are approximated and given in Table 4-3. Meanwhile,

with the improvement of accuracy, the angle error can be reduced as shown in

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 74

Table 4-4.

Table 4-3 The approximate conditions for the 4 directions

Angles Approximate Accurate Method Conditions

(0°, 22.5°] 𝑜𝑟 (157.5°, 180°] 0 < |100𝐺𝑦
′ | ≤ |41𝐺𝑥

′ |

(22.5°, 67.5°]
|41𝐺𝑥

′ | < |100𝐺𝑦
′ | ≤ |241𝐺𝑥

′ | 𝑎𝑛𝑑
𝐺𝑦

′

𝐺𝑥
′ > 0

(−0.414,−2.414]
|41𝐺𝑥

′ | < |100𝐺𝑦
′ | ≤ |241𝐺𝑥

′ | 𝑎𝑛𝑑
𝐺𝑦

′

𝐺𝑥
′ < 0

(−∞,−2.414) 𝑜𝑟 (2.414,+∞) |100𝐺𝑦
′ | > |241𝐺𝑥

′ |

Table 4-4 Angle Error with the approximate value using the accurate method

Expected

Value

Accurate Approximate

Value

Accurate Approximate Angle Angle Lost

Tan 22.5° 0.414 Tan 22.490° 0.01°

Tan 67.5° 2.414 Tan 67.498° 0.002°

4.3.4 Thresholding with Hysteresis

As previous discussed, two thresholds are required to threshold the result. To

reduce the resources used and the latency, as with the rapid method, two fixed

thresholds are used to filter the result. Then every thin edge pixel will be directly

considered as an edge pixel.

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 75

With the accurate method, the threshold is determined by the largest value of

the magnitude from the previous result. The high threshold is set as a 1/6 of

the largest magnitude empirically. The ratio of the low threshold versus the

high threshold is 1:2 as Canny suggested [45]. If any pixel is between the two

thresholds, it will be checked to see if it is surrounded by any thin or thick edge

pixels. If it is, it will be marked as an edge pixel. If it is not, it will be suppressed.

Figure 4-10 and Figure 4-11 show the full algorithm architectures of the two

methods.

Figure 4-10 Rapid method with Canny Edge Detection

Figure 4-11 Accurate Method with Canny Edge Detection

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 76

4.4 System Architecture

When the algorithm has been implemented in the system, there are still a few

IPs from the VIP suite required for the full system implementation. For these

tests the D5M camera was used so the video input received the raw video

streaming from the D5M camera, then the Bayer Resampler resampled the

video format from the Bayer pattern to the RGB pattern. This produces a 24-

bits RGB pattern video stream suitable for the designed Canny Edge Detection

IP.

A frame buffer is then necessary for buffering the video to change the frame

rate to that of the output device. Then Video Output IP is required to transform

the video stream from Avalon Streaming to the VGA format signals. The frame

buffer buffered the video stream into DDR3 memory which is on the HPS side

of the FPGA rather than the FPGA side. As the HPS IP provides an fpga2sdram

pipeline, the Frame Buffer IP could directly read and write to the DDR3 memory

connected to the HPS.

Simultaneously, the designed CED IP keeps the original data for further

processing, it combines the 24-bits original RGB data and the processed 8-bits

edge data to a 32-bits Y-RGB video steam. The RGB data will be delayed in

order to synchronize the processed edge data from the CED IP.

The architecture of the system with the D5M camera is shown in Figure 4-12.

The red arrows in the figure shows the interconnections used to buffering the

video stream. The video format conversion of the whole system is shown in

Figure 4-13. Figure 4-14 shows the design in the Platform Designer system

whilst Figure 4-15 shows the interconnections of designed CED IP with the

accurate method.

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 77

Figure 4-12 Architecture of the System with TRDB-D5M

Figure 4-13 The Video Format conversion in the system

Video In

Bayer
Pattern

2592x1944

Bayer
Resampler

RGB 24-
bits

1296x792

Clipper

RGB 24-
bits

1024x768

Canny
edge

Detection

Y-RGB 32-
bits

1024X768

Frame
buffer

Y-RGB

32-bits

1024x768

Color

Sequencer

Grayscale

24 bits

1024x768

Video Out

RGB

24-bits

1024x768

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 78

Figure 4-14 The Qsys (Platform Designer) design of the system

Figure 4-15 Interconnection of the accurate method of Canny Edge Detection IP

If the NTSC camera is used as the input source, a deinterlacer will be required

in the system as shown by the red block in Figure 4-16. The system also using

a TV decoder in the design which is not integrated in the FPGA but provided on

the DE1-SOC board. This TV Decoder chip (Analog Device ADV7180) [42]

needs to be configured using the I2C controller in the FPGA and it is directly

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 79

connected between the video-in port and the FPGA. The TV decoder converts

the video from an analogue signal to a digital signal, it will be received by the

FPGA in an interlaced format. With a few format conversions, it will be

transformed into a 24-bits RGB video steam at 640x480 resolution with 30fps

for performing the Canny Edge Detection. However, as its resolution is quite

low and the deinterlacer requires large areas and generates a significant delay

in the system, the NTSC camera was replaced by the TRDB-D5M as this allowed

more control over the image resolutions.

Figure 4-16 Architecture of the System with an NTSC Camera

4.5 Results & Discussion

As previous mentioned, the system buffering the video is the DDR3 memory

which connects to the HPS in the FPGA. The HPS is able to access the video

which is buffered in the memory for analysis using the ARM processor. A frame

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 80

of the original RGB data with the resolution of 1024x768 is extracted from the

video stream and shown in Figure 4-17. Figure 4-18 shows the baseline result

achieved using MATLAB on a PC for comparison. This enables a comparison

between the hardware CED methods and “ground truth”. The edge pixels that

are counted using MATLAB is 24,352.

Figure 4-19 shows the result of the accurate method obtained from the video

stream. Compared with the MATLAB result, it has some edge loss (circled in

red) from the ground truth result. Counted using MATLAB, the result contains

19,526 edges information which has 19.9% information loss of the edge pixels.

There are probably two reasons for this problem, the first is the system is a

real-time system, some of the lost edge pixels’ magnitude are just around the

low threshold. Therefore, it may not be appearing in this frame but will appear

in the next frame. The second reason is that, despite this method being with

high accuracy, it still has not has the same precision as the MATLAB program

which is using double precision floating point numbers. The approximate

calculation will be less accurate.

Figure 4-17 An Original RGB Frame of the video stream

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 81

Figure 4-18 Desired CED Result achieved using MATLAB

Figure 4-19 Result of the accurate method of CED

Figure 4-20 shows the result from the rapid method. As can be observed, there

is greater information loss in the result (shown in the red circles). It contains

14,025 edges counted with MATLAB which is a 40.5% information loss of the

edge pixels. However, most of the information lost is weak edges, it still able

to recognize the objects. In general, it still performs the CED algorithm well.

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 82

Figure 4-20 Result of rapid method of CED

With this situation, the rapid method is more useful if a system is running at

very high resolution or a system requires ultra-low latency. The accurate

method is more suitable for a system requiring more edge information.

Table 4-5 shows a comparison of the system resources and latency with the

two methods at different resolutions. The latency is measured by comparing

the processed data with the original data. It shows that the rapid method’s

speed is faster than the accurate method by about 1,000 cycles and with 30%

less use of ALMs (Adaptive Logic Modules) and 17.3% less cost in memory bits

at 1024x768 resolution. However, at this resolution, the rapid method suffers

about 40% information loss compared with the more accurate method’s 20%.

But with either method, the memory used on this FPGA is only about 6% or

less. With a smaller resolution, the memory used and latency both have been

reduced slightly. But the ALMs almost remain the same. Also compared with

the resolution of 640x480, it can be concluded that the ALMs used in the system

is proportional to accuracy. Meanwhile, the memory used in the system is

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 83

proportional to the resolution. The latency is proportional to both resolution

and accuracy.

With this situation, the rapid method is more useful if a system is running at

very high resolution or a system requires ultra-low latency. The accurate

method is more suitable for a system requiring more edge information.

Table 4-5 Utilization summary with each method in different resolution

Canny Edge Detection

System Frequency: 100MHz

Resolution 1024x768 800x600 640x480

Pixels/ frame 786432 480000 307200

Method Rapid Accurate Rapid Accurate Rapid Accurate

ALMs 572.4 688 521.6 685 504.2 683.1

Memory Used(kB) 25.1

(5%)

30.3

(6%)

19.6

(4%)

23.6

(5%)

14.4

(3%)

19.8

(4%)

M10K Used 35 38 22 29 17 25

DSP 0 0 0 0 0 0

Latency

(clock cycles)

4117 5145 3221 4025 2581 3225

Chapter 4 Real time image processing on FPGAs with the HDL Approach

Shaonan Zhang 84

4.6 Summary

In summary, this chapter presented the resource usage and performance for

different resolutions and accuracy of the Canny Edge Detection algorithm

implementation on the FPGA using a Hardware Discerption Language.

Two implementations of CED has been presented, one is focused on low-cost

and low latency, and the other is on accuracy. For the rapid implementation, it

has 30% less ALMs usage and 20% less in latency than the accurate

implementation. However, it suffers 40.5% information compared with the

accurate version’s 19.9%. With this situation, it can be concluded that the ALMs

used in the system is proportional to accuracy. Meanwhile, the memory used

in the system is proportional to the resolution. The latency is proportional to

both resolution and accuracy. With this situation, the rapid method is more

useful if a system is running at very high resolution or a system requires ultra-

low latency. Finally, the accurate method is more suitable for a system which

requires more edge information.

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 85

Chapter 5 Real time image processing on FPGAs

with the HLS Approach

5.1 Introduction

In the last chapter, a real-time image processing system was developed and

evaluated on the DE1-SOC development board. A Canny Edge Detection

algorithm was implemented in the system that was developed using the HDL

approach. In general, an image processing IP like CED usually take several

months to develop. But as Intel introduce the High-Level Synthesis tool which

could be used for FPGA programming with the C/C++ Language, this whole

development process could be shorten into several weeks.

This Chapter presents the implementation and results of the CED algorithm and

Harris Corner Detection to compare with the HDL approach. It shows the

effectiveness and existing issues of using the HLS approach.

Section 5.2 gives an overview of the HLS Complier. Section 5.3 gives the

introduction to the Harris Corner Detection algorithm. Section 5.4 describes the

implementation of both algorithms. Section 5.5 presents the results comparison

between the HDL approach and HLS approach. In the last section, a summary

of this chapter is presented.

5.2 HLS Complier

The Intel HLS Compiler is a high-level synthesis (HLS) tool that takes in untimed

C++ as input and generates production-quality RTL that is optimized for Intel

FPGAs [55]. With this feature, this tool could accelerate the design and

verification time over RTL for FPGA hardware design. According to Intel,

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 86

applications developed in C++ are typically faster than HDL and requires 80%

fewer lines of code. The Intel HLS Compiler generates reusable, high-quality

code that meets performance requirements and is within 10%-15% of the area

of hand-coded RTL [55].

As mentioned previously, the most common way to build complex system

designs in Intel Platform Designer is to use IP cores. The HLS Compiler provides

the ability to create IP cores directly from HLS projects. Once the core has been

synthesized, the HLS Compiler will generate an IP core packet which could be

imported by Platform Designer directly. Figure 5-1 shows the whole design

process of HLS design.

Figure 5-1 HLS design process

This requires the HLS code to include directives that indicate what type of bus

interfaces should be present and which variables should be made available on

them.

5.3 Harris Corner Detection

Apart from the Canny Edge Detector introduced in the last chapter, another

algorithm called the Harris Corner Detector is used to evaluate the capability of

the HLS approach.

The Harris Corner Detector was proposed by C. Harris and M. J. Stephens is an

algorithm targeted at feature extraction [56]. Inspired by the autocorrelation

C/C++ code HLS Compiler IP Core
Qsys/Platform

Designer

Simulation/

Synthesis

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 87

function in signal processing, this algorithm established the autocorrelation

matrix of the pixel in the image whose eigenvalue could be denoted as the first-

order curvature of the autocorrelation function. A point which has high

curvature values in both the X and Y directions would be considered as a corner.

The principle of the Harris detector is derived from people’s perceptual

judgment of the diagonal point; that is, the image has a significant change on

the grayscale in all directions.

Through calculating the changing value of grayscale in the moving window, the

difference among the flat region, edge and corner could be identified. As shown

on Figure 5-2, when the window moves in a flat region, the grayscale value

would not have obvious change; when it moves at the edge, the value does

not change much along the edge direction but change a lot along the direction

perpendicular to the edge; when the window moves in the corner, the grayscale

value changes a lot in any direction. The corner is what is needed to be

identified.

Figure 5-2 The basic principle of the Harris Corner Detection

The corner could be defined as a junction of two edges where the brightness

changes [57]. It is a significant concept in computer vision as it could reflect

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 88

the most important information within an image even though it only takes a

small percentage, given its features of invariant through translation, rotation or

illumination. Therefore, it is commonly used in computer vision to compress the

amount of data for post processing.

Based upon the classic Moravec's corner detector, the Harris Corner Detector

made an improvement in distinguishing edges and corners more accurately

[58]. On the one hand, it replaces the binary window function with a Gaussian

function, which gives pixels closer to the centre point a greater weight to reduce

the effects of noise. On the other hand, the Harris detector approximated any

direction of the pixel’s movement through Taylor expansion, rather than only

considering every 45 degrees in the Moravec detector.

To calculate the changing values in the grayscale, let’s assume a grayscale 2-

dimensional image given by 𝐼 and a local window (𝑥, 𝑦) shifted(∆𝑥, ∆𝑦) .

Therefore, an autocorrelation function denoted by 𝑓 could be given as (5.1):

 𝑓(𝑥, 𝑦) = ∑ (𝐼(𝑥𝑘, 𝑦𝑘) − 𝐼(𝑥𝑘 + ∆𝑥, 𝑦𝑘 + ∆𝑦))
2

(𝑥𝑘, 𝑦𝑘)∈𝑊

 (5.1)

Where 𝑓(𝑥, 𝑦) presents the sum of the squares of the difference between the

original window and moves towards the(∆𝑥, ∆𝑦) direction. The larger value of

𝑓(𝑥, 𝑦) means the larger possibilities that the window (𝑥, 𝑦) locates at the

corner or the edge. Next, the 𝐼(𝑥𝑘 + ∆𝑥, 𝑦𝑘 + ∆𝑦) could be approximated by a

Taylor expansion (5.2):

 𝐼(𝑥𝑘 + ∆𝑥, 𝑦𝑘 + ∆𝑦) ≈ 𝐼(𝑥, 𝑦) + 𝐼𝑥(𝑥, 𝑦)∆𝑥 + 𝐼𝑦(𝑥, 𝑦)∆𝑦 (5.2)

To simplify it (5.3),

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 89

 𝑓(𝑥, 𝑦) = ∑ (𝐼𝑥(𝑥, 𝑦)∆𝑥 + 𝐼𝑦(𝑥, 𝑦)∆𝑦)
2

(𝑥,𝑦)∈𝑊

 (5.3)

Then it could be written in matrix form(5.4)

 𝑓(𝑥, 𝑦) ≈ (∆𝑥 ∆𝑦)𝑀 (
∆𝑥
∆𝑦

) (5.4)

Where 𝑀 represents the structure tensor as given in (5.5):

 𝑀 = ∑ [
𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2]

(𝑥,𝑦)∈𝑊

=

[

 ∑ 𝐼𝑥

2

(𝑥,𝑦)∈𝑊
∑ 𝐼𝑥𝐼𝑦

(𝑥,𝑦)∈𝑊

∑ 𝐼𝑥𝐼𝑦
(𝑥,𝑦)∈𝑊

∑ 𝐼𝑦
2

(𝑥,𝑦)∈𝑊]

(5.5)

Decomposing 𝑀 into a combination of eigenvalues and eigenvectors (5.6):

 𝑀 = 𝐴𝐵𝐴 (5.6)

Where 𝐴 is composed of feature vectors; 𝐵 is a 2*2 diagonal matrix whose

diagonal is the characteristic value 𝜆1 𝜆2. It is known that the displacement

vector is multiplied by 𝐴 to get a direction vector, when this direction vector is

multiplied by 𝐵, the following results could occur:

It would be identified as flat region when 𝜆1 𝜆2 are both very small;

It would be identified as edge when 𝜆1 ≫ 𝜆2 or 𝜆1 ≪ 𝜆2;

It would be identified as corner when 𝜆1 𝜆2 are similar and are both very large;

Then a response function could be given to determine the corner (5.7):

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 90

𝜆𝑚𝑖𝑛 ≈

𝜆1 𝜆2

(𝜆1 + 𝜆2)
=

𝑑𝑒𝑡(𝑀)

𝑡𝑟𝑎𝑐𝑒(𝑀)

(5.7)

This formula shows that if the small eigenvalues 𝜆1 𝜆2 are large, then both the

two eigenvalues 𝜆1 𝜆2 are large, so the window could be identified as a corner.

Therefore, Harris used a bit of heuristic thinking to define R as (5.8):

 𝑅 = 𝑑𝑒𝑡(𝑀) − 𝑘(𝑡𝑟𝑎𝑐𝑒(𝑀))
2
= 𝜆1 𝜆2 − 𝑘(𝜆1 + 𝜆2)

2 (5.8)

Where K is an empirically constants and usually valued between 0.04 and 0.06.

Then, the corner could be identified through judging the value of R.

Figure 5-3 and Figure 5-4 below shows the result of a chessboard image after

filtering with the Harris Corner Detector.

Figure 5-3 Black and White Chessboard image

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 91

Figure 5-4 Chessboard image Filtered with the Harris Corner Detector

In summary, the full process of a Harris Corner Detection method is shown in

Figure 5-5.

Figure 5-5 Stages of a Harris Corner Detection process

Greyscale
Image

Spatial
derivative
calculation

Gaussian
Filtering

Harris
response

calculation

Non-
maximum
Suppressio

n

Binary
Corners

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 92

5.4 Algorithm Implementation

The aim of this section is to develop a real time image processing IP on an

FPGA using the HLS approach. The Canny Edge Detector and Harris Corner

Detector are implemented by the HLS Compiler coded in C++, however there

are still a few differences from a general C++ program.

Usually, a normal C++ programme will handle the existing data or values

passed by pointers. However, a real-time image processing IP core usually runs

continuously. As shown in Chapter 4, a CED algorithm is required to store

several lines for convolutional processing. Using the HLS Compiler, it is required

to use the “for” loop to store the incoming data. Simultaneously, to get several

data for each kernel computation, it is necessary to use the #pragma unroll

method to “unroll” the loop. Figure 5-6 shows an ‘N’ depth shift register coded

with the HLS Compiler.

1. #pragma unroll

2. for (int i = N - 1; i > 0; --i) {

3. buffer[i]=buffer[i-1];

4. }

5. buffer[0] = data_in;

Figure 5-6 Example code of a shift register with HLS Compiler

Meanwhile, as a FPGA design, it is required to handle signals which is not very

common in C/C++ programming. At the moment, the HLS Compiler only

provides support for both Avalon-ST and Avalon MM Master interfaces. In this

project, it is required to handle packets including the Avalon-ST interface. Thus,

the application is required to be defined as shown in Figure 5-7 where unsigned

char means the width of the interface is 8 bits.

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 93

1. void exmaple(ihc::stream_in<unsigned char, ihc::usesPackets<true> >& data_

in, ihc::stream_out<unsigned char, ihc::usesPackets<true> >& data_out)

Figure 5-7 Example code of application definition with the Avalon-ST interface

In the meantime, as the packet signals include startofpacket and endofpacket.

The startofpacket and endofpacket signals can be processed as shown in Figure

5-8:

1. while (!end_of_packet) {

2. // read in data

3. data = data_in.read(start_of_packet, end_of_packet);

4.

5. //...

6. // write out data

7. data_out.write(data, start_of_packet, end_of_packet);

8. }

Figure 5-8 Example code of handling packets signals with HSL Compiler

With the preceding information, the Canny Edge Detector algorithm is

implemented with the same accuracy as the HDL accuracy method in the last

chapter which is shown as Figure 5-9.

Figure 5-9 Canny Edge Detection algorithm implementation with HLS approach

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 94

Then the Harris Corner Detector algorithm is implemented as shown in Figure

5-10.

Figure 5-10 Harris Corner Detection algorithm implementation using the HLS approach

5.5 Results and Discussion

5.5.1 Canny Edge Detector

The original design with the HDL approach was developed with two stages. The

first stage includes writing the high-level MATLAB model, evaluates the balance

of the resource usage, algorithm accuracy and system latency and writes

Verilog code. The first stage takes about 6 months for the Canny Edge Detector

algorithm as it takes significant effort to get familiar with the HDL approach for

algorithm implementation.

The second stage takes about 2 months for testing the implementation and

evaluating the results. Therefore, it takes 8 months in total to implement the

Canny Edge Detector algorithm using the HDL approach.

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 95

For the HLS approach, it takes about 4 weeks to convert the original high-level

model into HLS Complier friendly code as the first stage. However, the high-

level MATLAB model takes about 2 weeks to write. Therefore, the total time for

the implementation of Canny Edge Detector algorithms takes about 1.5 months.

And for the second stage, the testing takes longer than expected. Although the

HLS Complier offers the reports for analysing the design, it still did not detail

enough to show the resource usage and latency for a complex algorithm. As

the HLS Complier generates the code into a design that contains both the

Verilog and VHDL languages, it is not possible to test with the ModelSim tool

for behavioural testing. Meanwhile, by becoming familiar with HLS Complier, it

is able to reduce the latency and resources usage of the design by avoiding

floating point calculations and most of the divisions. In total, the second stage

takes almost 2.5 months using the HLS approach.

Table 5-1 shows a comparison of the resources used and latency between the

two approaches at different resolutions. It shows that the HLS approach is

slower than the HDL approach with about twice the latency and requiring 84%

more memory bits at 1024x768 resolution. For the ALMs, it required about 5

times more than the HDL method.

Like the HDL approach, the system buffers the video in the DDR3 memory

which is on the HPS side. It can then access the video, which is buffered in the

memory for result analysis, using the ARM processor. A frame of original RGB

data is extracted from the video stream is shown in Figure 5-11. Figure 5-12

shows the result achieved using the HLS approach from the video stream.

Figure 5-13 shows the result of the HDL approach from the last chapter for

comparison. However, there are no significant differences between the two

results.

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 96

Table 5-1 Comparison between the HLS and the HDL approach with Canny Edge Detector

Canny Edge Detection

System Frequency: 100MHz

Resolution 1024x768 800x600

Method HDL HLS HDL HLS

ALMs 688 2659.9 685 2651.3

Memory Used(KB) 30.3

(6%)

51.3

(10%)

23.6

(5%)

42.3

(9%)

M10K Used 38 59 27 48

DSP 0 0 0 0

Latency

(clock cycles)

5145 9406 4025 7023

Figure 5-11 Original RGB data

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 97

Figure 5-12 Canny Edge detector with HLS approach

Figure 5-13 Canny Edge Detector with HDL approach

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 98

5.5.2 Harris Corner Detector

The first stage of Harris Corner Detector algorithm implementation with HDL

approach takes about 1 month in designing a high-level MATLAB model. Then

it takes another month to write the Verilog code. It takes 2 months in total for

the first stage which is much faster than the Canny Edge Detector

implementation, as the experience has been achieved during the previous

development.

The second half takes 2 months again for testing the implementation and

evaluating the result. Therefore, it takes 4 months in total to implement the

Harris Corner Detector algorithm using the HDL approach.

For the HLS approach, it takes about 3 weeks to convert the original high-level

model into HLS Complier friendly code as the first stage. As the high-level

MATLAB model takes about 1 month to write, the total time for the

implementation of Harris Corner Detector algorithms is about 1.5 months. For

the second stage, the testing takes 2 months for the Harris Corner Detector.

Table 5-2 shows a comparison of the resources used and latency between the

two approaches at different resolutions. It shows that the HLS approach is

much slower than the HDL approach with almost triple the latency and requiring

186% more memory bits at 1024x768 resolution. For the ALMs, it required

about 2.5 times more than the HDL method.

It should be mentioned that although the HLS approach has much larger

resource requirements and latency than the HDL method, its major benefit is

the significantly reduced design time. Even for a relative novice HLS designer,

this IP module could be finished in a few weeks rather than the HDL approach

which may take several months. Moreover, with more familiarity with the HLS

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 99

Compiler and FPGA design, the design time and system cost could be further

reduced.

Table 5-2 Comparison between the HLS and the HDL approach with Harris Corner Detector

Harris Corner Detection

System Frequency: 100MHz

Resolution 1024x768 800x600

Method HDL HLS HDL HLS

ALMs 2796.8 6914.5 2868.3 6910.3

Memory Used (KB) 67.1

(12%)

192.3

(34%)

52.4

(5%)

180.2

(30%)

M10K Used 66 167 65 159

DSP 12 15 12 15

Latency

(clock cycles)

4123 12067 3227 8542

As a recently publicised tool for Intel FPGAs, the HLS tool still does not provide

enough support on programming. This includes less support on existing

libraries, limited documentation on the HLS Compiler, less design examples and

a few bugs. Hopefully this will be solved with future releases of the HLS system

with further optimization of HLS Compiler. In summary the HLS approach is

close to replacing the traditional HDL programming approach.

Chapter 5 Real time image processing on FPGAs with the HLS Approach

Shaonan Zhang 100

5.6 Summary

This chapter makes a detailed comparison of performance of two approaches

on system design, which are the HDL and the HLS, through presenting the

implementation of Canny Edge Detection algorithm and Harris Corner Detection

algorithm. Being different from the former algorithms, Harris Corner Detection

is used for point feature extraction. It largely shrinks the amount of post

processing data as it only focuses on the corners in the image, which could

contain significant information. Then, two approaches are implemented on two

algorithms respectively to test the performance of both the HDL and HSL

approaches.

Consequently, the HSL approaches generally shows a much shorter

development period than HDL, with 8 months for HDL and 2.5 months for HSL,

in total, needed to implement the Canny Edge Detector, and 4 months for HDL

and 2 months for HSL, in total, needed to implement the Harris Corner Detector.

However, the HSL approach also has higher requirement on a device’s memory

and shows higher latency than the HDL. According to the results, the HSL has

twice the latency to the HDL, followed by 84% more memory bits required and

5 times more ALMs than the latter when implementing the Canny Edge Detector.

As far as the Harris Corner Detector is concerned, the HSL even has triple the

latency to the HDL, followed by 186% more memory bits required and 1.5 times

more the ALMs than the HDL. Thus, HSL and HDL shows different advantages

in FPGA programming. As the HDL approach is suitable for a system requiring

more accuracy or less latency and the HLS approach is suitable for a system

requiring less development time.

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 101

Chapter 6 A Co-processing FPGASoC system

6.1 Introduction

In the previous two chapters, the HDL approach and the HLS approach have

been researched by implementing a Canny Edge Detector and a Harris Corner

Detector as pre-processing algorithms. In this Chapter, the FPGASoC system

which contains both the FPGA and HPS system are used to explore the potential

for pre and post co-processing. A customized OpenCV programme is used as

the post processing algorithm in the system and accelerated by the FPGA using

the pre-processing algorithms. Meanwhile, with the objective of implementing

post processing algorithms, it is necessary to build the software environment

for OpenCV on the FPGASoC system.

In this chapter Section 6.2 presents an overview of the FPGASoC designs.

Section 6.3 provides an introduction to OpenCV [59]. Section 6.4 describes the

architecture of the system. Section 6.5 presents the results of the system and

discusses them. In the last section, a summary of this chapter is presented.

6.2 The FPGASoC System Design

Compared with just FPGA designs, FPGASoC designs also include the HPS

system. The HPS, which uses an ARM processor, can implement software

programs in the system to perform actions including controlling the behaviour

of the IP cores on the FPGA side, data processing or accessing devices on the

HPS. The HPS can operate in two modes: bare-metal or OS mode. The bare-

metal mode can run with the ARM DS-5 tool which provides the ability for

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 102

debugging of the code. However, if the application involves device API or other

3rd part libraries, it is required to run on a configured operation system for

example embedded Linux. The embedded Linux system integration includes

several parts; Preloader, Device Tree, U-Boot, kernel and a Root Filesystem,

and also any hardware FPGA design and custom software applications, which

make up an FPGASoC design as shown in Figure 6-1. The Preloader and Device

Tree are built using Quartus II and the U-Boot, Kernel and Root Filesystem

Linux kernel are built using the Yocto Project [60]. Then an IDE for example

ARM DS-5 is used to load and debug the custom applications. The configured

system can be configured on an SD card.

Figure 6-1 a high-level view of the development flow [61]

When booting from an SD card, there are several stages to initialise the system

as shown in Figure 6-2. Table 6-1 presents a short description of the different

boot stages:

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 103

Table 6-1 Descriptions of the different boot stages [61]

Stage Description

BootROM Performs minimal configuration and loads the Preloader into 64KB on

chip RAM

Preloader Configures clocking, IOCSR, pinmuxing, SDRAM and loads U-boot into

SDRAM

U-boot Configures FPGA, loads the Linux kernel

Linux Runs the end application

Figure 6-2 the system boot flow

The Preloader configures the HPS component based on the information from

the handoff folder generated by Quartus, it initializes the SDRAM and then loads

the next stage of the boot process into the SDRAM and passes control to it.

Figure 6-3 shows the flow for generating a preloader image.

Figure 6-3 Generation of the preloader [55]

A Device Tree is a data structure that describes the underlying hardware to the

operating system – primarily Linux. By passing this data structure to the OS

kernel, a single OS binary may be able to support many variations of hardware.

This flexibility is particularly important when the hardware includes an FPGA.

BootROM Preloader U-boot Linux

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 104

The Device Tree Generator tool is part of Intel SoC EDS and is used to create

device trees for SoC systems that contain FPGA designs created using System

Builder. The generated Device Tree describes the HPS peripherals, selected

FPGA Soft IP and peripherals that are board-dependent. Figure 6-4 shows the

processes for device tree generation.

Figure 6-4 The Device Tree generation flow [61]

The final part is the Linux kernel execution. When the Linux kernel boots up, it

starts off by performing low-level architecture specific initialization sequences

(setting up the processors registers, memory management unit, interrupt

controller, etc.). It also loads up a serial driver to output debug messages to

show the information in the boot flow via a serial terminal.

After that, it starts initializing all the kernel subsystems and drivers that were

compiled into the kernel. Lastly, it attempts to mount the Root Filesystem which

contains the shell custom programs.

It is not necessary to rebuild U-Boot, the Linux kernel and the Root Filesystem

for all changes to the FPGA section, it is only necessary when a driver needs to

be updated or inserted or when an update is required to the Linux Kernel.

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 105

Once all the stages have been completed, it is necessary to programme or

“flash” the image onto an SD card. Figure 6-5 shows the layout of the SD card

required for correctly booting the system:

Figure 6-5 SD card layout [61]

Table 6-2 summarizes the information that is stored on the SD card and its

location:

Table 6-2 information stored on the SD card [61]

Location File Description

Partition 3 n/a Preloader image

Partition 3 n/a U-boot image

Partition 1 soc_system.rbf FPGA configuration file

Partition 1 socfpga.dtb Device Tree Blob file

Partition 1 u-boot.scr U-boot script for configuring FPGA

Partition 2 various Linux root filesystem

Partition 1 zImage Compressed Linux kernel image file

When the SD card is built/updated and installed on the board, as the processor

powers up, the HPS would load Linux into SDRAM automatically. With a PC

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 106

running serial console terminal software (like Putty), it is possible to control the

boot process using the host computers USB port, via a virtual serial port to the

board. Figure 6-6 shows the data from the virtual serial port on a host PC, in

this case a Windows PC. If the user application has been loaded on the SD card,

it could be loaded and executed using the serial terminal, alternatively it could

be added to the boot script.

Figure 6-6 Software Screenshot of embedded Linux command line

6.3 Compile the Linux kernel

As previous explained, if a new driver needs to be installed or updated, it is

necessary to rebuild the Linux kernel. There are several steps in building the

Linux kernel as shown in the Figure 6-7.

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 107

Figure 6-7 Steps for building the Linux kernel

Before starting to build the Linux kernel, some preparation work is needed. It

is best to use a Linux based computer for the kernel compilation, in this

research a Ubuntu 14.04 OS was used as the host machine, there are a few

libraries and packages that need to be installed which include: sed, wget, cvs,

subversion, git-core, coreutils, unzip, texi2html, texinfo, libsdl1.2-dev, docbook-

utils, gawk, python-pysqlite2, diffstat, help2man, make gcc, build-essential,

g++, desktop-file-utils, chrpath, libgl1-mesa-dev, libglu1-mesa-dev, mercurial,

autoconf, automake, groff, libtool and xterm [61].

Then, with the necessary programmes and libraries installed, the toolchain for

the target device, in this case a Cyclone V FPGA-SoC, needs to be selected. The

toolchain is a set of programming tools that are used to perform the software

development task or to create a software product, which is usually another

computer program or a set of related programs. Typically, a development

toolchain includes a compiler and linker (which transform the source code into

an executable program), libraries (which provide interfaces to the operating

system), and a debugger (which is used to test and debug the programs

created). In this research, the toolchain that are provided with the Intel EDS

tool were used for building the kernel.

The next step is downloading the source file of Linux kernel. The Linux kernel

source is provided by Linux Kernel Organization. Companies like Intel adds

some libraries into the source file to make it suitable for their own devices like

the Cyclone V SoC.

Select Toolchain
for taget device

Download Linux
kernel source

file

Add 3rd party
layer

Confirguration
Compile the

image

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 108

The last step, before building the kernel image, is to configure the kernel. The

kernel source file usually provides a graphic menu as shown in Figure 6-8. With

this menu, it is straight forward to select the drivers needed in the system. For

example, if a webcam like a C270 is going to be used in the system, then several

drivers need to be added in the kernel image including: Media USB Adapters

driver, USB Video Class driver and UVC input events device support.

When the build is finished, the SD card is updated with the new kernel image.

Also, U-Boot and the device tree may need to be updated for the installed driver.

Figure 6-8 Configuration menu of Linux Kernel

6.4 OpenCV

With the embedded Linux running on HPS system, it is productive if the high-

level image processing application can make use of existing image processing

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 109

libraries. OpenCV, whilst originally target for Intel CPUs, is one of the most

widely used image processing libraries and was used in this research.

OpenCV is a cross-platform programming function library. It implements a

number of computer vision algorithms, ranging from the basic filtering to

advanced object detection. Based on the BSD license and programmed through

C++ and C, OpenCV plays a major role of standardising the APIs for real-time

computer vision as it provides interface bindings for languages like Python,

Ruby, MATLAB and Java and can be used on various operation systems

including Linux, Windows, Android and Mac OS.

Because of the abundant algorithms and functions which can be found in

OpenCV and as it is open-source, OpenCV is widely used to make machine

portable algorithms. It also accelerates the speed of system development.

OpenCV was initially established by Intel and is now maintained by Itseez [59].

It usually has a significant update each year and the latest version published

on the 23rd December 2017 is OpenCV 3.4. Its application areas are very wide,

including the Human–computer interaction (HCI), motion tracking, augmented

reality, 2D and 3D feature toolkits, Structure from Motion (SFM) and recognition

of objects, face, and actions.

In this research, the OpenCV library is required to be compiled before it is

installed into the system. It requires the same version of toolchain which is

used for building for the Linux Kernel. The user application is also required to

be built using the same toolchain.

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 110

6.5 System Implementation

Apart from the HPS system, it still needs an FPGA design to capture the video

stream into the HPS memory and read out the result to display on a monitor.

The system is similar to the architecture described in the previous chapters but

replaces the frame buffer with a separate frame writer and a separate frame

reader. Then both IPs are configured to use the fpgas2sdram bus to access the

DDR3 memory directly. In parallel, the ARM processor on the HPS can access

the DDR3 memory to read the image data for processing. In addition, the frame

writer and frame reader are required to be controlled by the ARM processor to

control the write and read actions to adapt to the processing time of the HPS

system. The redundant frames are dropped by the frame writer and missing

frames are filled by repeating the previous frame by the frame reader. At the

same time, the system has been integrated with the Canny Edge and Harris

Corner Detection algorithms. As the fpgas2sdram only supports several modes

i.e. 16-bit, 32-bit, 64-bit, 128-bit and 256-bit transfer mode, the 64-bit mode

was used in this design to keep the result of Canny Edge and Harris Corner

Detection algorithms. Both pre-processed data streams have been merged into

64-bits word and combined with the grayscale result and the original RGB data

of each pixel. As shown in Figure 6-9, for each 64-bit pixel, it contains the 24-

bit original RGB data, 16-bit Harris Corner intensity result, 8-bit Canny Edge

intensity result, 8-bit Grayscale result and 8-bit reserved data. The whole

architecture of the design is shown as Figure 6-10.

Figure 6-9 64-bit word structure of the system

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 111

Figure 6-10 Architecture of the System

6.6 Results and Discussion

With the aim of demonstrating the performance improvement of the system, a

CED algorithm is applied to the original 24-bit RGB data using an OpenCV

application with an image resolution of 1024x768. The result compared with

the HDL method are shown in Figure 6-11 and Figure 6-12. The performance

of the OpenCV implementation is a little bit better as the algorithm is using the

square root to calculate magnitude instead of using the absolute value. This

increases the precision of the system but will also increase the processing time.

The processing time of the OpenCV Canny algorithm takes about 86ms to

process a frame. Therefore, the frame rate is already down to 11 fps with only

an implementation of CED and no further high-level image processing. Whilst,

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 112

with the HDL method, it takes only adds a latency of 5,145 clock cycles i.e. a

0.05ms delay at 100 MHz without reducing the frame rate. As a result, it can

reduce by 86ms the processing time for a CED based algorithm like image

segmentation or moving object tracking.

Figure 6-11 Canny Edge Detection Result of OpenCV

Figure 6-12 Canny Edge Detection Result of HDL method

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 113

Subsequently, another OpenCV application has been applied to test the system:

the feature tracking algorithm with 20 points (shown in Figure 6-14) requires

0.3691s to process a frame at the resolution of 1024x768. The feature points

are marked with red arrows in the figure.

Figure 6-13 A frame result of feature tracking application using OpenCV (Feature points are

marked in with red arrows)

Meanwhile, as the feature tracking application is based on the Harris Corner

Detection algorithm which would also be implemented on the FPGA. Performing

the Harris Corner Detection algorithm in hardware would significantly increase

the system performance. With the objective of combining the FPGA design with

the OpenCV application, the original application was modified to receive the

data from the FPGA and extract the information from the memory at the same

time. However, as the data extracted from the memory, pixel by pixel, is a 64-

bit combined word as previous mentioned, it is required to extract the different

results separately to complete the whole data extraction process for post-

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 114

processing. Then the result of feature tracking application using OpenCV

accelerated by the FPGA is shown as Figure 6-14 below. The feature points are

marked with red arrows. Compared with the original OpenCV result, it has some

different feature points. This is because some of the feature points have a

similar Harris Corner result as they may show up dynamically in the result. In

the meantime, the strongest feature points remain stable.

Figure 6-14 A frame result of feature tracking application using OpenCV accelerated by

FPGA (Feature points are marked in with red arrow)

Table 6-3 shows a comparison of the total processing time of the two methods

at different resolutions. With the acceleration of FPGA, the total processing time

has been reduced by 48.2%, 49.5% and 56.1% at the resolutions of 640x480,

800x600 and 1024x768 respectively. It can extrapolate that with the higher

resolution, the results become more effective. However, it requires more time

for data extraction as it is proportional to the resolution. In this case, the FPGA

has improved the performance of the application sufficiently.

Chapter 6 A Co-processing FPGASoC system

Shaonan Zhang 115

Table 6-3 Feature Tracking Algorithm Comparison

Feature Tracking Algorithm (OpenCV)

Resolution Total Processing Time/Frame Rate

ARM only Accelerated with FPGA (Data

Extraction Time)

640x480 0.1268s/7.89fps 0.0656s (0.0216s)/15.24fps

800x600 0.2165s/4.62fps 0.1092s (0.0352s)/9.16fps

1024x768 0.3691s/2.71fps 0.1624s (0.0559s)/6.16fps

However, the capability of the integrated ARM processor is not powerful enough

for true real-time performance. The system is still running at a low frame rate

even with the acceleration of the FPGA. With next generation of the devices,

the performance of the system may be improved.

6.7 Summary

To summarize, this chapter presented the FPGASoC design that combines both

the FPGA and HPS systems. The FPGA part has integrated both the Canny Edge

and Harris Corner Detection algorithms. The HPS part is based on a customized

Linux with the OpenCV framework. With the comparison of only the Canny Edge

Detection algorithm, the FPGA dominated the performance. With the feature

tracking algorithm, the FPGA accelerated the total processing time by reducing

it to 48.2%, 49.5% and 56.1% at the resolution of 640x480, 800x600 and

1024x768. Thus, with the acceleration of FPGA on pre-processing algorithms,

the performance of a high-level algorithm can be improved.

Chapter 7 Conclusions and Future work

Shaonan Zhang 116

Chapter 7 Conclusions and Future work

7.1 Conclusions

Image processing applications typically require some pre-processing algorithms

on the raw image data followed by post-processing algorithms on both the pre-

processed results, and the original data, to extract useful information from the

image.

The pre-processing algorithm is generally applied to the full image and can be

time consuming unless it is undertaken in dedicated hardware such as a GPU

or FPGA. The cost and power requirements of GPU based systems make them

unsuitable for low cost embedded applications.

This research investigated the use of a low cost FPGASoC device for real time

image processing by developing a real-time image processing system with

several approaches for the pre-processing algorithms, using the FPGA, to

reduce the processing time. Additionally, it synchronizes the original data in

parallel with the pre-processed data in memory for further processing, i.e. the

pre-processed image is stored as a 64-bit word with 8 bits each for the RGB

values and 32-bit for the pre-processing results. Simultaneously, it provides the

infra-structure for implementing complex image processing applications on the

integrated ARM system with support from the OpenCV library. The FPGA design

was developed in Quartus II using the Video Image Processing (VIP) IP which

provides several sub-systems such as frame buffer, clocked video in & out in

Platform Designer (formally Qsys), which is Intel’s (formally Altera) tool for

developing SOPC systems. Therefore, the programmable hardware design

needed to develop the algorithm to be compatible with Intel’s VIP based IP

format so that it could be compatible with the Intel VIP subsystems.

Chapter 7 Conclusions and Future work

Shaonan Zhang 117

Firstly, the research shows the two implementations of Canny Edge Detection

algorithm with the HDL approach, one is focused on low-cost and low latency,

and the other is on higher accuracy. For the rapid implementation, it uses 30%

less ALMs and the latency is 20% less than the accurate implementation.

However, it suffers from 40.5% information loss compared with the accurate

version’s 19.9%. With these results, it shows that as expected the ALMs used

in the system is proportional to accuracy. Meanwhile, the memory used in the

system is proportional to the resolution. Whilst the latency is proportional to

both resolution and accuracy.

Secondly, the HLS approach is researched by making a detailed comparison of

the performance of two approaches on system design, which are the HDL and

the HLS, through presenting the implementation of the Canny Edge Detection

algorithm and the Harris Corner Detection algorithm. Then, the two approaches

were implemented on two algorithms respectively to test the performance of

both the HDL and HSL approaches. Consequently, the HSL approaches

generally requires a much shorter development period than HDL, with 8 months

for HDL and 2.5 months for HSL in total needed to implement the Canny Edge

Detector and 4 months for HDL and 2 months for HSL in total needed to

implement the Harris Corner Detector. However, the HSL approach also has

higher requirement on a device’s memory and a higher latency than the HDL

implementation. According to the results, the HSL has twice the latency of the

HDL implementation, followed by 84% more memory bits required and 5 times

more ALMs when implementing the Canny Edge Detector. For the Harris Corner

Detector, the HSL has triple the latency compared to the HDL implementation,

followed by 186% more memory bits required and 1.5 times more ALMs than

the HDL implementation. Thus, HSL and HDL shows different advantages in

FPGA programming as HDL approach shows more accuracy and HSL approach

has more efficiency.

Chapter 7 Conclusions and Future work

Shaonan Zhang 118

The next, an IP is developed with HDL method which contains the original RGB

data, Harris Corner Detection result, Canny Edge Detection result and Grayscale

result all synchronized together pixel by pixel. Concurrently, this design is based

on the customized OpenCV application for post-processing implementations.

Later with the feature tracking algorithm, the FPGA accelerates the total

processing time by reducing it to 48.2%, 49.5% and 56.1% at the resolution

of 640x480, 800x600 and 1024x768 differently. With the higher resolution, the

result become more effective. Thus, with the acceleration of FPGA on pre-

processing algorithms, the performance of a high-level algorithm can be

improved.

To summarise the novelty in this research is the development of an embedded

FPGASoC image processing architecture where image pre-processing takes

place in real-time in the FPGA fabric allowing the ARM SoC processor to

concentrate on the post processing algorithm thus reducing the time between

the image is captured and the result presented. Such an approach will open up

the market for low-cost real-time image processing applications as the system

capital and running costs are significantly lower than using a PC based system.

The comparison between the HDL and HLS approaches allows recommendation

on which to select when developing an embedded image processing system.

As the HDL approach is suitable for a system requiring more accuracy or less

latency and the HLS approach is suitable for a system requires less

development time.

Chapter 7 Conclusions and Future work

Shaonan Zhang 119

7.2 Future work

During the research on this project, there have been a number of ideas for

future work.

7.2.1 Algorithms & System implementation

The implementation of the algorithm in this system could be improved by

several methods, the first is implementation of another edge tracking method

which may improve the result of broken edges. However, it may cost more time

in processing the video stream. Another idea is to replace the Sobel detector

with other detectors like Scharr, as it may have better result in some situations.

Also, an Eight-directional Canny could be implemented to improve the results.

In the meantime, more work would then be needed on customized OpenCV

applications for testing on the system.

Then, it should be possible to implement the other more lower level algorithms

in parallel in the FPGA, and a multiplexor can be used under software control,

to select which results gets written into the HPS system. This would provide

dynamic flexibility when selecting the lower level algorithm to use whose results

are then used by the high-level image processing algorithm.

7.2.2 Devices & Other approach

In this research, the whole system is developed on the Cyclone V SoC device.

But during the development, it appears that the integrated ARM processor has

not the performance for complex algorithms. In the meantime, the FPGA on

chip is quite enough for pre-processing algorithms. It is necessary for further

development with another FPGASoC device which contains a more powerful

Chapter 7 Conclusions and Future work

Shaonan Zhang 120

ARM processor on chip. With a FPGASoC device which lays emphasis on ARM

processor instead of FPGA, it may be more suitable for embedded vison system.

Additionally, OpenCL based on the FPGASoC could be evaluated. The system

will be mainly based on HPS and utilize FPGA to optimize the computation. In

will provide another approach for low-cost real-time image processing designs.

References

Shaonan Zhang 121

References

[1] C. T. Johnston, K. T. Gribbon and D. G. Bailey, “Implementing image processing

algorithms on FPGAs,” in In Proceedings of the Eleventh Electronics New Zealand

Conference, New Zealand, November 2004, ENZCon’04, pp. 118-123..

[2] Intel Croporation, Intel Croporation, [Online]. Available: http://www.altera.com.

[3] J. Kang and R. Doraiswami, “Real-time image processing system for endoscopic

applications,” in Electrical and Computer Engineering, 2003. IEEE CCECE 2003.

Canadian Conference, May 2003.

[4] C. Balfour, J. S. Smith and S. Amin-Nejad, “Feature correlation for weld

imageprocessing applications,” International Journal of Production Research, pp.

Volume 42, pp 975-995, March 2004.

[5] S. A. Clukey, “Architecture for Real-Time, Low-SWaP Embedded Vision Using

FPGAs,” Master's Thesis, University of Tennessee, 2016.

[6] S. Palnitkar, Verilog HDL: a guide to digital design and synthesis, Prentice Hall

Professional, 2003.

[7] P. J. Ashenden, The designer's guide to VHDL. Vol. 3. Morgan Kaufmann, Morgan

Kaufmann, 2010.

[8] S. Asano, T. Maruyama and Y. Yamaguchi, “Performance comparison of FPGA,

GPU and CPU in image processing,” in 2009 International Conference on Field,

2009.

References

Shaonan Zhang 122

[9] E. Fykse, “Performance Comparison of GPU , DSP and FPGA implementations of

image processing and computer vision algorithms in embedded systems,”

Norwegian University of Science and Technology, 2013.

[10] Z. K. Baker, M. B. Gokhale and J. L. Tripp, “Matched Filter Computation on FPGA,

Cell and GPU,” 15th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM 2007), p. pp. 207–218, 2007.

[11] J. Fowers, G. Brown, P. Cooke and G. Stitt, “A performance and energy comparison

of FPGAs, GPUs, and multicores for sliding-window applications,” in Proceedings

of the ACM/SIGDA international symposium on Field Programmable Gate Arrays,

2012.

[12] P. R. Possa, S. A. Mahmoudi, N. Harb, C. Valderrama and P. Manneback, “A Multi-

Resolution FPGA-Based Architecture for A Multi-Resolution FPGA-Based

Architecture for,” IEEE TRANSACTIONS ON COMPUTERS VOL. 63, no. 10 , pp.

pp.2376-2388, 2014.

[13] Intel Croporation, “SOPC Builder User Guide ,,” December 2010.

[14] Xilinx, Inc., [Online]. Available: www.xilinx.com.

[15] J. Rose, “Hard vs. soft: the central question of pre-fabricated silicon,” in In

Multiple-Valued Logic, 2004. Proceedings. 34th International Symposium on, 19-

22 May 2004.

[16] P. Mead, “Systems on Programmable Chips -Will SOPC Eclipse SoC? ,,” in

Designing Systems on Silicon lEE Cambridge Seminar, December 2001.

References

Shaonan Zhang 123

[17] H. T. Ngo, R. W. Ives, R. N. Rakvic and R. P. Broussard, “Real-time video

surveillance on an embedded, programmable platform,” Microprocessors and

Microsystems, Vols. 37(6-7), pp. pp.562-571, 2013.

[18] F. Wu, J. S. Smith, A. J. Tickle and Q. Huang, “System of a programmable-chip-

based image-processing system,” Journal of Electronic Imaging, 22(2), 023026,

2013.

[19] Intel Corporation, “Avalon Interface Specifications,” 2017.

[20] M. B. Sandler, L. Hayat, L. Costa and A. Naqvi, “A comparative evaluation of

DSPs,microprocessors and the transputer for image processing,” in Acoustics,

Speech, and Signal Processing 1989 International Conference, 23-26 May 1989.

[21] E. Jamro and K. Wiatr, “Implementation of convolution operation on general

purpose processors,” in Euromicro Conference, Proceedings 27th, 2001.

[22] S. Guennouni, A. Ahaitouf and A. Mansouri, “Multiple object detection using

OpenCV on an embedded platform,” in Information Science and Technology

(CIST), 2014.

[23] A. Varfolomieiev and O. Lysenko, “An improved algorithm of median flow for visual

object tracking and its implementation on ARM platform.,” Journal of Real-Time

Image Processing , vol. 3, no. 11, pp. pp.527-534., 2016.

[24] R. Matthew and S. Fischaber, “OpenCV based road sign recognition on Zynq,” in

Industrial Informatics (INDIN), 2013 11th IEEE International Conference In

References

Shaonan Zhang 124

Industrial Informatics (INDIN), 2013 11th IEEE International Conference, July,

2013.

[25] A. Rosenfeld, “Computer vision: basic principles,” Proceedings of the IEEE, pp.

pp.863-868., 1988.

[26] C. Steger, M. Ulrich and C. Wiedemann, Machine Vision Algorithms and

Applications (2nd ed.)., Weinheim: Wiley-VCH, 2018.

[27] S. P. CHAMBERS, “TIPS: a transputer based real-time vision system,” Liverpool

University, 1990.

[28] S. Trimberger, “Three ages of FPGAs: A retrospective on the first thirty years of

FPGA technology,” Proceedings of the IEEE, 103(3), pp. pp.318-331., 2015.

[29] Intel Corporation, “FPGA Architecture,” Intel Corporation, 2006.

[30] National Instruments, “FPGA Fundamentals,” 03 May 2012. [Online]. Available:

http://www.ni.com/white-paper/6983/en/.

[31] XILINX INC., “Zynq-7000 All Programmable SoC Data Sheet,” 2017.

[32] Intel Croporation, “Cyclone V Device Overview,” 2016.

[33] Microsemi Corporation, “SmartFusion Customizable System-on-Chip,” 2015.

[34] Intel Croporation, “Nios II Classic Processor Reference Guide,” 2016.

[35] XILINX INC., “MicroBlaze Processor Reference Guide,” 2009.

References

Shaonan Zhang 125

[36] D. A. Patterson and J. L. Hennessy, Computer Organization & Design, the

hardware/software interface, Morgan Kaufmann Publishers, 1998.

[37] ARM Limited, “Cortex-A9 Technical Reference Manual,” ARM Limited, 2010.

[38] ARM Limited, “AMBA AXI and ACE Protocol Specification,” ARM Limited, 2017.

[39] Intel Corporation., “Video and Image Processing Suite User Guide,” Intel

Corporation., 2017.

[40] Intel Croporation, “Cyclone V Hard Processor System Technical Reference

Manual,” Intel Croporation, 2018.

[41] ring0, “FPGA design flow overview,” Universal Tech Media Corporation, 2009.

[Online]. Available: http://www.fpgacentral.com/docs/fpga-tutorial/fpga-design-

flow-overview.

[42] O. Arcas-Abella, G. Ndu, N. Sonmez, M. Ghasempour, A. Armejach, J. Navaridas,

W. Song, J. Mawer, A. Cristal and M. Luján, “An empirical evaluation of High-Level

Synthesis languages and tools for database acceleration,” in 24th International

Conference on Field Programmable Logic and Applications (FPL), 2014.

[43] M. Livingstone, Vision and Art: The Biology of Seeing, New York: Harry N. Abrams,

2002.

[44] Intel Croporation, “Quartus II Handbook,” Intel Croporation, 2017.

[45] International Telecommunication Union , “BT.656 : Interface for digital component

video signals in 525-line and 625-line television systems operating at the 4:2:2

References

Shaonan Zhang 126

level of Recommendation ITU-R BT.601,” International Telecommunication Union

, 12 2007. [Online]. Available: http://www.itu.int/rec/R-REC-BT.656/en.

[46] International Telecommunication Union, “BT.1120 : Digital interfaces for studio

signals with 1 920 × 1 080 image formats,” International Telecommunication

Union, 12 2017. [Online]. Available: https://www.itu.int/rec/R-REC-BT.1120-8-

201201-I/en.

[47] Intel Corporation, “DSP Builder for Intel FPGAs,” Intel Corporation, 2017.

[48] Intel Corporation., “Intel SoC FPGA Embedded Development Suite User Guide,”

Intel Corporation., 2017.

[49] C. authors, “Cygwin User’s Guide,” 2017.

[50] Intel Corporation, “Timing Analyzer Quick-Start Tutorial,” Intel Corporation, 2017.

[51] Terasic Technology Inc., “DE1-SOC User Manual,” Terasic Technology Inc., 2016.

[52] Terasic Technologies Inc., “TRDB_D5M UserGuide,” Terasic Technologies Inc.,

2014.

[53] Logitech., “HD Webcam C270 SPECIFICATIONS,” Logitech., [Online]. Available:

http://support.logitech.com/en_us/product/hd-webcam-c270/specs.

[54] J. Canny, “A computation approach to edge detection,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. vol. 8, no. no 6, pp. pp. 769-798,

November 1986.

References

Shaonan Zhang 127

[55] Intel Corporation, “Product Brief Intel HLS Compiler,” 2017.

[56] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” in Alvey vision

conference, 1988.

[57] K. G. Derpanis, “The Harris Corner Detector.,” York University, 2004.

[58] N. Dey, P. Nandi, N. Barman, D. Das and S. Chakraborty, “A Comparative Study

between Moravec and Harris Corner Detection of Noisy Images Using Adaptive

Wavelet Thresholding Technique,” International Journal of Engineering Research

and Applications, vol. Vol. 2, no. Issue 1, pp. pp.599-606, 2012.

[59] OpenCV team, “About OpenCV,” OpenCV team, [Online]. Available:

https://opencv.org/about.html.

[60] Yocto Project, “Yocto Project,” [Online]. Available: https://www.yoctoproject.org/.

[61] RocketBoards.org, “Embedded Linux Beginners Guide,” 2017. [Online]. Available:

https://rocketboards.org/foswiki/Documentation/EmbeddedLinuxBeginnerSGuide.

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 128

Appendix A Codes of Canny Edge Detection with

HDL approach

RGB to Gray Scale transformation module

1. module rgb2grey

2. (input clk,

3. input rst,

4.

5. input data_en,

6. input [23:0] in_data,

7.

8.

9. output [7:0] out_data

10.

11.);

12.

13.

14. wire [7:0] R;

15. wire [7:0] G;

16. wire [7:0] B;

17.

18.

19. reg [15:0] R_r;

20. reg [15:0] G_r;

21. reg [15:0] B_r;

22.

23. assign B = in_data[7:0];

24. assign G = in_data[15:8];

25. assign R = in_data[23:16];

26.

27. // calculate results

28. reg [31:0] grey;

29. reg [7:0] grey_result;

30. always @(posedge clk)

31. begin

32. if (rst == 1'b1)

33. begin

34.

35. R_r <= 16'b0;

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 129

36. G_r <= 16'b0;

37. B_r <= 16'b0;

38.

39. grey <= 32'b0;

40. grey_result <= 8'b0;

41. end

42. else if (data_en)

43. begin

44.

45. R_r <= {2'b0,R,6'b0} +{5'b0,R,3'b0} +{7'b0,R,1'b0};

46.

47. G_r <= {1'b0,G,7'b0} +{4'b0,G,4'b0} +{6'b0,G,2'b0} +{7

'b0,G,1'b0};

48. B_r <= {3'b0,B,5'b0} +{8'b0,B} -{6'b0,B,2'b0};

49. grey <= R_r + G_r + B_r;

50.

51. grey_result <= grey[15:8];

52. end

53. end

54. assign out_data=grey_result;

55. endmodule

Gaussian filter Module

1. module gaussian_filter (

2. clk,

3. reset,

4.

5. data_in,

6. data_en,

7.

8. // Outputs

9. data_out

10.);

11.

12.

13. parameter WIDTH = 1024; // Image width in pixels

14.

15.

16. // Inputs

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 130

17. input clk;

18. input reset;

19.

20. input [7: 0] data_in;

21. input data_en;

22.

23.

24. // Outputs

25. output [8: 0] data_out;

26.

27.

28. // Internal Wires

29. wire [7: 0] iline2;

30. wire [7: 0] iline3;

31. wire [7: 0] iline4;

32. wire [7: 0] iline5;

33.

34. // Internal Registers

35. reg [7: 0] oline_1[4: 0];

36. reg [7: 0] oline_2[4: 0];

37. reg [7: 0] oline_3[4: 0];

38. reg [7: 0] oline_4[4: 0];

39. reg [7: 0] oline_5[4: 0];

40.

41.

42. reg [15: 0] level_1[6: 0];

43.

44. reg [15: 0] level_2[4: 0];

45. reg [15: 0] level_3;

46. reg [15: 0] level_4;

47.

48.

49. reg [8:0] final_result;

50.

51. // Integers

52. integer i;

53.

54.

55. // Gaussian Smoothing Filter

56. //

57. // [2 4 5 4 2]

58. // [4 9 12 9 4]

59. // 1 / 159 [5 12 15 12 5]

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 131

60. // [4 9 12 9 4]

61. // [2 4 5 4 2]

62. //

63. // mask X

64.

65. always @(posedge clk)

66. begin

67. if (reset == 1'b1)

68. begin

69. for (i = 4; i >= 0; i = i-1)

70. begin

71. oline_1[i] <= 8'h00;

72. oline_2[i] <= 8'h00;

73. oline_3[i] <= 8'h00;

74. oline_4[i] <= 8'h00;

75. oline_5[i] <= 8'h00;

76. level_1[i] <= 12'h000;

77. end

78.

79.

80. end

81. else if (data_en)

82. begin

83. for (i = 4; i > 0; i = i-1)

84. begin

85. oline_1[i] <= oline_1[i-1];

86. oline_2[i] <= oline_2[i-1];

87. oline_3[i] <= oline_3[i-1];

88. oline_4[i] <= oline_4[i-1];

89. oline_5[i] <= oline_5[i-1];

90. end

91. oline_1[0] <= data_in;

92. oline_2[0] <= iline2;

93. oline_3[0] <= iline3;

94. oline_4[0] <= iline4;

95. oline_5[0] <= iline5;

96.

97. level_1[0] <= {7'b0,oline_1[0], 1'b0} + {7'b0,oline_1[4], 1'b

0} + {7'b0,oline_5[0], 1'b0} + {7'b0,oline_5[4], 1'b0};

98. //times 4

99. level_1[1] <= {6'b0,oline_1[1], 2'b0} + {6'b0,oline_1[3], 2'b

0} + {6'b0,oline_2[0], 2'b0} + {6'b0,oline_2[4], 2'b0};

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 132

100. level_1[2] <= {6'b0,oline_4[0], 2'b0} + {6'b0,oline_4[4], 2'

b0} + {6'b0,oline_5[1], 2'b0} + {6'b0,oline_5[3], 2'b0};

101.

102. //5

103. level_1[3] <= {8'b0,oline_1[2]} + {8'b0,oline_5[2]}+ {8'b0,

oline_3[0]} + {8'b0,oline_3[4]};

104. //9

105. level_1[4] <= {8'b0,oline_2[1]} + {8'b0,oline_2[3]}+ {8'b0,

oline_4[1]} + {8'b0,oline_4[3]};

106. //12

107. level_1[5] <= {8'b0,oline_2[2]} + {8'b0,oline_4[2]} + {8'b0,

oline_3[1]} + {8'b0,oline_3[3]};

108. //15

109. level_1[6] <= {4'b0,oline_3[2], 4'b0} - oline_3[2];

110.

111. level_2[0] <= level_1[0]+ level_1[6];

112.

113. level_2[1] <= level_1[1]+ level_1[2];

114.

115. // Multiplied by 5

116. level_2[2] <= {level_1[3], 2'b0} + level_1[3];

117. // Multiplied by 9

118. level_2[3] <= {level_1[4], 3'b0} + level_1[4];

119. // Multiplied by 12

120. level_2[4] <= {level_1[5], 3'b0} + {level_1[5], 2'b0};

121. level_3 <= level_2[0] + level_2[1]+ level_2[2]+ level_2[3]+ lev

el_2[4];

122. // level_4 <= level_3/115;

123.

124. final_result <= level_3/159;

125. end

126. end

127.

128. assign data_out = final_result;

129. line line_buffer1 (

130. .clock (clk),

131. .clken (data_en),

132. .shiftin (data_in),

133. .shiftout (iline2),

134. .taps ()

135.);

136. defparam

137. line_buffer1.WD = 8,

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 133

138. line_buffer1.SIZE = WIDTH;

139.

140. line line_buffer2 (

141. .clock (clk),

142. .clken (data_en),

143. .shiftin (iline2),

144. .shiftout (iline3),

145. .taps ()

146.);

147. defparam

148. line_buffer2.WD = 8,

149. line_buffer2.SIZE = WIDTH;

150.

151. line line_buffer3 (

152.

153. .clock (clk),

154. .clken (data_en),

155. .shiftin (iline3),

156. .shiftout (iline4),

157. .taps ()

158.);

159. defparam

160. line_buffer3.WD = 8,

161. line_buffer3.SIZE = WIDTH;

162.

163. line line_buffer4 (

164.

165. .clock (clk),

166. .clken (data_en),

167. .shiftin (iline4),

168. .shiftout (iline5),

169. .taps ()

170.);

171. defparam

172. line_buffer4.WD = 8,

173. line_buffer4.SIZE = WIDTH;

174.

175. endmodule

Sobel filter module

1. module sobel

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 134

2.

3.

4.

5. (input clk,

6. input rst,

7.

8.

9. input [8:0] in_data,

10. input data_en,

11.

12. output [11:0] out_data

13.

14.);

15.

16. parameter WIDTH = 1024;

17. wire [8:0] iline1;

18. wire [8:0] iline2;

19. reg [8:0] oline0[2:0];

20. reg [8:0] oline1[2:0];

21. reg [8:0] oline2[2:0];

22. reg [11: 0] gx;

23. reg [11: 0] gy;

24. reg [11: 0] gx_level_1[2: 0];

25. reg [11: 0] gy_level_1[2: 0];

26. reg [11: 0] gx_magnitude;

27. reg [11: 0] gy_magnitude;

28. reg [11: 0] gx_m;

29. reg [11: 0] gy_m;

30. reg [11: 0] g_magnitude;

31. reg [11: 0] g_m;

32. reg [15:0] gy_100;

33. reg [15:0] gx_41;

34. reg [15:0] gx_241;

35. reg neg,neg1;

36. reg [3:0] direction;

37. reg [11: 0] fresult;

38. integer i;

39.

40.

41. always @(posedge clk or posedge rst)

42. begin

43. if (rst)

44. begin

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 135

45.

46. for (i = 2; i >= 0; i = i-1)

47. begin

48. oline0[i] <= 9'b0;

49. oline1[i] <= 9'b0;

50. oline2[i] <= 9'b0;

51. gx_level_1[i] <= 12'h0;

52. gy_level_1[i] <= 12'h0;

53.

54. end

55.

56. gx <= 12'h000;

57. gy <= 12'h000;

58. fresult <= 12'h000;

59. gx_magnitude <= 12'h000;

60. gy_magnitude <= 12'h000;

61. g_magnitude <= 12'h000;

62. gx_m <= 12'h000;

63. gy_m <= 12'h000;

64. g_m <= 12'h000;

65. gy_100 <= 16'h000;

66. gx_41 <= 16'h000;

67. gx_241 <= 16'h000;

68. neg <= 1'b0;

69. direction <= 4'h0;

70. end

71. else if (data_en)

72. begin

73. oline0[2] <= oline0[1];

74. oline1[2] <= oline1[1];

75. oline2[2] <= oline2[1];

76. oline0[1] <= oline0[0];

77. oline1[1] <= oline1[0];

78. oline2[1] <= oline2[0];

79. oline0[0] <= in_data;

80. oline1[0] <= iline1;

81. oline2[0] <= iline2;

82. gx_level_1[0] <= oline0[0] + {oline1[0],1'b0}+ oline2[0];

83.

84. gx_level_1[1] <= oline0[2] + {oline1[2],1'b0} + oline2[2];

85. gx <= gx_level_1[0] - gx_level_1[1];

86. // Calculate Gy

87. gy_level_1[0] <= oline0[0] + {oline0[1],1'b0}+oline0[2];

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 136

88.

89.

90. gy_level_1[1] <= oline2[0] + {oline2[1],1'b0}+oline2[2];

91. gy <= gy_level_1[0] - gy_level_1[1] ;

92. // Calculate the magnitude G

93. gx_magnitude <= (gx[11]) ? (~gx) + 12'h001 : gx;

94. gy_magnitude <= (gy[11]) ? (~gy) + 12'h001 : gy;

95. neg <= gx[11]^gy[11];

96. gy_100 <= {gy_magnitude,6'b0} +{gy_magnitude,5'b0} +{g

y_magnitude,2'b0};

97. gx_41 <= {gx_magnitude,5'b0} +{gx_magnitude,3'b0} +gx

_magnitude;

98. gx_241 <= {gx_magnitude,8'b0} -

{gx_magnitude,4'b0} +gx_magnitude;

99. g_magnitude <= gx_magnitude + gy_magnitude;

100. neg1 <= neg;

101.

102. //100gy<41gx

103. if(gy_100<=gx_41)

104. begin

105. direction <= 4'b0001;

106. g_m <= g_magnitude;

107. end

108. else if((gy_100>gx_41)&&(gy_100<gx_241)&&(neg1==1'b0))

109. begin

110. direction <= 4'b0010;

111. g_m <= g_magnitude;

112. end

113. else if((gy_100>gx_41)&&(gy_100<gx_241)&&(neg1==1'b1))

114. begin

115. direction <= 4'b0100;

116. g_m <= g_magnitude;

117. end

118. else

119. begin

120. direction <= 4'b1000;

121. g_m <= g_magnitude;

122. end

123. // Calculate the final result

124.

125. fresult[11:8] <= direction;

126. fresult[7:0] <= (g_m[11:10] == 2'b0) ? g_m[9:2] : 8'hFF

;

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 137

127.

128. end

129. end

130.

131.

132. assign out_data = fresult;

133.

134. line u0 (

135. .clken(data_en),

136. .clock(clk),

137. .shiftin(in_data),

138. .shiftout(iline1)

139.);

140. defparam

141. u0.WD = 9,

142. u0.SIZE = WIDTH;

143. line u1 (

144. .clken(data_en),

145. .clock(clk),

146. .shiftin(iline1),

147. .shiftout(iline2)

148.);

149. defparam

150. u1.WD = 9,

151. u1.SIZE = WIDTH;

152. endmodule

Non-Maximum Suppression Module

1. module nm_s (

2. // Inputs

3. input clk,

4. input rst,

5.

6.

7. input [11:0] data_in,

8. input data_en,

9.

10. output [11:0] data_out

11.);

12.

13.

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 138

14. parameter WIDTH = 1024; // Image width in pixels

15. wire [11:0] iline1;

16. wire [11:0] iline2;

17.

18.

19. reg [11:0] oline0[2:0];

20. reg [11:0] oline1[2:0];

21. reg [11:0] oline2[2:0];

22.

23. reg [11:0] r_line0[2:0];

24. reg [11:0] r_line1[2:0];

25. reg [11:0] r_line2[2:0];

26.

27. reg [7: 0] sobel_result;

28. reg [3: 0] direction;

29. reg [11: 0] fresult;

30. integer i;

31.

32. always @(posedge clk)

33. begin

34. if (rst)

35. begin

36.

37. for (i = 2; i >= 0; i = i-1)

38. begin

39. oline0[i] <= 12'h0;

40. oline1[i] <= 12'h0;

41. oline2[i] <= 12'h0;

42. end

43.

44. end

45. else if (data_en)

46. begin

47. oline0[2] <= oline0[1];

48. oline1[2] <= oline1[1];

49. oline2[2] <= oline2[1];

50.

51. oline0[1] <= oline0[0];

52. oline1[1] <= oline1[0];

53. oline2[1] <= oline2[0];

54.

55. oline0[0] <= data_in;

56. oline1[0] <= iline1;

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 139

57. oline2[0] <= iline2;

58. case (oline1[1][11:8])

59. 4'b0001 :

60. begin

61. if((oline1[1][7:0]>oline1[2][7:0])&&(oline1[1][7:0]>olin

e1[0][7:0]))

62. begin

63. direction <= 4'b0001;

64. sobel_result <= oline1[1][7:0];

65. end

66. else

67. begin

68. direction <= 4'b0;

69. sobel_result <= 0;

70. end

71. end

72. 4'b0010 :

73. begin

74. if((oline1[1][7:0]>oline2[2][7:0])&&(oline1[1][7:0]>olin

e0[0][7:0]))

75. begin

76. direction <= 4'b0010;

77. sobel_result <= oline1[1][7:0];

78. end

79. else

80. begin

81. direction <= 4'b0;

82. sobel_result <= 0;

83. end

84. end

85. 4'b0100 :

86. begin

87. if((oline1[1][7:0]>oline2[0][7:0])&&(oline1[1][7:0]>olin

e0[2][7:0]))

88. begin

89. direction <= 4'b0100;

90. sobel_result <= oline1[1][7:0];

91. end

92. else

93. begin

94. direction <= 4'b0;

95. sobel_result <= 0;

96. end

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 140

97. end

98. 4'b1000 :

99. begin

100. if((oline1[1][7:0]>oline0[1][7:0])&&(oline1[1][7:0]>oli

ne2[1][7:0]))

101. begin

102. direction <= 4'b1000;

103. sobel_result <= oline1[1][7:0];

104. end

105. else

106. begin

107. direction <= 4'b0;

108. sobel_result <= 0;

109. end

110. end

111. default :

112. begin

113. direction <= 4'b0;

114. sobel_result <= 0;

115. end

116. endcase

117. fresult[11:8] <= direction;

118. fresult[7:0] <= sobel_result;

119. end

120. end

121.

122. assign data_out = fresult;

123. line buffer_1 (

124. .clock (clk),

125. .clken (data_en),

126. .shiftin (data_in),

127. .shiftout (iline1),

128. .taps ()

129.);

130. defparam

131. buffer_1.WD = 12,

132. buffer_1.SIZE = WIDTH;

133.

134. line buffer_2 (

135. .clock (clk),

136. .clken (data_en),

137. .shiftin (iline1),

138. .shiftout (iline2),

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 141

139. .taps ()

140.);

141. defparam

142. buffer_2.WD = 12,

143. buffer_2.SIZE = WIDTH;

144.

145. endmodule

Double Thresholding with Hysteresis Module

1. module double_threshold_filtering (

2.

3. input clk,

4. input rst,

5.

6.

7. input [11:0] in_data,

8. input data_en,

9.

10. output [7:0] out_data

11.);

12.

13. parameter WIDTH = 1024; // Image width in pixels

14.

15. wire [11:0] iline1;

16. wire [11:0] iline2;

17.

18. reg [11:0] oline0[2:0];

19. reg [11:0] oline1[2:0];

20. reg [11:0] oline2[2:0];

21.

22. reg [7:0] T_in;

23. reg [7:0] H_T;

24. reg [7:0] L_T;

25.

26.

27.

28. reg [7: 0] result;

29.

30.

31. integer i;

32. always @(posedge clk)

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 142

33. begin

34. if (rst)

35. begin

36. //nm_result <= 8'h00;

37. H_T <= 8'h00;

38. L_T <= 8'h00;

39. T_in <= 8'h00;

40. result <= 8'h00;

41. for (i = 2; i >= 0; i = i-1)

42. begin

43. oline0[i] <= 12'b0;

44. oline1[i] <= 12'b0;

45. oline2[i] <= 12'b0;

46. end

47.

48. end

49. else if (data_en)

50. begin

51.

52. oline0[2] <= oline0[1];

53. oline1[2] <= oline1[1];

54. oline2[2] <= oline2[1];

55.

56.

57. oline0[1] <= oline0[0];

58. oline1[1] <= oline1[0];

59. oline2[1] <= oline2[0];

60.

61. oline0[0] <= in_data;

62. oline1[0] <= iline1;

63. oline2[0] <= iline2;

64.

65. //nm_result <= in_data;

66. T_in <= (in_data[7:0]>T_in) ? in_data[7:0] : T_in;

67.

68. H_T <= T_in/6;

69.

70. L_T <= {1'b0,H_T[7:1]};

71.

72. if(oline1[1][7:0]<L_T)

73. begin

74. result <=8'h00;

75. end

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 143

76. else if (oline1[1][7:0]>H_T)

77. begin

78. result <=8'hFF;

79. end

80. else

81. begin

82.

83.

84. if((oline0[1][11:8]!=0)||(oline2[1][11:8]!=0)||

85. (oline0[2][11:8]!=0)||(oline2[0][11:8]!=0)||

86. (oline0[0][11:8]!=0)||(oline2[2][11:8]!=0)||

87. (oline1[0][11:8]!=0)||(oline1[2][11:8]!=0))

88. begin

89. result <= 8'hFF;

90. end

91. else

92. begin

93. result <= 8'h00;

94. end

95. end

96.

97. end

98. end

99.

100. assign out_data = result;

101.

102. line u0 (

103. .clken(data_en),

104. .clock(clk),

105. .shiftin(in_data),

106. .shiftout(iline1)

107.);

108. defparam

109. u0.WD = 12,

110. u0.SIZE = WIDTH;

111.

112.

113. line u1 (

114. .clken(data_en),

115. .clock(clk),

116. .shiftin(iline1),

117. .shiftout(iline2)

118.);

Appendix A Codes of Canny Edge Detection with HDL approach

Shaonan Zhang 144

119. defparam

120. u1.WD = 12,

121. u1.SIZE = WIDTH;

122.

123. endmodule

Appendix B Codes of Canny Edge Detection with HLS approach

Shaonan Zhang 145

Appendix B Codes of Canny Edge Detection with

HLS approach

1. #include "HLS/hls.h"

2. #include "HLS/math.h"

3.

4. #include "HLS/ac_int.h"

5.

6.

7. #define N 1024

8. #define M 3

9. #define RGB_D N*7-11

10. //typedef ac_int<8, false> index_t;

11.

12.

13. struct int_v24 {

14. unsigned char data[3];

15. };

16. struct int_v32 {

17. unsigned char data[4];

18. };

19.

20. struct direction_sobel {

21. unsigned char data;

22. unsigned char direction;

23. };

24.

25.

26. // Default stream behavior

27. hls_avalon_streaming_component hls_always_run_component

28. component void filters(

29. ihc::stream_in<int_v24, ihc::bitsPerSymbol<8>,ihc::usesPackets

<true> >& a,

30. ihc::stream_out<int_v32, ihc::bitsPerSymbol<8>, ihc::usesPacke

ts<true> >& b) {

31.

32.

33. bool start_of_packet = false;

34. bool end_of_packet = false;

35.

36.

Appendix B Codes of Canny Edge Detection with HLS approach

Shaonan Zhang 146

37. int_v24 a1;

38. int_v32 b1;

39. int_v24 rgb_buffer[RGB_D];

40. int buffer[3];

41. int grey;

42.

43.

44. int g_levelx0,g_levelx1,g_levelx2,g_levelx3,g_levelx4,g_levelx5,g_levelx6;

45. int g_level21, g_level22, g_level23, g_level24, g_level25, g_level26,g_level

3,g_level4;

46. int s_levelx0,s_levelx1,s_levelx2;

47. int s_levely0,s_levely1;

48. int s_level2x,s_level2y;

49. int s_level3x,s_level3y;

50. int s_level3,s_level4,s_level5;

51. unsigned char Threshold,H_T,L_T,final_result;

52.

53. float s_grad;

54.

55. unsigned short int line0[N], line1[N], line2[N], line3[N],line4[N];

56. short int gaussian_line0[N], gaussian_line1[N],gaussian_line2[N];

57.

58. direction_sobel sobel_result, non_max_result;

59.

60. direction_sobel sobel_line0[N], sobel_line1[N],sobel_line2[N];

61. direction_sobel non_max_line0[N],non_max_line1[N],non_max_line2[N];

62.

63.

64. while(!end_of_packet) {

65. // Blocking read from the input stream

66. a1 = a.read(start_of_packet, end_of_packet);

67. #pragma unroll

68. for(int i=0;i < 3; i++)

69. {

70. buffer[i]=a1.data[i];

71. }

72. //grey result

73.

74. grey=(buffer[0]*76+buffer[1]*150+buffer[2]*29)/256;

75. // 5 buffered lines

76. #pragma unroll

77. for (int i = N - 1; i > 0; --i) {

78. line0[i] = line0[i-1];

Appendix B Codes of Canny Edge Detection with HLS approach

Shaonan Zhang 147

79. line1[i] = line1[i-1];

80. line2[i] = line2[i-1];

81. line3[i] = line3[i-1];

82. line4[i] = line4[i-1];

83. }

84. line0[0] = grey;

85. line1[0] = line0[N-1];

86. line2[0] = line1[N-1];

87. line3[0] = line2[N-1];

88. line4[0] = line3[N-1];

89. g_level21= (line0[N-1]*2) + (line0[N-

2]*4) + (line0[N-3]*5) + (line0[N-4]*4) + (line0[N-

5]*2);

90. g_level22= (line1[N-1]*4) + (line1[N-

2]*9) + (line1[N-3]*12) + (line1[N-4]*9) + (line1[N-

5]*4);

91. g_level23= (line2[N-1]*5) + (line2[N-

2]*12) + (line2[N-3]*15) + (line2[N-4]*12) + (line2[N-

5]*5);

92. g_level24= (line3[N-1]*4) + (line3[N-

2]*9) + (line3[N-3]*12) + (line3[N-4]*9) + (line3[N-

5]*4);

93. g_level25= (line4[N-1]*2) + (line4[N-

2]*4) + (line4[N-3]*5) + (line4[N-4]*4) + (line4[N-

5]*2);

94.

95.

96.

97. g_level3= g_level21+g_level22+g_level23 +g_level24+g_level

25;

98. //g_level4= g_level3/115;

99. g_level4= g_level3/159;

100.

101.

102. #pragma unroll

103. for (int i = N - 1; i > 0; --i) {

104. gaussian_line0[i] = gaussian_line0[i-1];

105. gaussian_line1[i] = gaussian_line1[i-1];

106. gaussian_line2[i] = gaussian_line2[i-1];

107. }

108. gaussian_line0[0] = g_level4;

109. gaussian_line1[0] = gaussian_line0[N-1];

110. gaussian_line2[0] = gaussian_line1[N-1];

Appendix B Codes of Canny Edge Detection with HLS approach

Shaonan Zhang 148

111. //Sobel filter

112. s_levelx0=gaussian_line0[N-1] +(gaussian_line1[N-

1]*2) +gaussian_line2[N-1];

113. s_levelx1=gaussian_line0[N-3] +(gaussian_line1[N-

3]*2) +gaussian_line2[N-3];

114.

115.

116. s_levely0=gaussian_line0[N-1]+(gaussian_line0[N-

2]*2)+gaussian_line0[N-3];

117. s_levely1=gaussian_line2[N-1]+(gaussian_line2[N-

2]*2)+gaussian_line2[N-3];

118.

119. s_level2x=s_levelx0-s_levelx1;

120.

121. s_level2y=s_levely0-s_levely1;

122.

123. s_level3=abs(s_level2x) + abs(s_level2y);

124.

125.

126. //calculate the direction

127.

128. s_level4=s_level3>>2;

129.

130. s_level5=(s_level4<255)?s_level4:255;

131.

132. s_grad=(float)s_level2y/(float)s_level2x;

133.

134. if((s_grad>=-0.415)&&(s_grad<=0.415)){

135. //direction 1: -22.5 degrees to 22.5 degrees

136. sobel_result.direction=1;

137. sobel_result.data=s_level5;

138. }

139. else if ((s_grad>0.415)&&(s_grad<=2.414)){

140.

141. //direction 2: 22.5 degrees to 67.5 degrees

142. sobel_result.direction=2;

143. sobel_result.data=s_level5;

144. }

145. else if ((s_grad<-0.415)&&(s_grad>=-2.414)){

146.

147. //direction 3: -22.5 degrees to -67.5 degrees

148. sobel_result.direction=3;

149. sobel_result.data=s_level5;

Appendix B Codes of Canny Edge Detection with HLS approach

Shaonan Zhang 149

150. }

151.

152. else{

153.

154. //direction 4: 67.5 to 90 degrees & -67.5 to -90 degrees

155. sobel_result.direction=4;

156. sobel_result.data=s_level5;

157. }

158.

159.

160. //Buffer another 3 lines

161. #pragma unroll

162. for (int i = N - 1; i > 0; --i) {

163. sobel_line0[i] = sobel_line0[i-1];

164. sobel_line1[i] = sobel_line1[i-1];

165. sobel_line2[i] = sobel_line2[i-1];

166. }

167. sobel_line0[0] = sobel_result;

168. sobel_line1[0] = sobel_line0[N-1];

169. sobel_line2[0] = sobel_line1[N-1];

170.

171.

172. if(sobel_line1[N-2].direction==1){

173.

174. if((sobel_line1[N-2].data>sobel_line1[N-

1].data)&&(sobel_line1[N-2].data>sobel_line1[N-3].data)){

175.

176. non_max_result.direction=1;

177. non_max_result.data=sobel_line1[N-

2].data;

178. }

179. else {

180. non_max_result.direction=0;

181. non_max_result.data=0;

182. }

183. }

184. else if(sobel_line1[N-2].direction==2){

185. if((sobel_line1[N-2].data>sobel_line0[N-

1].data)&&(sobel_line1[N-2].data>sobel_line2[N-3].data)){

186.

187. non_max_result.direction=1;

188. non_max_result.data=sobel_line1[N-

2].data;

Appendix B Codes of Canny Edge Detection with HLS approach

Shaonan Zhang 150

189. }

190. else {

191. non_max_result.direction=0;

192. non_max_result.data=0;

193. }

194. }

195. else if(sobel_line1[N-2].direction==3){

196. if((sobel_line1[N-2].data>sobel_line2[N-

1].data)&&(sobel_line1[N-2].data>sobel_line0[N-3].data)){

197.

198. non_max_result.direction=1;

199. non_max_result.data=sobel_line1[N-

2].data;

200. }

201. else {

202. non_max_result.direction=0;

203. non_max_result.data=0;

204. }

205. }

206. else if(sobel_line1[N-2].direction==4){

207. if((sobel_line1[N-2].data>sobel_line0[N-

2].data)&&(sobel_line1[N-2].data>sobel_line2[N-2].data)){

208.

209. non_max_result.direction=1;

210. non_max_result.data=sobel_line1[N-

2].data;

211. }

212. else {

213. non_max_result.direction=0;

214. non_max_result.data=0;

215. }

216. }

217. else{

218. non_max_result.direction=0;

219. non_max_result.data=0;

220. }

221.

222.

223. #pragma unroll

224. for (int i = N - 1; i > 0; --i) {

225. non_max_line0[i] = non_max_line0[i-1];

226. non_max_line1[i] = non_max_line1[i-1];

227. non_max_line2[i] = non_max_line2[i-1];

Appendix B Codes of Canny Edge Detection with HLS approach

Shaonan Zhang 151

228. }

229. non_max_line0[0] = non_max_result;

230. non_max_line1[0] = non_max_line0[N-1];

231. non_max_line2[0] = non_max_line1[N-1];

232.

233.

234. if(non_max_line2[N-1].data>Threshold){

235. Threshold=non_max_line2[N-1].data;

236. }

237.

238. H_T=Threshold/6;

239. L_T=H_T/2;

240.

241.

242. if (non_max_line1[N-2].data<L_T){

243. final_result=0;

244. }

245. else if(non_max_line1[N-2].data>H_T){

246. final_result=255;

247. }

248. else

249. {

250.

251. if((non_max_line1[N-2].direction==1)&&((non_max_line0[N-

1].direction==1)||(non_max_line0[N-3].direction==1)||

252. (non_max_line0[N-

2].direction==1)||(non_max_line1[N-1].direction==1)||

253. (non_max_line1[N-

3].direction==1)||(non_max_line2[N-1].direction==1)||

254. (non_max_line2[N-

2].direction==1)||(non_max_line2[N-3].direction==1))){

255. final_result=255;

256. }

257.

258.

259. else{

260. final_result=0;

261. }

262. }

263. #pragma unroll

264. for (int i = RGB_D - 1; i > 0; --i) {

265. rgb_buffer[i] = rgb_buffer[i-1];

266. }

Appendix B Codes of Canny Edge Detection with HLS approach

Shaonan Zhang 152

267. rgb_buffer[0] = a1;

268.

269.

270. b1.data[0]=final_result;

271.

272. b1.data[1]=rgb_buffer[RGB_D - 1].data[0];

273. b1.data[2]=rgb_buffer[RGB_D - 1].data[1];

274. b1.data[3]=rgb_buffer[RGB_D - 1].data[2];

275. b.write(b1, start_of_packet, end_of_packet);

276.

277. }

278. }

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 153

Appendix C Codes of Harris Corner Detection

with HDL approach

Sobel Filter Module

1. module sobel

2.

3.

4.

5. (input clk,

6. input rst,

7.

8.

9. input [8:0] in_data,

10. input data_en,

11.

12. output [23:0] gx2_result,

13. output [23:0] gy2_result,

14. output [23:0] gxy_result

15.

16.);

17.

18. parameter WIDTH = 1024;

19.

20.

21. wire [8:0] iline1;

22. wire [8:0] iline2;

23.

24. wire [23: 0] gx2;

25. wire [23: 0] gy2;

26. wire [23: 0] gxy;

27.

28. reg [8:0] oline0[2:0];

29. reg [8:0] oline1[2:0];

30. reg [8:0] oline2[2:0];

31.

32.

33. reg [11: 0] gx;

34. reg [11: 0] gy;

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 154

35.

36.

37.

38.

39. reg [11: 0] gx_level_1[2: 0];

40.

41.

42. reg [11: 0] gy_level_1[2: 0];

43.

44.

45.

46.

47. reg [23: 0] gxy_r;

48. reg [23: 0] gx2_r;

49. reg [23: 0] gy2_r;

50.

51. integer i;

52.

53. always @(posedge clk or posedge rst)

54. begin

55. if (rst)

56. begin

57.

58. for (i = 2; i >= 0; i = i-1)

59. begin

60. oline0[i] <= 9'b0;

61. oline1[i] <= 9'b0;

62. oline2[i] <= 9'b0;

63. gx_level_1[i] <= 12'h0;

64. gy_level_1[i] <= 12'h0;

65.

66. end

67.

68. gx <= 12'h000;

69. gy <= 12'h000;

70. gx2_r <= 24'h000;

71. gy2_r <= 24'h000;

72. gxy_r <= 24'h000;

73.

74.

75. end

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 155

76. else if (data_en)

77. begin

78.

79. oline0[2] <= oline0[1];

80. oline1[2] <= oline1[1];

81. oline2[2] <= oline2[1];

82.

83.

84. oline0[1] <= oline0[0];

85. oline1[1] <= oline1[0];

86. oline2[1] <= oline2[0];

87.

88. oline0[0] <= in_data;

89. oline1[0] <= iline1;

90. oline2[0] <= iline2;

91.

92. gx_level_1[0] <= oline0[0] + {oline1[0],1'b0}+ oline2[0];

93.

94. gx_level_1[1] <= oline0[2] + {oline1[2],1'b0} + oline2[2];

95.

96. gx <= gx_level_1[0] - gx_level_1[1];

97.

98. // Calculate Gy

99.

100. gy_level_1[0] <= oline0[0] + {oline0[1],1'b0}+oline0[2];

101. gy_level_1[1] <= oline2[0] + {oline2[1],1'b0}+oline2[2];

102. gy <= gy_level_1[0] - gy_level_1[1] ;

103.

104. gx2_r <= gx2;

105.

106. gy2_r <= gy2;

107.

108. gxy_r <= gxy;

109.

110. end

111. end

112.

113.

114.

115. assign gxy_result=gxy_r;

116. assign gx2_result=gx2_r;

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 156

117. assign gy2_result=gy2_r;

118. line u0 (

119. .clken(data_en),

120. .clock(clk),

121. .shiftin(in_data),

122. .shiftout(iline1)

123.);

124. defparam

125. u0.WD = 9,

126. u0.SIZE = WIDTH;

127.

128.

129. line u1 (

130. .clken(data_en),

131. .clock(clk),

132. .shiftin(iline1),

133. .shiftout(iline2)

134.);

135. defparam

136. u1.WD = 9,

137. u1.SIZE = WIDTH;

138.

139. mult u2 (

140. .clock(clk),

141. .clken(data_en),

142. .dataa(gx),

143. .datab(gx),

144. .result(gx2)

145.);

146. mult u3 (

147. .clock(clk),

148. .clken(data_en),

149. .dataa(gy),

150. .datab(gy),

151. .result(gy2)

152.);

153. mult u4 (

154. .clock(clk),

155. .clken(data_en),

156. .dataa(gx),

157. .datab(gy),

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 157

158. .result(gxy)

159.);

160. endmodule

Gaussian Filter Module

1. module gaussian_filter (

2. // Inputs

3. clk,

4. reset,

5.

6. data_in,

7. data_en,

8.

9. // Outputs

10. data_out

11.);

12.

13.

14. parameter WIDTH = 1024; // Image width in pixels

15.

16.

17. // Inputs

18. input clk;

19. input reset;

20.

21. input [23: 0] data_in;

22. input data_en;

23.

24.

25. // Outputs

26. output [31: 0] data_out;

27.

28.

29. // Internal Wires

30. wire [31: 0] iline2;

31. wire [31: 0] iline3;

32. wire [31: 0] iline4;

33. wire [31: 0] iline5;

34. wire [31: 0] data_in_reg;

35. wire [9: 0] de;

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 158

36. wire [31: 0] level_4;

37. // Internal Registers

38. reg [31: 0] oline_1[4: 0];

39. reg [31: 0] oline_2[4: 0];

40. reg [31: 0] oline_3[4: 0];

41. reg [31: 0] oline_4[4: 0];

42. reg [31: 0] oline_5[4: 0];

43.

44.

45. reg [31: 0] level_1[6: 0];

46.

47. reg [31: 0] level_2[4: 0];

48. reg [31: 0] level_3;

49.

50.

51.

52. reg [31: 0] final_result;

53.

54. // Integers

55. integer i;

56.

57.

58. // Gaussian Smoothing Filter

59. //

60. // [2 4 5 4 2]

61. // [4 9 12 9 4]

62. // 1 / 159 [5 12 15 12 5]

63. // [4 9 12 9 4]

64. // [2 4 5 4 2]

65. //

66. // mask X

67.

68. always @(posedge clk)

69. begin

70. if (reset == 1'b1)

71. begin

72. for (i = 4; i >= 0; i = i-1)

73. begin

74. oline_1[i] <= 32'h00;

75. oline_2[i] <= 32'h00;

76. oline_3[i] <= 32'h00;

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 159

77. oline_4[i] <= 32'h00;

78. oline_5[i] <= 32'h00;

79. level_1[i] <= 32'h000;

80. end

81.

82.

83. end

84. else if (data_en)

85. begin

86. for (i = 4; i > 0; i = i-1)

87. begin

88. oline_1[i] <= oline_1[i-1];

89. oline_2[i] <= oline_2[i-1];

90. oline_3[i] <= oline_3[i-1];

91. oline_4[i] <= oline_4[i-1];

92. oline_5[i] <= oline_5[i-1];

93. end

94. oline_1[0] <= data_in_reg;

95. oline_2[0] <= iline2;

96. oline_3[0] <= iline3;

97. oline_4[0] <= iline4;

98. oline_5[0] <= iline5;

99.

100. level_1[0] <= {oline_1[0], 1'b0} + {oline_1[4], 1'b0} + {oli

ne_5[0], 1'b0} + {oline_5[4], 1'b0};

101. //times 4

102. level_1[1] <= {oline_1[1], 2'b0} + {oline_1[3], 2'b0} + {o

line_2[0], 2'b0} + {oline_2[4], 2'b0};

103. level_1[2] <= {oline_4[0], 2'b0} + {oline_4[4], 2'b0} + {o

line_5[1], 2'b0} + {oline_5[3], 2'b0};

104.

105. //5

106. level_1[3] <= oline_1[2] + oline_5[2]+ oline_3[0] + oline

_3[4];

107. //9

108. level_1[4] <= oline_2[1] + oline_2[3]+ oline_4[1] + oline

_4[3];

109. //12

110. level_1[5] <= oline_2[2] + oline_4[2] + oline_3[1] + oline

_3[3];

111. //15

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 160

112. level_1[6] <= {oline_3[2], 4'b0} - oline_3[2];

113.

114.

115.

116.

117.

118. level_2[0] <= level_1[0]+ level_1[6];

119.

120. level_2[1] <= level_1[1]+ level_1[2];

121.

122. // Multiplied by 5

123. level_2[2] <= {level_1[3], 2'b0} + level_1[3];

124. // Multiplied by 9

125. level_2[3] <= {level_1[4], 3'b0} + level_1[4];

126. // Multiplied by 12

127. level_2[4] <= {level_1[5], 3'b0} + {level_1[5], 2'b0};

128.

129.

130.

131. level_3 <= level_2[0] + level_2[1]+ level_2[2]+ level_2[3]+ lev

el_2[4];

132.

133.

134. //level_4 <= level_3>>7;

135.

136. final_result <= level_4;//(level_3[31]==1'b0)?({7'b0,level_3[31

:7]}):({7'b1,level_3[31:7]});

137. end

138. end

139.

140. assign data_in_reg = (data_in[23]==1'b0)? ({8'b0,data_in}):({8'b1,data_in}

);

141. assign data_out = final_result;

142. assign de = 159;

143.

144.

145.

146.

147. line line_buffer1 (

148. .clock (clk),

149. .clken (data_en),

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 161

150. .shiftin (data_in_reg),

151. .shiftout (iline2),

152. .taps ()

153.);

154. defparam

155. line_buffer1.WD = 32,

156. line_buffer1.SIZE = WIDTH;

157.

158. line line_buffer2 (

159. .clock (clk),

160. .clken (data_en),

161. .shiftin (iline2),

162. .shiftout (iline3),

163. .taps ()

164.);

165. defparam

166. line_buffer2.WD = 32,

167. line_buffer2.SIZE = WIDTH;

168.

169. line line_buffer3 (

170.

171. .clock (clk),

172. .clken (data_en),

173. .shiftin (iline3),

174. .shiftout (iline4),

175. .taps ()

176.);

177. defparam

178. line_buffer3.WD = 32,

179. line_buffer3.SIZE = WIDTH;

180.

181. line line_buffer4 (

182.

183. .clock (clk),

184. .clken (data_en),

185. .shiftin (iline4),

186. .shiftout (iline5),

187. .taps ()

188.);

189. defparam

190. line_buffer4.WD = 32,

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 162

191. line_buffer4.SIZE = WIDTH;

192.

193. div divde(

194. .clock(clk),

195. .clken(data_en),

196. .denom(de),

197. .numer(level_3),

198. .quotient(level_4),

199.);

200.

201. endmodule

Harris Corner Detection Module

1. module harris_m (

2. // Inputs

3. input clk,

4. input rst,

5.

6.

7. input [31:0] gx2_in,

8. input [31:0] gy2_in,

9. input [31:0] gxy_in,

10. input data_en,

11.

12. output [63:0] data_out

13.);

14.

15.

16. parameter WIDTH = 1024; // Image width in pixels

17.

18. wire [63: 0] gxy2;

19. wire [63: 0] gx2y2;

20. wire [63: 0] gxy22;

21. reg [63: 0] gxy2_reg;

22. reg [63: 0] gx2y2_reg;

23. reg [63: 0] gxy22_reg;

24. reg [31: 0] gx2_reg;

25. reg [31: 0] gy2_reg;

26. reg [31: 0] gxy_reg;

27. reg [31: 0] gxpy_reg;

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 163

28.

29. reg [63: 0] R_l11;

30. reg [63: 0] R_l12;

31. reg [63: 0] R_l2;

32.

33. reg [63: 0] fresult;

34. // State Machine Registers

35.

36. // Integers

37.

38.

39. always @(posedge clk)

40. begin

41. if (rst)

42. begin

43. gx2_reg <= 32'h0;

44. gy2_reg <= 32'h0;

45. gxy_reg <= 32'h0;

46. gxpy_reg <= 32'h0;

47. gxy2_reg <= 64'h0;

48. gx2y2_reg <= 64'h0;

49. gxy22_reg <= 64'h0;

50.

51.

52. end

53. else if (data_en)

54. begin

55.

56. gx2_reg <= gx2_in;

57. gy2_reg <= gy2_in;

58. gxy_reg <= gxy_in;

59. gxpy_reg <= gx2_in+gy2_in;

60.

61.

62. gxy2_reg <= gxy2;

63. gx2y2_reg <= gx2y2;

64. gxy22_reg <= gxy22;

65.

66. R_l11 <= gx2y2_reg - gxy2_reg;

67. R_l12 <= {5'b0,gxy22_reg[63:5]};

68.

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 164

69. R_l2 <= R_l11 - R_l12;

70.

71. fresult <= (R_l2[63]==1'b0)?({1'b0,R_l2[62:0]}):({64'h0});

72.

73. end

74. end

75.

76. /***

**

77. * Combinational Logic

 *

78. ***

**/

79.

80. assign data_out = fresult;

81.

82. /***

**

83. * Internal Modules

 *

84. ***

**/

85.

86.

87. mult1 u2 (

88. .clock(clk),

89. .clken(data_en),

90. .dataa(gx2_reg),

91. .datab(gy2_reg),

92. .result(gx2y2)

93.);

94. mult1 u3 (

95. .clock(clk),

96. .clken(data_en),

97. .dataa(gxy_reg),

98. .datab(gxy_reg),

99. .result(gxy2)

100.);

101. mult1 u4 (

102. .clock(clk),

103. .clken(data_en),

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 165

104. .dataa(gxpy_reg),

105. .datab(gxpy_reg),

106. .result(gxy22)

107.);

108.

109. endmodule

Double threshold filtering Module

1. module double_threshold_filtering (

2.

3. input clk,

4. input rst,

5.

6.

7. input [63:0] in_data,

8. input [63:0] threshold,

9. input data_en,

10.

11. output [7:0] out_data

12.);

13.

14. parameter WIDTH = 1024; // Image width in pixels

15.

16. wire [63:0] iline1;

17. wire [63:0] iline2;

18.

19. reg [63:0] oline0[2:0];

20. reg [63:0] oline1[2:0];

21. reg [63:0] oline2[2:0];

22.

23. reg [7: 0] result;

24.

25.

26. integer i;

27.

28.

29.

30.

31. always @(posedge clk)

32. begin

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 166

33. if (rst)

34. begin

35. result <= 8'h00;

36. for (i = 2; i >= 0; i = i-1)

37. begin

38. oline0[i] <= 64'h0;

39. oline1[i] <= 64'h0;

40. oline2[i] <= 64'h0;

41. end

42.

43. end

44. else if (data_en)

45. begin

46.

47. oline0[2] <= oline0[1];

48. oline1[2] <= oline1[1];

49. oline2[2] <= oline2[1];

50.

51.

52. oline0[1] <= oline0[0];

53. oline1[1] <= oline1[0];

54. oline2[1] <= oline2[0];

55.

56. oline0[0] <= in_data;

57. oline1[0] <= iline1;

58. oline2[0] <= iline2;

59.

60.

61.

62.

63.

64. if ((oline1[1]>threshold)&&

65. //(oline1[1][63:0]>oline0[1][63:0])&&

66. //(oline1[1][63:0]>oline2[1][63:0])&&

67.

68. (oline1[1]>oline0[2])&&

69. (oline1[1]>oline2[0])&&

70. (oline1[1]>oline0[0])&&

71. (oline1[1]>oline2[2])//&&

72.

73. //(oline1[1][63:0]>oline1[0][63:0])&&

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 167

74. //(oline1[1][63:0]>oline1[2][63:0])

75.)

76. result <= (oline1[1][30:18]>8'hFF)?(8'hFF):(oline1[1][25:18]);

77. //result <= (oline1[1][63:20]>16'hFFFF)?(16'hFFFF):(oline1[1][35

:20]);

78. else

79. result <= 8'h00;

80.

81.

82. end

83. end

84.

85.

86.

87.

88.

89. assign out_data = result;

90.

91. //assign T_in_wire=T_in;

92.

93. line u0 (

94. .clken(data_en),

95. .clock(clk),

96. .shiftin(in_data),

97. .shiftout(iline1)

98.);

99. defparam

100. u0.WD = 64,

101. u0.SIZE = WIDTH;

102.

103.

104. line u1 (

105. .clken(data_en),

106. .clock(clk),

107. .shiftin(iline1),

108. .shiftout(iline2)

109.);

110. defparam

111. u1.WD = 64,

112. u1.SIZE = WIDTH;

113.

Appendix C Codes of Harris Corner Detection with HDL approach

Shaonan Zhang 168

114. endmodule

Appendix D Codes of Harris Corner Detection with HLS approach

Shaonan Zhang 169

Appendix D Codes of Harris Corner Detection

with HLS approach

1. #include "HLS/hls.h"

2. #include "HLS/math.h"

3.

4. #include "HLS/ac_int.h"

5.

6.

7. #define N 1024

8. #define M 3

9. #define RGB_D N*7-11

10.

11.

12.

13. struct int_v24 {

14. unsigned char data[3];

15. };

16. struct int_v32 {

17. unsigned char data[4];

18. };

19.

20. struct direction_sobel {

21. unsigned char data;

22. unsigned char direction;

23. };

24.

25. struct matrix {

26. long I_x2;

27. long I_y2;

28. long I_xy;

29. };

30.

31. struct matrix_long {

32. long long I_x2;

33. long long I_y2;

34. long long I_xy;

35. };

36. struct gaussian_level1 {

Appendix D Codes of Harris Corner Detection with HLS approach

Shaonan Zhang 170

37.

38. long g_levelx0;

39. long g_levelx1;

40. long g_levelx2;

41. long g_levelx3;

42. long g_levelx4;

43. long g_levelx5;

44. long g_levelx6;

45.

46. };

47. struct gaussian_level2 {

48.

49. long g_level20;

50. long g_level21;

51. long g_level22;

52. long g_level23;

53. long g_level24;

54.

55. };

56.

57.

58.

59. // Default stream behavior

60. hls_avalon_streaming_component hls_always_run_component

61. component void harris(

62. ihc::stream_in<int_v24, ihc::bitsPerSymbol<8>,ihc::usesPackets

<true> >& a,

63. ihc::stream_out<int_v24, ihc::bitsPerSymbol<8>,ihc::usesPacket

s<true> >& b

64. // ,ihc::stream_out<int, ihc::usesPackets<true> >& c

65. // ,ihc::stream_out<int, ihc::usesPackets<true> >& d

66.) {

67.

68.

69. bool start_of_packet = false;

70. bool end_of_packet = false;

71.

72.

73. int_v24 a1;

74. int_v24 b1;

75. //int b1,c1,d1;

Appendix D Codes of Harris Corner Detection with HLS approach

Shaonan Zhang 171

76. //int_v24 rgb_buffer[RGB_D];

77. int buffer[3];

78. int grey;

79.

80. int s_levelx0,s_levelx1,s_levelx2;

81. int s_levely0,s_levely1;

82. int s_x,s_y;

83.

84. long long R,threshold,th,RX;

85.

86. matrix M_I,M_G;

87. matrix_long M_R,M_S,M_F;

88. gaussian_level1 g_Ix2_level1,g_Iy2_level1,g_Ixy_level1;

89. gaussian_level2 g_Ix2_level2,g_Iy2_level2,g_Ixy_level2;

90.

91. long long x2,y2,xy,x2_y2;

92.

93. long long result_x2y2,result_xy2,result_xy22;

94.

95. long long R_line0[N],R_line1[N],R_line2[N];

96.

97. matrix line0[N], line1[N], line2[N], line3[N],line4[N];

98.

99. unsigned short int grey_line0[N],grey_line1[N],grey_line2[N];

100.

101. unsigned short int final_result;

102.

103.

104. while(!end_of_packet) {

105. // Blocking read from the input stream

106. a1 = a.read(start_of_packet, end_of_packet);

107. #pragma unroll

108. for(int i=0;i < 3; i++)

109. {

110. buffer[i]=a1.data[i];

111. }

112. //grey result

113.

114. grey=(buffer[0]*76+buffer[1]*150+buffer[2]*29)>>8;

115.

116.

Appendix D Codes of Harris Corner Detection with HLS approach

Shaonan Zhang 172

117. #pragma unroll

118. for (int i = N - 1; i > 0; --i) {

119. grey_line0[i] = grey_line0[i-1];

120. grey_line1[i] = grey_line1[i-1];

121. grey_line2[i] = grey_line2[i-1];

122. }

123. grey_line0[0] = grey;

124. grey_line1[0] = grey_line0[N-1];

125. grey_line2[0] = grey_line1[N-1];

126.

127.

128.

129.

130.

131.

132. //Sobel filter

133. s_levelx0=grey_line0[N-1] +(grey_line1[N-1]*2) +grey_line2[N-

1];

134. s_levelx1=grey_line0[N-3] +(grey_line1[N-3]*2) +grey_line2[N-

3];

135.

136.

137. s_levely0=grey_line0[N-1]+(grey_line0[N-2]*2)+grey_line0[N-

3];

138. s_levely1=grey_line2[N-1]+(grey_line2[N-2]*2)+grey_line2[N-

3];

139.

140. s_x=s_levelx1-s_levelx0;

141.

142. s_y=s_levely0-s_levely1;

143.

144. M_I.I_x2=s_x*s_x;

145. M_I.I_y2=s_y*s_y;

146. M_I.I_xy=s_x*s_y;

147.

148. // 5 buffered lines

149. #pragma unroll

150. for (int i = N - 1; i > 0; --i) {

151. line0[i] = line0[i-1];

152. line1[i] = line1[i-1];

153. line2[i] = line2[i-1];

Appendix D Codes of Harris Corner Detection with HLS approach

Shaonan Zhang 173

154. line3[i] = line3[i-1];

155. line4[i] = line4[i-1];

156. }

157. line0[0] = M_I;

158. line1[0] = line0[N-1];

159. line2[0] = line1[N-1];

160. line3[0] = line2[N-1];

161. line4[0] = line3[N-1];

162.

163.

164.

165.

166.

167. //Gaussian filter

168. //x2

169. g_Ix2_level1.g_levelx0= (line0[N-1].I_x2 + line4[N-

1].I_x2 + line0[N-5].I_x2 + line4[N-5].I_x2)<<1;

170. g_Iy2_level1.g_levelx0= (line0[N-1].I_y2 + line4[N-

1].I_y2 + line0[N-5].I_y2 + line4[N-5].I_y2)<<1;

171. g_Ixy_level1.g_levelx0= (line0[N-1].I_xy + line4[N-

1].I_xy + line0[N-5].I_xy + line4[N-5].I_xy)<<1;

172.

173. //x4

174. g_Ix2_level1.g_levelx1= (line1[N-1].I_x2 + line3[N-

1].I_x2 + line0[N-2].I_x2 + line4[N-2].I_x2)<<2;

175. g_Ix2_level1.g_levelx2= (line0[N-4].I_x2 + line4[N-

4].I_x2 + line1[N-5].I_x2 + line3[N-5].I_x2)<<2;

176. g_Iy2_level1.g_levelx1= (line1[N-1].I_y2 + line3[N-

1].I_y2 + line0[N-2].I_y2 + line4[N-2].I_y2)<<2;

177. g_Iy2_level1.g_levelx2= (line0[N-4].I_y2 + line4[N-

4].I_y2 + line1[N-5].I_y2 + line3[N-5].I_y2)<<2;

178. g_Ixy_level1.g_levelx1= (line1[N-1].I_xy + line3[N-

1].I_xy + line0[N-2].I_xy + line4[N-2].I_xy)<<2;

179. g_Ixy_level1.g_levelx2= (line0[N-4].I_xy + line4[N-

4].I_xy + line1[N-5].I_xy + line3[N-5].I_xy)<<2;

180. //x5

181. g_Ix2_level1.g_levelx3= line2[N-1].I_x2 + line0[N-

3].I_x2 + line4[N-3].I_x2 + line2[N-5].I_x2;

182. g_Iy2_level1.g_levelx3= line2[N-1].I_y2 + line0[N-

3].I_y2 + line4[N-3].I_y2 + line2[N-5].I_y2;

Appendix D Codes of Harris Corner Detection with HLS approach

Shaonan Zhang 174

183. g_Ixy_level1.g_levelx3= line2[N-1].I_xy + line0[N-

3].I_xy + line4[N-3].I_xy + line2[N-5].I_xy;

184. //x9

185. g_Ix2_level1.g_levelx4= line1[N-2].I_x2 + line3[N-

2].I_x2 + line1[N-4].I_x2 + line3[N-4].I_x2;

186. g_Iy2_level1.g_levelx4= line1[N-2].I_y2 + line3[N-

2].I_y2 + line1[N-4].I_y2 + line3[N-4].I_y2;

187. g_Ixy_level1.g_levelx4= line1[N-2].I_xy + line3[N-

2].I_xy + line1[N-4].I_xy + line3[N-4].I_xy;

188.

189. //x12

190. g_Ix2_level1.g_levelx5= line2[N-2].I_x2 + line1[N-

3].I_x2 + line3[N-3].I_x2 + line2[N-4].I_x2;

191. g_Iy2_level1.g_levelx5= line2[N-2].I_y2 + line1[N-

3].I_y2 + line3[N-3].I_y2 + line2[N-4].I_y2;

192. g_Ixy_level1.g_levelx5= line2[N-2].I_xy + line1[N-

3].I_xy + line3[N-3].I_xy + line2[N-4].I_xy;

193.

194. //x15

195.

196. g_Ix2_level1.g_levelx6= (line2[N-3].I_x2<<4)-line2[N-3].I_x2;

197. g_Iy2_level1.g_levelx6= (line2[N-3].I_y2<<4)-line2[N-3].I_y2;

198. g_Ixy_level1.g_levelx6= (line2[N-3].I_xy<<4)-line2[N-3].I_xy;

199.

200.

201.

202.

203. g_Ix2_level2.g_level20= g_Ix2_level1.g_levelx0+g_Ix2_level1.g_l

evelx6;

204. g_Iy2_level2.g_level20= g_Iy2_level1.g_levelx0+g_Iy2_level1.g_l

evelx6;

205. g_Ixy_level2.g_level20= g_Ixy_level1.g_levelx0+g_Ixy_level1.g_l

evelx6;

206.

207. g_Ix2_level2.g_level21= g_Ix2_level1.g_levelx1 + g_Ix2_level1.g

_levelx2;

208. g_Iy2_level2.g_level21= g_Iy2_level1.g_levelx1 + g_Iy2_level1.g

_levelx2;

209. g_Ixy_level2.g_level21= g_Ixy_level1.g_levelx1 + g_Ixy_level1.g

_levelx2;

210.

Appendix D Codes of Harris Corner Detection with HLS approach

Shaonan Zhang 175

211. g_Ix2_level2.g_level22= (g_Ix2_level1.g_levelx3<<2) +g_Ix2_leve

l1.g_levelx3;

212. g_Iy2_level2.g_level22= (g_Iy2_level1.g_levelx3<<2) +g_Iy2_leve

l1.g_levelx3;

213. g_Ixy_level2.g_level22= (g_Ixy_level1.g_levelx3<<2) +g_Ixy_leve

l1.g_levelx3;

214.

215. g_Ix2_level2.g_level23= (g_Ix2_level1.g_levelx4<<3) +g_Ix2_leve

l1.g_levelx4;

216. g_Iy2_level2.g_level23= (g_Iy2_level1.g_levelx4<<3) +g_Iy2_leve

l1.g_levelx4;

217. g_Ixy_level2.g_level23= (g_Ixy_level1.g_levelx4<<3) +g_Ixy_leve

l1.g_levelx4;

218.

219. g_Ix2_level2.g_level24= (g_Ix2_level1.g_levelx5<<3) +(g_Ix2_lev

el1.g_levelx5<<2);

220. g_Iy2_level2.g_level24= (g_Iy2_level1.g_levelx5<<3) +(g_Iy2_lev

el1.g_levelx5<<2);

221. g_Ixy_level2.g_level24= (g_Ixy_level1.g_levelx5<<3) +(g_Ixy_lev

el1.g_levelx5<<2);

222.

223.

224. M_G.I_x2 = (g_Ix2_level2.g_level20+g_Ix2_level2.g_level21+

g_Ix2_level2.g_level22 +g_Ix2_level2.g_level23+g_Ix2_level2.g_level24)/159;

225.

226. M_G.I_y2 = (g_Iy2_level2.g_level20+g_Iy2_level2.g_level21+

g_Iy2_level2.g_level22 +g_Iy2_level2.g_level23+g_Iy2_level2.g_level24)/159;

227.

228. M_G.I_xy = (g_Ixy_level2.g_level20+g_Ixy_level2.g_level21+

g_Ixy_level2.g_level22 +g_Ixy_level2.g_level23+g_Ixy_level2.g_level24)/159;

229.

230. x2=M_G.I_x2;

231. y2=M_G.I_y2;

232. xy=M_G.I_xy;

233. x2_y2=M_G.I_x2+M_G.I_y2;

234.

235.

236. result_x2y2 = x2*y2;

Appendix D Codes of Harris Corner Detection with HLS approach

Shaonan Zhang 176

237. result_xy2 = xy*xy;

238. result_xy22 = x2_y2*x2_y2;

239.

240. R=(result_x2y2-result_xy2)-(result_xy22>>5);

241.

242. RX=(R>0)?R:0;

243.

244.

245. if(threshold<R)

246. {

247. threshold = R;

248. //th=threshold>>3;

249. }

250. else{

251. threshold=threshold;

252. }

253. th=threshold>>4;

254. //th=0;//2200000000;

255.

256.

257. #pragma unroll

258. for (int i = N - 1; i > 0; --i) {

259. R_line0[i] = R_line0[i-1];

260. R_line1[i] = R_line1[i-1];

261. R_line2[i] = R_line2[i-1];

262. }

263. R_line0[0] = RX;

264. R_line1[0] = R_line0[N-1];

265. R_line2[0] = R_line1[N-1];

266.

267. if(

268. (R_line1[N-2]>th) &&

269. (R_line1[N-2] > R_line0[N-3]) &&

270. (R_line1[N-2] > R_line0[N-1]) &&

271. (R_line1[N-2] > R_line2[N-1]) &&

272. (R_line1[N-2] > R_line2[N-3])

273.

274.){

275.

276. final_result=255;

277. }

Appendix D Codes of Harris Corner Detection with HLS approach

Shaonan Zhang 177

278. else

279. {

280. final_result=0;}

281.

282.

283.

284.

285. b1.data[0]=final_result;

286. b1.data[1]=final_result;

287. b1.data[2]=final_result;

288. b.write(b1, start_of_packet, end_of_packet);

289.

290.

291. }

292. }

293.

294.

295. int main (void) {

296.

297. bool pass = true;

298.

299.

300.

301. if (pass) {

302. printf("PASSED\n");

303. } else {

304. printf("FAILED\n");

305. }

306.

307. return 0;

308. }

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 178

Appendix E Customized “Good feature to track”

OpenCV Code

1. #define soc_cv_av

2. #include <iostream>

3. #include <stdio.h>

4. #include <unistd.h>

5. #include <fcntl.h>

6. #include <sys/mman.h>

7. #include <sys/types.h>

8. #include <inttypes.h>

9. #include <memory.h>

10. #include <pthread.h>

11. #include <stdlib.h>

12. #include <time.h>

13. #include <sys/time.h>

14. #include "/home/shaonan/intelFPGA/17.0/embedded/ip/altera/hps/altera_hps/hwl

ib/include/hwlib.h"

15. #include "/home/shaonan/intelFPGA/17.0/embedded/ip/altera/hps/altera_hps/hwl

ib/include/soc_cv_av/socal/socal.h"

16. #include "/home/shaonan/intelFPGA/17.0/embedded/ip/altera/hps/altera_hps/hwl

ib/include/soc_cv_av/socal/hps.h"

17. #include "/home/shaonan/intelFPGA/17.0/embedded/ip/altera/hps/altera_hps/hwl

ib/include/soc_cv_av/socal/alt_gpio.h"

18. #include "hps_0.h"

19.

20. #include "math.h"

21.

22. #include "opencv2/imgproc.hpp"

23. #include "opencv2/imgcodecs.hpp"

24. #include "opencv2/objdetect.hpp"

25.

26. #define HW_REGS_BASE (ALT_STM_OFST)

27. #define HW_REGS_SPAN (0x04000000)

28. #define HW_REGS_MASK (HW_REGS_SPAN - 1)

29.

30.

31.

32. #define ALT_AXI_FPGASLVS_OFST (0xC0000000) // axi_master

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 179

33. #define HW_FPGA_AXI_SPAN (0x40000000) // Bridge span

34. #define HW_FPGA_AXI_MASK (HW_FPGA_AXI_SPAN - 1)

35. //1024x768

36.

37. #define Buffer0 (0x04000000)

38. #define Buffer1 (0x04600000)

39. #define Buffer2 (0x04C00000)

40.

41. #define mapped_Buffer0 (0x06000000)

42. #define mapped_Buffer1 (0x06600000)

43. #define mapped_Buffer2 (0x06C00000)

44.

45. //1024x768

46.

47. #define Reader1_Buffer0 (0x12000000)

48. #define Reader1_Buffer1 (0x12240000)

49. #define Reader1_Buffer2 (0x12480000)

50.

51.

52. #define Buffer_r0 (0x10000000)

53. #define Buffer_r1 (0x10240000)

54. #define Buffer_r2 (0x10480000)

55.

56. //640

57. /*

58. #define Buffer0 (0x04000000)

59. #define Buffer1 (0x04258000)

60. #define Buffer2 (0x044B0000)

61.

62. #define mapped_Buffer0 (0x06000000)

63. #define mapped_Buffer1 (0x06258000)

64. #define mapped_Buffer2 (0x064B0000)

65.

66. //640

67. #define Reader1_Buffer0 (0x12000000)

68. #define Reader1_Buffer1 (0x120E1000)

69. #define Reader1_Buffer2 (0x121C2000)

70.

71.

72. #define Buffer_r0 (0x10000000)

73. #define Buffer_r1 (0x100E1000)

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 180

74. #define Buffer_r2 (0x101C2000)

75. */

76. /*

77. //800

78. #define Buffer0 (0x04000000)

79. #define Buffer1 (0x043A9800)

80. #define Buffer2 (0x04753000)

81.

82. #define mapped_Buffer0 (0x06000000)

83. #define mapped_Buffer1 (0x063A9800)

84. #define mapped_Buffer2 (0x06753000)

85.

86.

87. //800

88. #define Reader1_Buffer0 (0x12000000)

89. #define Reader1_Buffer1 (0x1215F900)

90. #define Reader1_Buffer2 (0x122BF200)

91.

92.

93. #define Buffer_r0 (0x10000000)

94. #define Buffer_r1 (0x1015F900)

95. #define Buffer_r2 (0x102BF200)

96. */

97. //1024x768

98.

99. #define WIDTH (1024)

100. #define HEIGHT (768)

101. //640

102. //#define WIDTH (640)

103. //#define HEIGHT (480)

104.

105. //800

106. //#define WIDTH (800)

107. //#define HEIGHT (600)

108. #define resolution (WIDTH*HEIGHT)

109.

110.

111. #define buffer_size0 (resolution*3*8)

112. #define buffer_size (resolution*3*3)

113.

114. #define frame_size (resolution*3)

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 181

115. #define page_size (resolution*8)

116.

117. #define processing_area (resolution)

118. using namespace cv;

119. using namespace std;

120.

121.

122. static volatile unsigned int *frame_reader_addr=NULL;

123. static volatile unsigned int *frame_writer_addr=NULL;

124.

125. static volatile unsigned int *frame_reader_addr_base=NULL;

126. static volatile unsigned int *frame_writer_addr_base=NULL;

127.

128.

129.

130.

131. Mat img(HEIGHT,WIDTH,CV_16UC1);

132.

133. Mat eig(HEIGHT,WIDTH,CV_32FC1);

134.

135. Mat frame(HEIGHT,WIDTH,CV_8UC3);

136. Mat frame_gray(HEIGHT,WIDTH,CV_8UC1);

137. Mat dst(HEIGHT,WIDTH,CV_8UC3);

138. Mat edge1,dst_scaled;

139. RNG rng(12345);

140.

141.

142.

143. int blockSize = 2;

144. int apertureSize = 3;

145. double k = 0.04;

146. int thresh = 200;

147. int max_thresh = 255;

148.

149. struct greaterThanPtr :

150. public std::binary_function<const float *, const float *, bool>

151. {

152. bool operator () (const float * a, const float * b) const

153. // Ensure a fully deterministic result of the sort

154. { return (*a > *b) ? true : (*a < *b) ? false : (a > b); }

155. };

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 182

156.

157. ///

158. // VIP Frame Buffer(writer/reader): configure

159.

160. void frame_reader_conf(){

161. frame_reader_addr[0]=0x01;

162.

163. frame_reader_addr[5]=0x800300; //1024

164. //frame_reader_addr[5]=0x5001E0; //640

165. //frame_reader_addr[5]=0x640258; //800

166. frame_reader_addr[6]=Buffer_r0;

167. }

168.

169. void frame_writer_conf(){

170.

171.

172. frame_writer_addr[0]=0x01;

173. frame_writer_addr[8]=0x00010001;

174.

175. }

176.

177.

178.

179.

180.

181.

182.

183.

184. void goodfeature(OutputArray _corners,

185. int maxCorners, double minDistance,

186. InputArray _mask

187.)

188. {

189.

190.

191. Mat tmp;

192.

193.

194. if (frame_gray.empty()||eig.empty())

195. {

196. _corners.release();

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 183

197. return;

198. }

199.

200.

201. dilate(eig, tmp, Mat());

202.

203. Size imgsize = frame_gray.size();

204. std::vector<const float*> tmpCorners;

205.

206. // collect list of pointers to features - put them into temporary image

207. Mat mask = _mask.getMat();

208. for(int y = 1; y < imgsize.height - 1; y++)

209. {

210. const float* eig_data = (const float*)eig.ptr(y);

211. const float* tmp_data = (const float*)tmp.ptr(y);

212. const uchar* mask_data = mask.data ? mask.ptr(y) : 0;

213.

214. for(int x = 1; x < imgsize.width - 1; x++)

215. {

216. float val = eig_data[x];

217. if(val != 0 && val == tmp_data[x] && (!mask_data || mask_data[

x]))

218. tmpCorners.push_back(eig_data + x);

219. }

220. }

221.

222. std::vector<Point2f> corners;

223. size_t i, j, total = tmpCorners.size(), ncorners = 0;

224.

225. cout<<"** Total of corners detected: "<<total<<endl;

226.

227. if (total == 0)

228. {

229. _corners.release();

230. return;

231. }

232.

233. std::sort(tmpCorners.begin(), tmpCorners.end(), greaterThanPtr());

234.

235. if (minDistance >= 1)

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 184

236. {

237. // Partition the image into larger grids

238. int w = frame_gray.cols;

239. int h = frame_gray.rows;

240.

241. const int cell_size = cvRound(minDistance);

242. const int grid_width = (w + cell_size - 1) / cell_size;

243. const int grid_height = (h + cell_size - 1) / cell_size;

244.

245. std::vector<std::vector<Point2f> > grid(grid_width*grid_height);

246.

247. minDistance *= minDistance;

248.

249. for(i = 0; i < total; i++)

250. {

251. int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());

252. int y = (int)(ofs / eig.step);

253. int x = (int)((ofs - y*eig.step)/sizeof(float));

254.

255. bool good = true;

256.

257. int x_cell = x / cell_size;

258. int y_cell = y / cell_size;

259.

260. int x1 = x_cell - 1;

261. int y1 = y_cell - 1;

262. int x2 = x_cell + 1;

263. int y2 = y_cell + 1;

264.

265. // boundary check

266. x1 = std::max(0, x1);

267. y1 = std::max(0, y1);

268. x2 = std::min(grid_width-1, x2);

269. y2 = std::min(grid_height-1, y2);

270.

271. for(int yy = y1; yy <= y2; yy++)

272. {

273. for(int xx = x1; xx <= x2; xx++)

274. {

275. std::vector <Point2f> &m = grid[yy*grid_width + xx];

276.

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 185

277. if(m.size())

278. {

279. for(j = 0; j < m.size(); j++)

280. {

281. float dx = x - m[j].x;

282. float dy = y - m[j].y;

283.

284. if(dx*dx + dy*dy < minDistance)

285. {

286. good = false;

287. goto break_out;

288. }

289. }

290. }

291. }

292. }

293.

294. break_out:

295.

296. if (good)

297. {

298. grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x

, (float)y));

299.

300. corners.push_back(Point2f((float)x, (float)y));

301. ++ncorners;

302.

303. if(maxCorners > 0 && (int)ncorners == maxCorners)

304. break;

305. }

306. }

307. }

308. else

309. {

310. for(i = 0; i < total; i++)

311. {

312. int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());

313. int y = (int)(ofs / eig.step);

314. int x = (int)((ofs - y*eig.step)/sizeof(float));

315.

316. corners.push_back(Point2f((float)x, (float)y));

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 186

317. ++ncorners;

318. if(maxCorners > 0 && (int)ncorners == maxCorners)

319. break;

320. }

321. }

322.

323. Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type()

 : CV_32F);

324. }

325.

326.

327.

328. void goodFeaturesToTrack_Demo()

329. {

330. int maxCorners = 20;

331. //if(maxCorners < 1) { maxCorners = 1; }

332.

333. /// Parameters for Shi-Tomasi algorithm

334. vector<Point2f> corners;

335. double minDistance = 10;

336.

337.

338. /// Copy the source image

339.

340.

341. /// Apply corner detection

342. goodfeature(corners,

343. maxCorners,

344. minDistance,

345. Mat()

346.);

347.

348.

349. /// Draw corners detected

350. cout<<"** Number of corners detected: "<<corners.size()<<endl;

351. int r = 6;

352. for(size_t i = 0; i < corners.size(); i++)

353. { circle(dst, corners[i], r, Scalar(rng.uniform(0,255), rng.uniform(0

,255), rng.uniform(0,255)), -1, 8, 0); }

354.

355. //

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 187

356.

357. /// Set the neeed parameters to find the refined corners

358. Size winSize = Size(5, 5);

359. Size zeroZone = Size(-1, -1);

360. TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::C

OUNT, 40, 0.001);

361.

362. /// Calculate the refined corner locations

363. cornerSubPix(frame_gray, corners, winSize, zeroZone, criteria);

364.

365. /// Write them down

366. for(size_t i = 0; i < corners.size(); i++)

367. { cout<<" -

- Refined Corner ["<<i<<"] ("<<corners[i].x<<","<<corners[i].y<<")"<<endl;

}

368. }

369.

370.

371.

372. static long get_tick_count(void)

373. {

374. struct timespec now;

375. clock_gettime(CLOCK_MONOTONIC, &now);

376. //return now.tv_sec*1000000 + now.tv_nsec/1000;

377. return now.tv_sec*1000000 + now.tv_nsec/1000;

378. }

379.

380.

381. void processing(uint8_t *ptr,uint8_t *ptr1,uint8_t *ptr2,uint16_t *ptr3)

382. {

383. uint8_t *data0,*data1,*data2;

384. uint16_t *ptrx;

385. uint16_t *data3;

386. int i,j=0,k=0,l=0,m=0;

387. data0=ptr;

388. data1=ptr1;

389. data2=ptr2;

390. data3=ptr3;

391. ptrx=(uint16_t *)ptr;

392. for(i=0;i<=page_size;i+=8){

393. data1[j]=data0[i];

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 188

394. data1[j+1]=data0[i+1];

395. data1[j+2]=data0[i+2];

396.

397. data2[k]=data0[i+3];

398.

399. data3[k]=ptrx[l+2];

400. j+=3;

401. k++;

402. l+=4;

403. }

404.

405.

406. }

407.

408.

409.

410. void* read_data(){

411.

412. //int edgeThresh = 20;

413. //int edgeThreshScharr=1;

414.

415. uint8_t *data0,*data1,*data2;

416. uint16_t *data3;

417. //unsigned char *data_base=NULL;

418.

419. uint32_t time_start,time_elapsed;

420. data0=(uint8_t *)malloc(page_size);

421. data1=(uint8_t *)malloc(frame_size);

422. data2=(uint8_t *)malloc(resolution);

423. data3=(uint16_t *)malloc(resolution);

424. //data_base=data0;

425. time_start = get_tick_count();

426. while(1)

427. {

428.

429. while (frame_writer_addr[5]<0x80000000){};

430.

431.

432. printf("frame_writer_addr[6]=0x%X\n",frame_writer_addr[6]);

433.

434.

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 189

435. switch(frame_writer_addr[6]){

436. case Buffer0:

437. memcpy((void*)data0,(void*)mapped_Buffer0,page_size);

438. break;

439. case Buffer1:

440. memcpy((void*)data0,(void*)mapped_Buffer1,page_size);

441. break;

442. case Buffer2:

443. memcpy((void*)data0,(void*)mapped_Buffer2,page_size);

444. break;

445. default:

446. break;

447. }

448. frame_writer_addr[8]=0x00010001;

449.

450. processing(data0,data1,data2,data3);

451.

452.

453. /*1024

454. Mat frame(768,1024,CV_8UC3,data1);

455. Mat frame_gray(768,1024,CV_8UC1,data2);

456. Mat img(768,1024,CV_16UC1,data3);

457. */

458. Mat frame(HEIGHT,WIDTH,CV_8UC3,data1);

459.

460.

461. //Mat frame_gray(HEIGHT,WIDTH,CV_8UC1,data2);

462. //Mat img(HEIGHT,WIDTH,CV_16UC1,data3);

463.

464. //img.convertTo(eig, CV_32FC1,1,0);

465. cvtColor(frame, frame_gray, COLOR_RGB2GRAY);

466. frame.copyTo(dst);

467. goodFeaturesToTrack_Demo();

468. //imwrite("opencv.jpg",dst);

469.

470.

471.

472. while(frame_reader_addr[7]<0x04000000){};

473.

474.

475.

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 190

476. memcpy((void *)Reader1_Buffer0 , dst.ptr(), frame_size);

477. //memcpy((void *)Reader1_Buffer0 , (void *)data1, frame_size);

478. frame_reader_addr[5]=0x800300; //1024

479. //frame_reader_addr[5]=0x5001E0; //640

480. //frame_reader_addr[5]=0x640258; //800

481.

482. frame_reader_addr[6]=Buffer_r0 ;

483.

484. time_elapsed = get_tick_count() - time_start;

485. if (time_elapsed)

486. printf("time_elapsed whole processing =%.5f s\r\n", (float)tim

e_elapsed/1000000);

487.

488. time_start = get_tick_count();

489.

490. //printf("frame writer counter=%d\n",frame_writer_addr[3]);

491. //if (frame_writer_addr[3]<30){

492. //imwrite("opencv.jpg", dst);

493. //imwrite("rgb.jpg")

494. //}

495.

496. }

497. free(data0);

498.

499. }

500.

501.

502.

503.

504. int main(int argc,char ** argv)

505. {

506.

507.

508.

509.

510.

511. void *lw_axi_virtual_base=NULL;

512. void *virtual_base=NULL;

513. int fd;

514.

515.

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 191

516.

517. if((fd = open("/dev/mem", (O_RDWR | O_SYNC))) == -1)

518. {

519. printf("ERROR: could not open \"/dev/mem\"...\n");

520. return(1);

521. }

522.

523.

524.

525.

526. printf("Memory mapped successed\n");

527.

528. lw_axi_virtual_base = mmap(NULL, HW_REGS_SPAN, (PROT_READ | PROT_WRIT

E), MAP_SHARED, fd, HW_REGS_BASE);

529. printf("lw_virtual_base=0x%X\n",lw_axi_virtual_base);

530. if(lw_axi_virtual_base == MAP_FAILED) {

531. printf("ERROR: mmap() failed...\n");

532. close(fd);

533. return(1);

534. }

535.

536.

537. //IP control

538. frame_writer_addr= (unsigned int *)((uint8_t *)lw_axi_virtual_base + (

 (ALT_LWFPGASLVS_OFST + ALT_VIP_CL_VFB_3_BASE) & (HW_REGS_MASK)));

539. frame_reader_addr= (unsigned int *) ((uint8_t *)lw_axi_virtual_base +

((ALT_LWFPGASLVS_OFST + ALT_VIP_CL_VFB_0_BASE) & (HW_REGS_MASK)));

540.

541.

542.

543. frame_writer_conf();

544. printf("writer configure successed\n");

545.

546. frame_reader_conf();

547.

548. printf("reader configure successed\n");

549.

550.

551. frame_writer_addr_base=(unsigned int *) mmap((void *)mapped_Buffer0 ,

 buffer_size0, (PROT_READ | PROT_WRITE), MAP_SHARED, fd, Buffer0);

552. if(frame_writer_addr_base == MAP_FAILED) {

Appendix E Customized “Good feature to track” OpenCV Code

Shaonan Zhang 192

553. printf("ERROR: mmap() failed...\n");

554. close(fd);

555. return(1);

556. }

557.

558. frame_reader_addr_base= (unsigned int *) mmap((void *)Reader1_Buffer0

 , buffer_size, (PROT_READ | PROT_WRITE), MAP_SHARED, fd, Buffer_r0);

559. if(frame_reader_addr_base == MAP_FAILED) {

560. printf("ERROR: mmap() failed...\n");

561. close(fd);

562. return(1);

563. }

564.

565.

566. printf("frame_reader_addr_base=0x%X\n",frame_reader_addr_base);

567. printf("frame_writer_addr_base=0x%X\n",frame_writer_addr_base);

568.

569.

570.

571. read_data();

572.

573.

574.

575. close(fd);

576.

577.

578.

579. return 0;

580. }

