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Abstract. Automatic verification techniques, like automated theorem
proving and model checking, cannot analyze large circuits due to the
heavy requirements of memory and computational power. On the other
hand, we can verify generic circuits, with universally quantified vari-
ables, using interactive theorem provers and thus overcome the above-
mentioned limitations but at the cost of significant user guidance in the
proof process. To facilitate this process and thus reduce the user involve-
ment in the proofs, we recently proposed a higher-order-logic formaliza-
tion of all the commonly used combinational circuits, like basic gates,
adders, multiplier, multiplexers, demultiplexers, decoders and encoders,
using the HOL4 theorem prover. In this project’s paper, we describe this
formally verified library and illustrate its utilization by verifying an n-bit
arithmetic logic unit (ALU).

1 Introduction

Verification of digital designs is of utmost importance due to their extensive
usage in safety-critical domains, such as health and transportation, where the
cost of an undetected system bug is quite high. Traditionally, digital designs
are verified using simulation, which ascertains the correctness of the design by
observing the behavior of the circuit under a subset of all possible inputs only.
Formal verification [15] is an accurate alternative to simulation that overcomes
its limitations by proving or disproving the correctness of the given design against
its desired properties mathematically. The main principle behind formal analysis
of a digital circuit is to construct a computer-based mathematical model of
the given circuit and formally verify, within a computer, that this model meets
rigorous specifications of intended behavior. Thus, the engineer working with
a formal methods-based verification tool has to develop a formal model of the
given circuit and the formal specification of the desired properties. Moreover,
she may be involved in the verification task as well.

There are some formal verification tools, mainly based on model checking [10]
and automated theorem proving techniques [14], that accept Verilog models [2]
and automatically translate them to the corresponding formal models and also
automatically verify the relationship between the formal model and its corre-
sponding specification. Thus, the verification engineer has to be involved in the
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formal specification of the properties only. These kind of tools, such as FormalPro
by Mentor Graphics, Conformal by Cadence, Synopsys Hector, Calypto’s SLEC
and Formality by Synopsys, are quite well-suited for the industrial setting and
are thus widely accepted by the industry as well. However, model checking is
generally limited to sequential circuits and also suffers from the well-known state-
space explosion problem. Similarly, automated theorem provers cannot cope with
the verification problems of large designs as well, due to an exponential increase
in computations with an increase in the number of variables and intermediate
nodes. Interactive theorem provers [14], using the expressive higher-order logic,
can overcome these shortcomings but at the cost of explicit user involvement.
The verification engineer needs to manually construct a logical model of the sys-
tem and then verify the desired properties while guiding the theorem proving
tool. This could be a very rigorous process and the user needs to be an expert in
both system design and theorem proving skills. This drawback limits the usage of
higher-order-logic theorem proving in the mainstream hardware industry where
the engineers prefer to have push-button type tools.

To minimize the user involvement in using an interactive theorem prover
for the verification of combinational circuits, we recently proposed a library of
combinational circuits [27], consisting of formally verified generic circuits of com-
monly used components, such as various implementations of n-bit Adders, n-bit
multiplier, n:1 Multiplexers, 1:n Demultiplexers, n:2n Decoders, 2n:n Encoders
and n-bit logic gates. The verification of these generic components was done
interactively but the availability of this library greatly facilitates the verifica-
tion of more complex designs. The user of the proposed approach has to just
provide the structure of the combinational circuit to be verified in terms of its
sub-components, based on the existing components in the proposed library, and
its desired behavior in the language supported by the HOL4 theorem prover. The
relationship between the structural view and the behavior of the given circuit
can then be verified using the library of formally verified generic circuits in a
very straightforward manner.

In this project’s paper, we describe all the main components of this library
[27] and illustrate its effectiveness in formally verifying generic circuits by for-
mally verifying an n-bit arithmetic logic unit (ALU) with very minimal user
interaction. The main motivation of this paper is to illustrate the utilization
of our formally verified library [27] in verifying more complex combination cir-
cuits. We have used the HOL4 theorem prover for this work, mainly because the
existing library of formal combinational components [27] has been developed in
HOL4.

2 Related Work

The first-order-logic theorem prover ACL2 has been used to verify different hard-
ware designs, including register-transfer level (RTL) models of floating-point
hardware [8] and pipeline machines using first-order quantification [24]. Simi-
larly, a framework is proposed for the mechanized certification of secure hard-
ware systems using ACL2 [23]. However, these verifications are done for specific
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operand widths of the components. In order to alleviate this problem, ACL2 has
been used in conjunction with symbolic simulation for verifying hardware [11]
and VIA nano microprocessor components [32]. However, using symbolic simula-
tion compromises the completeness of the analysis and thus accuracy. Similarly,
ACL2 has also been used with IBM’s SixthSense model checker [16,17] to develop
a hybrid verification framework for digital hardware. But the scalability of this
technique is a major concern since the state transition checks grow exponentially
for large circuits and thus the automatic verification capability is compromised.

Interactive theorem provers, using higher-order logic, can overcome the lim-
ited expressiveness problem of ACL2. Thus, PVS has been used for the verifi-
cation of some large designs, including some FPGA designs [9] and the floating
point unit used in the VAMP processor [3], which supports addition, subtraction,
multiplication, division, comparison, and conversions. Similarly, a hardware ver-
ification tool, called PROVERIFIC [28], allows Property Specification Language
(PSL) assertions to be used with PVS. All the above-mentioned works require
detailed user guidance in the proof process. Moreover, these formalizations are
dedicated towards a particular circuit and are thus not generic.

The PVS theorem prover has been used along with decision procedures and
BDD-based propositional simplification to automatically verify combinational
circuits [7]. However, this proof strategy tackles each circuit verification from
scratch whereas our approach is modular as we utilize the formally verified mod-
els of commonly used combinational circuits to verify more complex circuits. This
kind of modularity makes the verification approach more scalable. A library of
basic circuits is also implemented and verified in PVS [4] that is quite similar to
the one presented in this paper. However, this work is just focused towards the
verification of microprocessor designs. Secondly, the formalization and verifica-
tion details of the components, reported in this work, are not openly available.
Thus, our idea is mainly inspired from this work but we have developed recursive
definitions for all the commonly used combinational circuits and have formally
verified them using the HOL4 theorem prover [27]. To the best of our knowledge,
these kinds of generic recursive definitions of combinational circuits have never
been presented and used to verify more complex combinational circuits in the
literature before.

The Coq theorem prover is based on the Calculus of (Co)Inductive Con-
structions (CiC) and features dependent types, which are quite helpful in cre-
ating reliable circuit models as errors can be caught earlier by type checking
[5]. Braibant [5] created a library in Coq to facilitate modeling and verifying
hardware circuits. Although dependent types, available in this library, are help-
ful in creating reliable definitions, the library still requires the user to guide the
proof tools, which somewhat limits the scope of this work for industrial usage. A
step-by-step procedure for the formal verification of a multiplier in CiC is given
in [22]. But this work also requires extensive user interaction for verifying new
designs and is specific for one example only.

The HOL theorem prover has been used for the verification of the SPW Data-
strobe (DS) encoding [21] and multiway decision graphs (MDG) components
library [6]. Both of these works are application specific. A hardware platform
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for a gate level electronic control unit has been implemented and interactively
verified in HOL [31]. Similarly, the HOL Light theorem prover has been used
for the verification of floating-point algorithms for division, square root and
transcendental functions [13]. However, the verification does not involve the gate
level implementations and requires significant user interaction.

Many hybrid techniques, based on the idea of exploiting the strengths of inter-
active theorem proving and automatic verification tools, have been developed as
well. The HOL theorem prover has been integrated with MDG for hardware
verification [19]. Similarly, the Pipelined Double-Precision IEEE Floating-Point
Multiplier is verified by the Voss hardware verification system using a combi-
nation of theorem proving and model checking [1]. The Floating point divider
unit of an Intel IA-32 microprocessor [18] and large-scale industrial trials on
data-path-dominated hardware [25] are formally verified using the Forte frame-
work, which uses the ThmTac theorem-prover and the symbolic trajectory model
checker. However, the verification in the Forte framework requires significant user
interaction and thus is not very easy to work with. The Isabelle/HOL theorem
prover has been used along with the nuSMV model checker and SAT solvers
for verifying some basic combinational circuits and the simple sequential DLX
processor at the gate level [30]. However, all these works are focused on one or a
subset of combinational circuits. Similarly, due to their hybrid nature, they also
suffer from the state-space explosion problem.

Based on the above-mentioned review, it is observed that all of the interac-
tive theorem proving-based verification approaches for combinational logic cir-
cuits require the formalization of the circuit to be verified from scratch and
require considerable user guidance during the proof process. In order to alleviate
these issues, a library of formally verified commonly used combinational circuits
is created [27]. The definitions of these formally verified combinational circuits
can be readily built upon to formalize almost any other combinational circuit.
Moreover, the formally verified expressions of the combinational circuits in this
library allow us to verify proof goals of any other combinational circuit in a very
straightforward manner involving simple rewriting steps. It is important to note
that the development of the library involved human guidance and interactive
reasoning but, once developed, this library greatly facilitates the formalization
and verification process for more complex combinational circuits. The effective-
ness of the library can be estimated with the help of formal verification of generic
n-bit ALU, verified in this paper, which is done with minimal user involvement.

3 Formal Verification of Generic Combinational Circuits

This section gives a brief introduction to the formally verified generic library [27]
of the commonly used combinational components. This formalization, mainly
inspired by the seminal work on digital circuit verification done at the Univer-
sity of Cambridge, UK [12], is the core component for verifying generic com-
binational circuits. The main idea is to model generic (arbitrary-input) circuit
diagrams (implementations) of combinational circuits in a recursive manner, as
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shown in Fig. 1, by using the logical sub-components of the given circuit and
their interconnections. The inputs and outputs of these circuits are modelled as
lists of booleans to allow generic definitions. We have used the big endian format
for representing these lists of booleans, i.e., 4 bit input data list a is represented
as [a4;a3;a2;a1], with a4 being the most-significant bit. The primary inputs and
outputs of these definitions are universally quantified while the internal con-
nection points, hidden from the external world, are introduced using existential
quantifiers. The behavior, or specifications, of these combinational circuits is
represented in terms of their desired input-output relationships. The relation-
ships between the implementations and their corresponding specifications are
then verified using induction on the input variables within the sound core of a
theorem prover. Any combinational circuit using the formally verified compo-
nents of this library can then be verified by simply using the above-mentioned
formally verified relationships with a very minimal user interaction.

Now, we explain the formally verified components of our library one by one.

3.1 Logic Gates

All of the primitive logic gates i.e., NOT, AND, NAND, OR, XOR, NOR and
XNOR, are formally defined in the library [27]. All of these definitions, except
the inverter, are generic and thus can be used to model the respective gate with
any number of inputs.

3.2 Multiplexer

The n:1 Multiplexer (Mux) [20] passes the signal of any one of the n input data
lines to the one bit output line depending upon the log2 n input select lines.
Figure 1(a) provides the recursive implementation of a generic n:1 Mux, where
n is the width of data input lines a, k is the width of select input lines s and
b is a boolean output signal. The relation between the width of select and data
input lines can be specified by the equation k = log2n, or in other words n = 2k.
The primitive 2:1 Mux can be implemented using basic logic gates [26]. The n:1
mux is formally verified in Theorem 1, where implementation and specification
for n:1 mux is formally defined [27] as mux imp n a s b and mux spec n a s b
respectively.

Theorem 1. � ∀a s b.(¬(s = []) ∧ (LENGTH a = 2 EXP LENGTH s))

⇒ (mux imp n a s b = mux spec n a s b)

where assumptions ensure that at least one select line is required to ensure a
valid MUX, and define the relationship between the input data and select lines.
Verification of Theorem 1 is primarily based on induction on variable s. The
proof script for the formal reasoning about Theorem 1 consists of about 400
lines of HOL code [26].
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 1. Recursive Implementations (a) n:1 Mux (b) n:2n Decoder (c) 1:n Demultiplexer
(d) 2n:n Encoder (e) n-bit Adder (f) 1-bit Carry Select Adder (g) n-bit Multiplier

3.3 Decoder

The recursive implementation of a n : 2n Decoder [20], shown in Fig. 1(b), is
implemented using using two (n − 1) : 2(n−1) Decoders having input of tail of
the data input line, i.e., a[n − 2 : 0]. Head of the data input line, i.e., a[n − 1],
in conjunction with a global enable input e enables either of the two Decoders,
which then sets the bits of the output signal depending upon the binary number
represented by the input data vector. Here n is the width of the output data
line and is used for the recursive implementation of the circuit. The relationship
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between the specification and implementation of the Decoder defined formally
as decod imp n n e a b and decod spec n n e a b [27] is verified as:

Theorem 2. � ∀ n e a b. ((LENGTH b = n) ∧ (LENGTH b = 2 EXP LENGTH a))

⇒ (decod imp n n e a b = decod spec n n e a b)

where the assumptions ensure that the length of output data signal is equal to
width of the Decoder and the relationship between the data input and the data
output vectors. The proof script for Theorem 2 consists of about 1000 lines [26].

3.4 Demultiplexer

The functionality of Demultiplexer [20] is quite similar to that of the Decoder
with the difference that Decoder sets one of the output lines depending upon
the input signal while the Demultiplexer transmits the input data to one of
the output lines depending upon the input select lines. Figure 1(c) shows an
implementation of the Demultiplexer using a Decoder, where the data input
signal of the Demultiplexer, a, is connected to the enable signal of the Decoder,
the select input signal of the Demultiplexer, s, is connected to the data input
signal of Decoder and the data output signal of the Demultiplexer, b, is connected
to the data output signal of Decoder. The relation between the width of select
line k, and the width of the data output lines n is k = log2 n, or n = 2k.

Theorem 3. � ∀ n a s b. ((LENGTH b = n) ∧ (LENGTH b = 2 EXP LENGTH s))

⇒ (dmux imp n n a s b = dmux spec n n a s b)

where the assumptions ensure that the length of output data vector is equal to
the width of the Demultiplexer and relationship between the output data and the
input select vectors. The proof of Theorem 3 is based on Theorem 2 and consists
of only 20 lines of HOL code [26]. The less number of lines clearly show that
existing formal components of the library greatly facilitate the formalization of
new components.

3.5 Encoder

The Encoder [20] generates a binary output code for one bit of input True at a
time. There are two discrepancies that may happen with the Encoders, i.e., the
output behavior is non-deterministic in the case when more than one input bits
are True at a time or all input bits are zero. Priority Encoder [20] resolves these
issues, by encoding output on the basis of priority and by using a valid output bit,
respectively. Figure 1(d) presents a recursive implementation of a 2n : n Priority
Encoder, using two 2n−1 : (n − 1) Encoders, which encodes on the basis of the
highest priority of the input signal, i.e., all other bits of the input data signal
are ignored if the most significant bit of the data input signal is True. Where
n specifies the width of the output data signal b, e is the enable input signal
of the Encoder, p is connected with the valid output signal of the first Encoder
and is used to enable the second Encoder, when the top half of the input data
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vector contains all False elements, v is the valid output signal, which indicates
the validity of the encoded output data signal, and the function encod 2to1 imp
computes the head of the output data signal using NOT, AND gates and a 2:1
Mux [26]. The relationship between the specification and implementation of the
Encoder formally defined as encod spec n n e a b v and encod imp n n e
a b v [27], is formally verified in HOL as following theorem.

Theorem 4. � ∀ n e a b v.(LENGTH a = 2 EXP LENGTH b) ∧ (LENGTH b = n)

⇒ (encod imp n n e a b v = encod spec n n e a b v)

where the assumptions ensure that the length of output data vector is equal
to the width of the Encoder and relationship between the input data and the
output data vectors. The proof script of Theorem 4 consists of about 900 lines
of HOL code [26].

3.6 Ripple Carry Adder

A recursive implementation of n-bit Ripple Carry Adder [20] is shown in Fig. 1(e),
where d1 and d2 are the two data input vectors which are required to be added,
cin is the boolean carry input, cout is the boolean carry output and s is the sum
output vector of the adder. One bit adder is implemented using the basic logic
gates, i.e., XOR, AND and OR gates [26]. Using 1-bit adder, the structure of
the n-bit adder can be formalized as adder imp n n d1 d2 [27]. The variable of
recursion n specifies the width of the adder. The behavior can be formalized as
adder spec n n d1 d2 cin [27]. The relationship between the implementation
and specification is proved as a theorem, where the assumptions ensure that the
lengths of both input vectors is equal to width of the adder. The proof script
consists of about 2000 lines [26].

Theorem 5. � ∀ n d1 d2 cin. (LENGTH d1 = n) ∧ (LENGTH d2 = n) ⇒
(xadder imp n d1 d2 cin = adder spec n n d1 d2 cin)

3.7 Carry Select Adder

The formalization of the Carry Select Adder [20] is quite similar to that of the
Ripple Carry Adder since both share the same recursive implementation, shown
in Fig. 1(e). The main difference is the implementation of the 1-bit adder, which
is implemented using a Mux and full adder as shown in Fig. 1(f). The idea is
to obtain the addition for 1-bit data using two full adders working in parallel
for both cases of the carry input, i.e., ‘T’ and ‘F’. The final values for sum and
carry-out are chosen based on the input value of carry using a Mux. The formal
definitions and theorems of the implementation and specification of the n-bit
Carry Select Adder are almost same as for the Ripple Carry Adder. The proof
script for the formal reasoning consists of about 200 lines of HOL code [26].



82 S. Shiraz and O. Hasan

3.8 Multiplier

The recursive implementation of a n-bit Multiplier [20] is shown in Fig. 1(g),
where each bit of the multiplicand, d2, is multiplied one-by-one with the mul-
tiplier d1, making partial products, which are then added using a Ripple Carry
Adder. The 1-bit Multiplier is implemented using a Ripple Carry Adder and
arrays of AND gates and array [26]. Implementation and specification of n-bit
multiplier formalized as mult imp d1 d2 and mult spec d1 d2 [27] are formally
verified as following theorem

Theorem 6. � ∀ d1 d2. mult imp d1 d2 = mult spec n d1 d2

The proof script for Theorem 6 consists of about 2000 lines of HOL code [26].
The main advantage of the results presented in this section, i.e., the formal

verification of the universally quantified theorems for the correctness of generic
combinational circuits with arbitrary inputs, is the ability to use them for verify-
ing a wide range of combinational circuits in a very straightforward manner. This
benefit is attained at the cost of extensive user-effort spent in guiding the HOL
theorem prover for verifying these theorems. The formalization, presented in this
section, took around 7000 lines of HOL code and approximately 12 man-months
[27]. These lines and effort include a number of general list and arithmetic the-
ory proofs that are built upon to reason about Theorems 1 to 6. A significant
amount of time was also spent on identifying the generic implementations of the
common combinational circuits that can be expressed recursively as well.

4 Formal Verification of n-bit ALU

In this section, we use the library of formally verified combinational circuits,
described in the previous section, to formally verify an n-bit arithmetic logic
unit (ALU), shown in Fig. 2(a). It takes three n-bit inputs, a, b and c, which can
be optionally inverted depending upon the signals nega, negb and negc. These
signals along with other enable signals, enab and enc, generate different outputs
of the ALU: a.b, −a.b, a.b+c, a.b−c, −a.b+c, −a.b−c, etc. This ALU has been
recently formally verified for operand widths ranging form 4 to 256 bits taking
0.01 to 34.66 s [33]. We extend this work by formally verifying this ALU design
for n-bit operands.

The first step is the formalization of the implementation of the given cir-
cuit, which can be defined using the pre-verified components of the library as
follows:



Formal Verification of n-bit ALU Using Theorem Proving 83

(a) (b)

Fig. 2. Implementations (a) n-bit ALU (b) mux neg1 imp

∀ n a b c nega negb negc enab enc y co. alu n a b c nega

negb negc enab enc y co = ∃ FA FB FC FAB FABen FCen.

mux_neg1_imp a nega FA ∧ mux_neg1_imp b negb FB

∧ mux_neg1_imp c negc FC ∧ mult_imp_n FA FB FAB

∧ and_list_imp FAB enab FABen ∧ and_list_imp FC

enc FCen ∧ Adder_imp_n (n + n) FABen (make_list_F n ++

FCen) F y co

Where, the variable n represents the operand widths for variables a, b and c
and co denote the carry out signal. The function Adder imp n and mult imp n
are the formally verified ripple carry adder and multiplier of the generic library,
respectively. The function mux neg1 imp represents a combination of a multi-
plexer and a not gate, shown in Fig. 2(b), such that it allows to select between a
given arbitrary-width input and its inverted signal depending upon the select sig-
nal nega. The implementation and specification of mux neg1 is formally defined
below:

Definition 1. Implementation of mux neg1
� ∀ a sel y. mux neg1 imp a sel y <=>

mux list imp (not list a) a sel y

Definition 1a. Implementation of mux list
� ∀ a b sel.(mux list 0 [] b sel= []) ∧(mux list 0 (h::t) b sel =

mux 0 imp h (HD b) sel::mux list 0 t (TL b) sel)
� ∀ a b sel y. mux list imp a b sel y = (y = mux list 0 a b sel)

where not list returns the list by inverting all of its input data elements,
the expression mux 0 imp is 2:1 mux, defined as nand (nand in2 (not sel))
(nand sel in1) and the HOL function HD and TL returns the head and tail of
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the input list respectively. The behavior of the mux list and mux neg1 is for-
mally defined as:

Definition 1b. Specification of mux list
� ∀ a b sel. mux list spec a b sel = if sel then a else b

Definition 2. Specification of mux neg1
� ∀ a sel y. mux neg1 imp a sel y<=>

if sel then y = (not list a) else y = a

The relationship between the specification and implementation of the mux neg1
is formally verified in HOL as the following theorem:

Theorem 7. Formal Verification of mux neg1
� ∀ a b sel y. (mux neg1 imp a b sel y <=> mux neg1 spec a b sel y)

Similarly, the component and list is used for either transferring the input data
list or list of all false elements. The implementation and specification of this
component is formally defined below:

Definition 3. Implementation of and list
� ∀ a b sel. (and list 0 [] en = []) ∧
(and list 0 (h::t) en = (and [h;en]::(and list 0 t en)))
� ∀ a en out. and list imp a en out = (out = and list 0 a en)

where the function and recursively performs the logical and between all the
elements of a boolean list [27] and the function and list 0 models a series of
AND gates for performing the logical conjunction of a single bit signal en with
all elements of input list a individually. The function and list imp represents
an and list component in the predicate form.

Definition 4. Specification of and list
� ∀ a en. and list spec a en = if (en) then a

else make list F (LENGTH a)‘;

where the expression (make list F n) returns a list of n false elements [26].
The relationship between the specification and implementation of the and list is
formally verified as:

Theorem 8. Formal Verification of and list
� ∀ a en. (and list 0 a en <=> and list spec a en)

The behaviour of the ALU is formally defined by carrying the binary sub-
traction using the 1’s complement of the desired input, i.e., BV n (not list a),
where BV n converts its argument boolean list into a number [27].
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(if (enab) then

if (enc) then

if (~nega /\ ~negb /\ ~negc) then

(co::y) = (num_BV_f(SUC (n + n))((BV_n a* BV_n b)+BV_n c))

else if (~nega /\ ~negb /\ negc) then

(co::y)=(num_BV_f(SUC (n + n))((BV_n a*BV_n b)+(BV_n (not_list c))))

else if (~nega /\ negb /\ ~negc) then

(co::y)=(num_BV_f(SUC (n + n))((BV_n a*(BV_n (not_list b)))+BV_n c))

else if (~nega /\ negb /\ negc) then

(co::y) = (num_BV_f(SUC (n + n))

((BV_n a*(BV_n (not_list b)))+(BV_n (not_list c))))

else if (nega /\ ~negb /\ ~negc) then

(co::y)=(num_BV_f(SUC (n + n))(((BV_n (not_list a))*BV_n b)+BV_n c))

else if (nega /\ ~negb /\ negc) then

(co::y) = (num_BV_f(SUC (n + n))

(((BV_n (not_list a))*BV_n b)+(BV_n (not_list c))))

else if (nega /\ negb /\ ~negc) then

(co::y) = (num_BV_f(SUC (n + n))

(((BV_n (not_list a))*(BV_n (not_list b)))+BV_n c))

else

(co::y) = (num_BV_f (SUC (n + n))

(((BV_n (not_list a))*(BV_n (not_list b))) + (BV_n (not_list c))))

else

if (~nega /\ ~negb) then ((co::y) = (num_BV_f (SUC (n + n))

(BV_n a * BV_n b)))

else if (~nega /\ negb) then ((co::y) = (num_BV_f (SUC (n + n))

(BV_n a * (BV_n (not_list b)))))

else if (nega /\ ~negb) then ((co::y) = (num_BV_f (SUC (n + n))

((BV_n (not_list a)) * BV_n b)))

else ((co::y) = (num_BV_f (SUC (n + n))

((BV_n (not_list a))*(BV_n (not_list b)))))

else

if (~enc /\ ~negc) then ((co::y) = (F::make_list_F (n+n)))

else if (~enc /\ negc) then ((co::y) = (F::make_list_F (n+n)))

else if (enc /\ ~negc) then ((co::y) =

(num_BV_f (SUC (n + n)) (BV_n c)))

else ((co::y) = (num_BV_f (SUC (n + n)) (BV_n (not_list c))))

where num BV f converts a number into a list with n booleans [27] and the expres-
sion SUC n represents the successor of the variable n. The equivalence between
the formal implementation and specification of the given circuit is verified as the
following theorem.
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Theorem 9. Formal Verification of n-bit ALU
� ∀ n a b c nega negb negc enab enc y co.

(LENGTH a = n) ∧ (LENGTH b = n) ∧ (LENGTH c = n) ∧ n > 0 ⇒
(ALU n imp n a b c nega negb negc enab enc y co <=>

ALU n spec n a b c nega negb negc enab enc y co)

where the assumptions ensure that the length of all input data vectors is equal
to the width of the ALU and that should be greater than zero. The proof script
of Theorem 9 is very straightforward and its first part is given below:

e (REPEAT STRIP_TAC THEN RW_TAC bool_ss [ALU_n_spec] THEN

RW_TAC std_ss[ALU_n_imp,AND_LIST_THM,and_list_spec,

and_list_imp,mult_imp_n,MULT_N_THM,mult_spec_n,

mux_neg1_thm,mux_neg1_spec,make_list_F,not_0,

LENGTH,Adder_imp_n,ADDER_RIPPLE_N,Adder_spec_n,

BV_n_make_list_F_a,LENGTH_make_list_F,

LENGTH_APPEND,BV,LENGTH_num_BV_f,

LENGTH_not_0,BV_n_make_list_F]);

The verification process mainly involves rewriting with the already verified
theorems in a very straightforward manner involving very little user interaction.
The first step is the removal of universal quantifiers using STRIP TAC. This is
followed by rewriting with the specification definition using RW TAC bool ss,
which produces 16 subgoals depending upon the conditional statements used
in the specification of the circuit. The verification of these 16 subgoals is not
shown above due to space limitations but it involves simple rewriting with all
definitions and theorems for the components of library used in the given sub-
goal using (RW TAC std ss). So we merely had to plug-in the definitions of the
specifications and the names of the definitions and theorems for the components
used in the subgoal to be verified in the rewriting tactics. The proof script is
around 800 lines long and required about a couple of hours of development tme.
Hence, use of the library of formally verified components made the verification
process almost automatic, i.e., with very minimal user interaction. Moreover, it
is important to note that based on this formally verified equivalence theorem
with universally quantified input variables, we are able to verify correspond-
ing equivalence relationships for any width size by appropriately instantiating
Theorem 9, which clearly indicates the strength of the proposed methodology in
verifying combinational circuits.

5 Conclusions

In this paper, we have presented our efforts in developing a framework for the
formal verification of generic combinational circuits using a higher-order-logic
theorem prover HOL4 while minimizing the user interactive efforts. The main
idea is to develop a higher-order-logic library of all commonly used combina-
tional circuits that includes their generic circuit implementations, their generic
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specifications and the proof of their equivalences. Since, these formalizations are
done for arbitrary n-bit circuits so they can be used in turn to formalize and
verify other n-bit combinational circuits. In this paper, we used this methodol-
ogy to verify an n-bit ALU and the user effort in proof guidance was found to
be very little. Moreover, the user did not need to have an extensive knowledge
of theorem proving for using this library. This ALU is now part of our library
and can be further used to verify more complex blocks.

The proposed work opens the door to many interesting future directions
of research. The formally verified library of circuits needs to be enhanced and
advanced components like, Wallace Tree, Booth multipliers and components of
floating-point arithmetic units may be added. More case studies for evaluation
purposes are also underway. As long term goals, we plan to integrate a model
checker with the proposed methodology to verify both combinational and sequen-
tial circuits within the same framework. Our work can also be combined with
the recently proposed theorem proving-based analog circuit verification approach
[29] to form a theorem proving-based Analog and Mixed Signal (AMS) circuit
analysis framework.
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