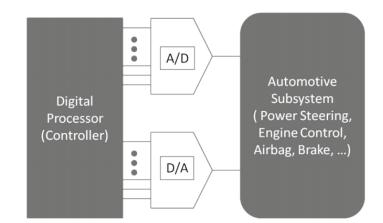


# Design of mixed signal SOCs

#### Lukas Pertoll, Weissteiner Hannes

Graz, 09.12.2020




#### Content

- Introduction
- Where is it used?
- Challenges
- Problems & Solutions
- Mixed signals and FPGAs



## What is a mixed signal SOC?

- SOC with analog and digital signals
  - Measure analog signals and process right away
  - Create analog signals after processing digital input
  - Combination of both
- Examples:
  - Zybo
  - MSP430
  - Radio Modules
  - •



Example for a mixed-signal automotive design

Graz, 09.12.2020



#### Where is it used?

- Smart sensors
- IoT-Devices
- Small robots
- Software-defined Radio



# Challenges

- High level of abstraction for IP and reuse based methodologies.
- Low level analysis for physical effects on small process nodes.
- Analog and digital IO, as well as RF integrated into one chip.



#### Problems

- 1. Simulation
  - Digital simulation does not support analog values
  - Analog circuit simulation too slow
- 2. Verification
- 3. Creating the chip
  - Electric Interference
  - RF behavior



# Simulation: Real Number Models

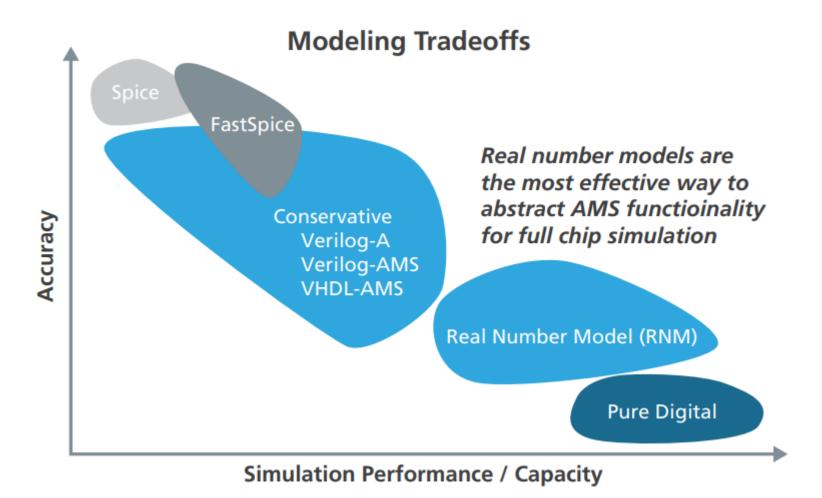
- Digital simulation with real numbers
- Best used for high-frequency signals
- Low-frequency and DC simulation in SPICE
- Good simulation performance
- Example:
  - SystemVerilog (IEEE 1800-2012, SV-RNM)



# Simulation: Verilog-AMS

- Analog behavioural modelling
- Works with standard digital test environments
- Continuous time analog simulation
- Analog and digital solvers
- Alternatives:
  - VHDL-AMS
  - SystemC-AMS




## Simulation: Verilog-AMS Examples

- "electrical" adds voltage and current to pin-
- Contribution statement <+ assigns values continuously
- Instantiate modules between nodes and set values

| L1 (i1 0) inductor l=1uH<br>L2 (i2 0) inductor l=2uH r=1 | <pre>module inductor(p, n);<br/>inout p, n;<br/>electrical p, n;<br/>parameter real l=1 from [0:in<br/>parameter real r=0 from [0:in<br/>analog begin<br/>  V(p,n) &lt;+ l*ddt(I(p,n)) +<br/>end<br/>endmodule</pre> | nf);                        |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                                                          | Graz, 09.12.2020                                                                                                                                                                                                     | Design of mixed signal SOCs |



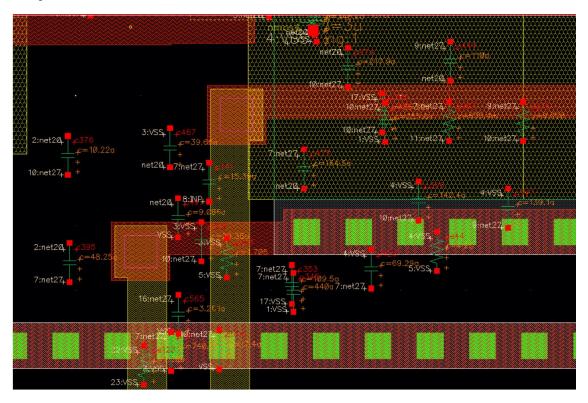
#### Comparison of simulation methods



Graz, 09.12.2020

**Design of mixed signal SOCs** 




#### Verification

- Digital verification:
  - Universal Verification Methodology (UVM)
  - Metric-driven Verification (MDV, Coverage driven)
- Mixed-Signal Verification:
  - MS-MDV
  - UVM with RNM
  - Allows assertions with real numbers
  - Requires well-tested individual blocks



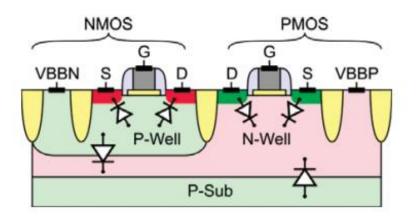
#### Parasitic extraction

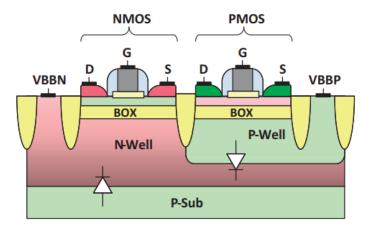
- Large parasitic effects for small processes
- Post layout simulation



Graz, 09.12.2020

**Design of mixed signal SOCs** 





#### Verification

- Time to market, first time right
- Simulation performance
- Shrinking process nodes => physical effects
- Interaction between analog and digital
- Foundry verified golden models and simulators
- Tight link to parasitic extraction tool
- Support for multiple levels of circuit abstraction



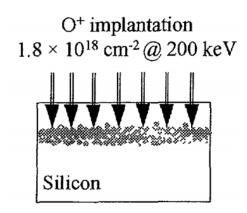
#### Silicon on insulator





Traditional CMOS

Silicon on insulator


- Parasitic diodes connected to the substrate
- Substrate coupling



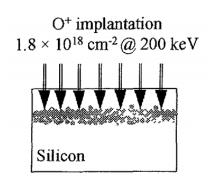
#### Silicon on insulator

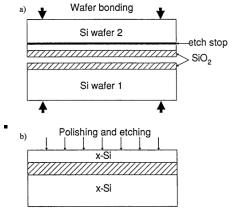
SIMOX: Separation by Implantation of Oxygen

- Implant O<sup>+</sup> Ions, energy and fluence determines range and thickness
- Continuously anneal damaged silicon @ 600-1400°C



#### **TU** Graz


#### Silicon on insulator


SIMOX: Seperation by Implantation of Oxygen

- Implant O<sup>+</sup> Ions, energy and fluence
- determines range and thickness
- Continuously anneal damaged silicon @ 600-1400°C

**BESOI: Bond and Etch-Back SOI** 

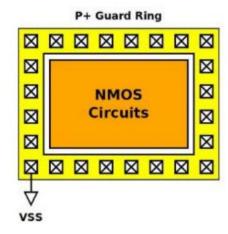
- Bond to separate wafers
- Create etch block by implanting B or Ge.





#### **Design of mixed signal SOCs**




# SOI vs Guard rings

Guard ring: Ring in silicon and metal layers

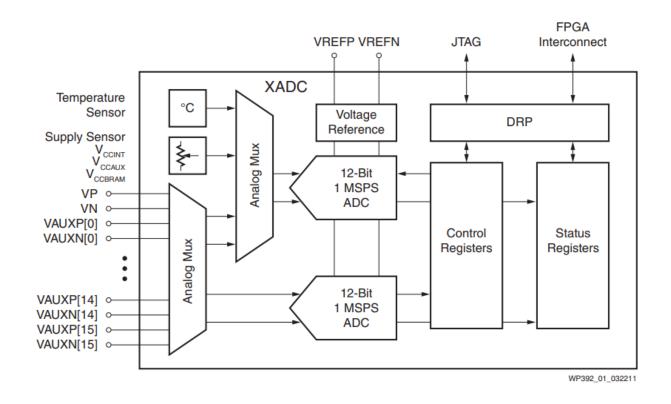
- Reduce substrate coupling significantly
- Increased area
- Easy

#### Silicon on Insulator

- Reduced substrate coupling
- Reduced gate and parasitic capacity
- No additional area
- More expensive






## Mixed signals and FPGAs

- FPGAs support only digital signals
- Digital input from ADC, analog output by DAC
- Placed on the chip or provided by processor
- System is mixed-signal, FPGA is not
- Prototype FPAAs, nothing useful yet



#### Zynq-7000

#### Internal dual 12 bit ADC with 1Msps





#### ChipScope Pro

#### View analog Inputs without design

|                                     | XADC Console - Devi | ce:0                                | ಕರ                                                                              |
|-------------------------------------|---------------------|-------------------------------------|---------------------------------------------------------------------------------|
| JTAG Chain                          | Sensor              | Value                               | History                                                                         |
| P DEV:0 MyDevice0 (XC7K325T)        |                     |                                     |                                                                                 |
| XADC Console                        |                     |                                     | .5 C 32.0 C-<br>.0 C 31.0 C-                                                    |
|                                     |                     |                                     | .s c 30.0 C-                                                                    |
|                                     |                     | Sampled Max NA                      | 29.0 C - V V V V V V V V V V                                                    |
|                                     | Die Temperature     | Sampled Min NA                      | 28.0 C -                                                                        |
|                                     |                     | Window Avg NA                       | 27.0 C -                                                                        |
|                                     |                     | Window Max NA                       | 26.0 C -                                                                        |
|                                     |                     | Window Min NA                       | 25.0 C -                                                                        |
|                                     |                     | THINGS WITH THY                     | 24.0 C - 18:13:01 18:13:17 18:13:33 18:13:49 18:14:05 18:14:21 18:14:37 18:14:  |
| Sensors: DEV: 0 UNIT: XADC          |                     | Present 0.99                        | 95 V 1.000 V -                                                                  |
| <ul> <li>On-Chip Sensors</li> </ul> |                     |                                     | 77 ¥ 0.999 ¥ -                                                                  |
|                                     |                     |                                     | 93 V 0.998 V -                                                                  |
|                                     | DOODT O             | Sampled Max NA                      |                                                                                 |
|                                     | VCCINT Supply       | Sampled Min NA                      | 01993 (                                                                         |
|                                     |                     | Window Avg NA                       | 0.994 V -                                                                       |
|                                     |                     | Window Max NA                       | 0.992 V - 0.991 V -                                                             |
|                                     |                     | Window Min NA                       | 0.900 7 -                                                                       |
|                                     |                     |                                     | 18:13:01 18:13:17 18:13:33 18:13:49 18:14:05 18:14:21 18:14:37 18:14:           |
|                                     |                     | Present 1.79                        | 91 V 1.800 V-                                                                   |
|                                     |                     | Device Max 1.79                     |                                                                                 |
|                                     |                     | Device Min 1.78                     |                                                                                 |
|                                     | VCCAUX Supply       | Sampled Max NA                      |                                                                                 |
|                                     | recuta o 411,       | Sampled Min NA                      |                                                                                 |
|                                     |                     | Window Avg NA                       | 1.785 V -                                                                       |
|                                     |                     | Window Max NA                       | 1.783 Y -                                                                       |
|                                     |                     | Window Min NA                       | 1.280 X -                                                                       |
|                                     |                     |                                     |                                                                                 |
|                                     |                     | Present 0.99                        |                                                                                 |
|                                     |                     | Device Max 1.00                     |                                                                                 |
|                                     |                     | Device Min 0.99                     | 96 V 1.005 V -<br>1.003 V -                                                     |
|                                     | VCCBRAM             | Sampled Max NA                      |                                                                                 |
|                                     |                     | Sampled Min NA                      | 0.998 7 -                                                                       |
|                                     |                     | Window Avg NA                       | 0.995 Y -                                                                       |
|                                     |                     | Window Max NA                       | 0.992 V -                                                                       |
|                                     |                     | Addisonal associations and a second |                                                                                 |
|                                     |                     | Window Min NA                       | 0.990 Y - 18:13:01 18:13:17 18:13:33 18:13:49 18:14:05 18:14:21 18:14:37 18:14: |

**Design of mixed signal SOCs** 





- RF/Analog and Mixed-Signal Design Techniques in FD-SOI Technology by Andreia Cathelin, STMicroelectronics
- Xilinx Analog Mixed Signal Solutions by Anthony Collins, XILINX
- Reduction of Substrate Noise in Mixed-Signal Circuits by Erik Backenius, Linköping University
- What's needed for mixed-signal verification by Bijan Kiani, EETimes
- Applying Mixed-Signal Verification Best Practices to Mixed-Signal ICs for Automotive Applications, Cadence Design Systems
- Parasitic Extraction, Post-layout and Back annotating in Circuit Design by Alberto L., Mis Circuitos
- Complete DFM Model for High-Performance Computing SoCs with Guard Ring and Dummy Fill Effect by Chun-Chen Liu, Oscar Lau, Jason Y. Du University of California



#### Sources

- Solutions for Mixed-Signal SoC Verification by Kishore Karnane and Sathishkumar Balasubramanian, Cadence Design Systems
- Metric Driven Verification, Aldec

| Graz, 09.12.2020 | Design of mixed signal SOCs |
|------------------|-----------------------------|
|                  |                             |