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Preface

Recent experiences of many chip design companies show that the path to the
adoption of formal property verification in the design verification flow is re-
plete with many issues whose answers are still being debated. This includes
questions like: Have I written correct properties? Have I written enough prop-
erties? Can I verify every property that I can specify? What should I do if
the tool runs into capacity issues? How do I relate what I have verified with
my simulation test plan? How should I create an integrated verification plan
unifying simulation and formal property verification?

It is possibly premature to expect definite solutions to all of these ques-
tions. This book is an early attempt to address some of these questions and
to propose a roadmap for the future.

The focus of this book is not on the core model checking technology for
formal property verification. Rather, the book attempts to demonstrate the
need of new formal methods that must necessarily supplement the model
checking tool in an industrial formal verification flow. These include formal
methods for debugging specifications, formal methods for computing coverage,
formal methods for scaling the power of property verification tools beyond
the limits reached by model checking tools, and formal methods for directing
simulation to reach difficult corner case scenarios. This book surveys some of
the recent work on these topics and also presents recent research from our
group.

Who is this book for? I have attempted to address two aspects in this book
– awareness of the main issues in adopting property verification technology,
and the formal methods that help the verification engineer in developing an
effective formal verification plan. The contents of this book should be of sig-
nificant interest to practitioners of formal property verification – design ver-
ification engineers responsible for complex chip and system designs: CPUs,
DSPs, network processors, graphic processors, and the SOCs that use them.
The book also offers new opportunities to CAD researchers, EDA companies
and university research groups. I have presented an intuitive introduction to
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the core formal property verification technology, with the hope that the book
may be used in a graduate course on formal property verification.

There is a general suspicion in the chip design community that books
on formal property verification are typically terse and the notation used is
daunting. In order to reach out to readers without any formal background
whatsoever, I have attempted to present most of the concepts in an intu-
itive (informal) way. I sincerely hope that this attempt has not diluted the
theoretical foundations of the subject.

The Formal-V Research Group

The inception of the Formal-V Research Group within the Department of
Computer Science and Engineering, Indian Institute of Technology Kharagpur
took place in 1997, the same year that Ed Clarke and Moshe Vardi visited
our institute. Today this group is a family of 8 Ph.D students, 4-5 graduate
students, 2-3 faculty members and several undergraduate students.

We have been fortunate to have several formidable partners in collabo-
rative research. This includes Intel, National Semiconductors, Synopsys, Sun
Microsystems, General Motors, and Interra Systems. More information on our
research and publications can be found in our home:
http://www.facweb.iitkgp.ernet.in/∼pallab/forverif.html
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Introduction

What is formal property verification? A natural language such as English al-
lows us to interpret the term formal property verification in two ways, namely:

• Verification of formal properties, or

• Formal methods for property verification

This inherent ambiguity in natural languages has been the source of many
logical bugs in chip designs. Design specifications are sometimes interpreted
in different ways by different designers with the result that the design’s archi-
tectural intent is not implemented correctly. In an era where bugs are more
costly than transistors, the industry is beginning to realize the value of using
formal specifications.

In practice there are indeed two ways in which property verification is
done today. These are static Assertion-based Verification (ABV) and dynamic
Assertion-based Verification (ABV). In both forms, formal properties specify
the correctness requirements of the design, and the goal is to check whether a
given implementation satisfies the properties. Static ABV techniques formally
verify whether all possible behaviors of the design satisfy the given proper-
ties. Dynamic ABV is a simulation-based approach, where the properties are
checked over a simulation run – the verification is thereby confined to only
those behaviors that are encountered during the simulation. In this book, we
shall refer to static ABV as formal property verification (FPV), and continue
to use dynamic ABV to refer to the simulation based property verification
approach.

The main tasks for a practitioner of property verification are as follows:

1. Development of the formal property specification. The main challenge here
is to express key features of the design intent in terms of formal properties.
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2. Verifying the consistency and completeness of the specification. This is a
necessary step, because the first task is a non-trivial one and subject to
errors and oversights.

3. Verifying the implementation against the formal property specification. In
order to perform this task effectively, a verification engineer must be aware
of the limitations of the verification tool and must know the best way to
use the tool under various types of constraints.

All the above tasks are replete with open issues – the focus of this book is to
consider some of these issues and attempt to forecast the roadmap for FPV
and dynamic ABV within the existing design verification flows of chip design
companies. This chapter will summarize some of the major challenges. Let us
use the following case as a running example for our discussion.

Example 1.1. Let us consider the specification of a 2-way priority arbiter hav-
ing the following interface:

mem-arbiter( input r1, r2, clk, output g1, g2 )

r1 and r2 are the request lines, g1 and g2 are the corresponding grant lines,
and clk is the clock on which the arbiter samples its inputs and performs the
arbitration. We assume that the arbitration decision for the inputs at one cycle
is reflected by the status of the grant lines in the next cycle. Let us suppose
that the specification of the arbiter contains the following requirements:

1. Request line r1 has higher priority than request line r2. Whenever r1 goes
high, the grant line g1 must be asserted for the next two cycles.

2. When none of the request lines are high, the arbiter parks the grant on
g2 in the next cycle.

3. The grant lines, g1 and g2, are mutually exclusive.

It is difficult to locate a book on formal verification that does not have an
arbiter example - we hereby follow the tradition! �

1.1 Writing Our First Formal Specification

The first task in all forms of property verification is the development of the
formal specification. This is a non-trivial task and typically done by a few
specialized verification engineers today.
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In recent times there have been various efforts within Accellera and the
IEEE to define standard property specification languages. These include the
definition of the Open Verification Library (OVL), a set of predefined Ver-
ilog and VHDL checker modules; the definition of the Property Specification
Language (PSL), a language that adds properties and assertions to Verilog,
VHDL, SystemVerilog, SystemC, and GDL; and SystemVerilog Assertions
(SVA), a subset of the SystemVerilog language that provides a native prop-
erty and assertion specification capability within SystemVerilog. Although
these languages use different syntax, they are closely aligned with respect
to semantics. In particular, PSL and SVA were brought into close alignment
during their development in Accellera, and that alignment remains between
IEEE Standard 1850 PSL and the SVA portion of IEEE Standard 1800 Sys-
temVerilog.

What are in these languages that were not there in earlier languages for
specifying constraints? The main feature of these languages, which makes them
useful in practice for design verification, is the ability to describe sequences of
events over time. The property specification languages derive their formalism
from few specific types of logics called temporal logics. Temporal logics are
extensions of propositional logic, where in addition to the familiar Boolean
operators (AND, OR, and NOT) we have temporal operators that allow us to
specify constraints on the truth of the propositions over time. In other words,
temporal logics allow us to specify properties that describe the behavior of a
circuit over time, across cycle boundaries.

To get a first-cut workable understanding of temporal logics, let us consider
some of the basic temporal operators and their meaning. The operators are
interpreted over a state machine – the purpose of verification is to interpret the
properties over the state machine representation of the design implementation.
The details on temporal operators and property specification languages are
given in Chapter 2. We use illustrative examples here to demonstrate their
use. The basic set of temporal operators in Linear Temporal Logic (LTL) are:

X: The next-time operator The property, Xϕ, is true at a state of the un-
derlying state machine if ϕ is true in the next cycle, where ϕ may be
another temporal property or a Boolean property over the state bits. Xϕ
is sometimes read as “next ϕ”, and the operator X is called the next-time
operator.

F : The future operator The property, Fϕ, is true at a state if ϕ is true some-
time (at some state) in the future.

G: The global operator The property, Gϕ, is true at a state if ϕ is true always
in the future.



4 1 Introduction

U : The until operator The property, ϕ U ψ is true at a state if ψ is true at
some future state, t, and ϕ is true at all states leading up to t.

The operators X and U are the only fundamental temporal operators – F and
G can be derived from combinations of U and Boolean operators.

Example 1.2. Let us attempt to express the properties of Example 1.1 in LTL.
Let us recall the properties:

1. Request line r1 has higher priority than request line r2. Whenever r1 goes
high, the grant line g1 must be asserted for the next two cycles.

2. When none of the request lines are high, the arbiter parks the grant on
g2 in the next cycle.

3. The grant lines, g1 and g2, are mutually exclusive.

Typically, the value of a Boolean signal will be treated as TRUE when it is
high (or 1), and as FALSE when it is low (or 0). Also we will assume that at
most one state transition occurs in each cycle.

The first property may be written as:

G[ r1 ⇒ Xg1 ∧ XXg1 ]

The subformula r1 ⇒ Xg1 ∧ XXg1 says: If r1 is high in a state, then g1

must be true in the next cycle and g1 must be true in the next next cycle, that
is, the second cycle after the initial cycle. The G operator says that the above
subformula must hold on all cycles. This does not mean that r1 has to be true
in all states – those states where r1 is low satisfy the implication vacuously,
since r1 ⇒ Xg1 ∧ XXg1 evaluates to true regardless of the value of g1 in
the next two cycles.

The second property can be written as:

G[ ¬r1 ∧ ¬r2 ⇒ Xg2 ]

The meaning of this property is exactly as before – in every state, if both r1

and r2 are low, then g2 must be high in the next cycle.

The third property can be written as:

G[ ¬g1 ∨ ¬g2 ]

This property says: always at least one among g1 and g2 must be low, which
expresses the mutual exclusion requirement. �
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Having written our first formal specification, we are now in a position to
look at some of the fundamental questions that cross the minds of a practi-
tioner of FPV. The answers to these questions form the major contents of this
book.

1.2 Is My Specification Correct?

The first major challenge faced by every verification engineer who uses FPV is
to ascertain whether the specification itself is correct. Functional correctness
is very difficult to check since we do not have any formal reference against
which we may perform this verification. However it is possible to check whether
the specification is inherently consistent, or whether there are contradictions
within the specification itself. This is a task of considerable importance, but
EDA support is not yet adequate.

Example 1.3. Let us examine our first specification. Is it consistent? Let us
examine the properties again.

G[ r1 ⇒ Xg1 ∧ XXg1 ]
G[ ¬r1 ∧ ¬r2 ⇒ Xg2 ]
G[ ¬g1 ∨ ¬g2 ]

Let us consider the scenario, where r1 is high at time t and low at time t + 1,
and r2 is low at both time steps. The first property requires g1 to be high at
time t + 2, whereas the second property requires g2 to be high at time t + 2
because both r1 and r2 are low at t + 1. The third property prevents both g1

and g2 to be asserted at time t + 2, leading us to a contradiction. Hence we
have an inconsistency in our first specification! �

Detecting inconsistencies in specifications is a non-trivial task. It can be
modeled as a game between the module and the environment, where the mod-
ule attempts to satisfy the specification by setting appropriate values to its
outputs while the environment attempts to refute the specification by setting
values to the input signals. This game alternates between the module and its
environment over time – the specification is inconsistent if the environment
ever wins. Chapter 4 presents recent research on consistency checking methods
for formal property specifications.

Before we proceed further, let us remove the inconsistency from our first
specification. The intent of the second property was to specify that g2 is the
default grant. Another way to specify the same intent is:

G[ ¬g1 ⇒ g2 ]
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This says that g2 gets the grant whenever we are not committed to give
the grant to g1. Henceforth we will use this property in place of the second
property in our specification.

Let us see how this eliminates the problem. If r1 is high at time t and low
at time t + 1, then the first property requires g1 to be true at time t + 2. If g1

is true, then the above property is vacuously satisfied without requiring g2 to
be true, and hence there is no conflict.

Inconsistencies are very common in design specifications. The realization
of the magnitude of this problem will rise as more chip design companies
begin to use property verification in their live designs, thereby involving more
verification engineers in the task of developing formal specifications. Writing
the specifications in formal languages and performing consistency checks can
locate some of the most complex inconsistencies in the specifications very
early in the design flow, thereby saving a significant quantum of verification
(and possible re-designing) effort.

1.3 Have I written Enough Properties?

The popular selling point for FPV is that it is exhaustive in nature. Since this
guarantee requires the FPV tool to check all possible behaviors of the imple-
mentation, it is often misinterpreted as 100% coverage of the design intent.
In reality FPV only guarantees that the specified propertiess are verified over
all possible behaviors of the implementation – it does not guarantee that the
speficied properties are sufficient to cover the design intent. In other words
FPV does not verify any part of the design intent that has not been expressed
in terms of properties.

One of the main challenges of a verification engineer is to make sure that
the formal property specification covers all the correctness requirements of
the design. To check the extent of this coverage, we need to compare the set
of formal properties with a reference which formally expresses the complete
set of correctness requirements. This is an instance of the chicken-and-egg
problem, since the reference itself could be used as the formal specification.

It is for this reason that FPV coverage metrics are typically structural in
nature. In other words, since the property suite represents the first formal
functional specification of the design, we do not have any functional reference
to compare it with, and therefore we resort to structural coverage. The ob-
jective of these structural metrics is to expose gross gaps in the specification.
Typically a low value of these metrics indicate that more properties need to
be added, but a high value does not necessarily mean that we have high func-
tional coverage. This follows from the fact that low structural coverage almost
always means low functional coverage, but the reverse is not always the case.
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Most of the existing FPV coverage metrics use a given implementation as
the reference for coverage analysis. Chapter 5 outlines some of these metrics.
We also present a new style of FPV coverage analysis which is based on the
following criticism of existing FPV coverage metrics.

1. If the reference is an implementation, then the coverage of a property suite
will change with the implementation. An incomplete implementation may
give a false sense of high coverage.

2. We believe that the future of FPV lies in a verification flow, where the
properties will be written with the specification document at a time when
implementation is yet to begin. At that stage we need to analyze the
completeness of the specification in the absence of any reference imple-
mentation.

3. Existing coverage metrics have the same evaluation complexity as model
checking. Therefore coverage analysis runs into the same capacity issues
as model checking.

Our style of coverage analysis compares the property suite against a fault
model. Intuitively, if there is any input or non-input signal of the design-
under-test which is a don’t care with respect to every property in the suite,
then there is a coverage gap since we did not specify any behavior involving
that signal. The details of this approach are presented in Chapter 5.

Example 1.4. Let us again consider our first specification after the modifica-
tions in the last section.

G[ r1 ⇒ Xg1 ∧ XXg1 ]
G[ ¬g1 ⇒ g2 ]
G[ ¬g1 ∨ ¬g2 ]

Does this specification cover any behavior where g1 is required to be high? The
answer is yes, the witness being the first property. But does it ever enforce g2

to be high? The answer is no!

This has a serious implication. Consider an implementation that never as-
serts g2, and always asserts g1 regardless of the inputs. None of our properties
will be refuted by this implementation and we will be led to believe that the
implementation is correct. On the other hand, our coverage analysis will point
out that we need to add properties which specify those behaviors where g2 is
forced to be high.

Let us add the following property into our specification:

G[ ¬r1 ∧ X¬r1 ⇒ XX¬g1 ]
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Adding this property eliminates the problem. It guarantees that g1 is never as-
serted except in those cases covered by the first property. The second property
forces g2 to be high by default.

Let us now look at the input signals. Do we need to read r1 at all? The
answer is yes. Suppose g1 is low at time t. If r1 is high, the arbiter must assert
g1 at t + 1 (by the first property). On the other hand, if r1 is low, then the
aribiter must not assert g1 at t+1 (by the new property). Therefore it cannot
satisfy the specification without reading r1.

Can we satisfy the specification without reading r2? The answer is yes! The
specification is free from r2. This is another form of gap which points out the
necessity to add properties that cover those cases where the value of r2 must
be considered for setting the correct outputs. Without complicating matters
any further, let us accept the fact that in our arbiter specification, r2 is indeed
redundant! �

We are now ready with a consistent and (hopefully) complete specification
of our arbiter. The next step is to use this specification to verify the design
implementation.

1.4 Property Verification

Having written our first formal specification, we are now faced with the option
of using one of the two broad methodologies for property verification, namely
dynamic Assertion Based Verification (ABV) and Formal Property Verifica-
tion (FPV). Suppose the designer has developed the implementation shown
in Fig 1.1. The Verilog code for the module is also given.

FF

FFr1

r2

g1

g2

clk

module arbiter( r1, r2, g1, g2, clk )
input clk, r1, r2;
output g1, g2;
reg g1, g2;

always @( posedge clk )
begin
       g2 <= r2 & ~r1 & ~g1;
       g1 <= r1;
end
endmodule

Fig. 1.1. Arbiter implementation
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1.4.1 The Dynamic ABV Approach

In the dynamic ABV approach, we must first write a test bench to drive
inputs into our implementation. The complexity of this task grows rapidly
with the complexity of the design. This is because the environment of a module
is typically constrained by the behavior of the other modules in the design
and by the protocol used for their communication. For example, to verify an
endpoint device in a PCI Express architecture, the test bench must model the
rest of the architecture consisting of other endpoints, the switches and the
root complex. Even after this is done, it is not practically feasible to write
directed tests to sensitize all possible behaviors of this model.

Master−2
(processor)

clk−generator

Master−1
(bridge to

  peripheral bus)

Memory

Test environment modeled by the Test−Bench

Assertion monitor
(property checkers)

FF

FF g1

g2

clk

r1

r2

Property Specs
( user−defined )

Test generation engine

Simulation Platform
Coverage defs Constraints

DUT Interface

Device under Test (DUT)

Fig. 1.2. Assertion-based Verification Platform

The dynamic ABV setup is shown in Fig 1.2. We simulate the imple-
mentation with the test bench. The assertion checker reads the signals in the
interface and monitors the status of the properties. If any of the properties fail
during the simulation, the checker reports it immediately. The failure points
help the verification engineer to isolate the source of the bug.

There are two key features of dynamic ABV which explain the remarkable
growth in the penetration of this approach. Firstly, it is built over the tradi-
tional simulation framework and requires nominal additional effort from the
verification engineer. Secondly, it does not have any major capacity concerns,
since the verification is done over the simulation run.
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The main criticism of the dynamic ABV approach is that only those be-
haviors that are covered by simulation are examined for property violation.
The following example demonstrates this problem on our arbiter.

module top;

reg clk, r1, r2;

wire g1, g2;

arbiter A(.r1(r1), .r2(r2), .g1(g1), .g2(g2), .clk(clk));

// Clock generator

always #1 clk = ∼ clk;

// Model for Master-1

always @(posedge clk)

begin

r1 = 1;

@(posedge g1) r1 = 0;

@(posedge clk); @(posedge clk);

end

// Model for Master-2

always @(posedge clk)

begin

r2 = 1;

@(posedge g2) r2 = 0;

end

endmodule

Fig. 1.3. Simple Test-Bench fragment for our arbiter

Example 1.5. The implementation of our arbiter is shown in Fig 1.1. The
boxes represent flip-flops. The gates have their usual meanings. The verifica-
tion problem is to determine whether this implementation satisfies our formal
specification.

A detailed test environment for our arbiter may consist of the entire mem-
ory arbitration environment where it is to be used (see Fig 1.2), including the
processor, memory bus, peripheral bridge to the low performance bus con-
taining the peripherals. A simplified test environment for our arbiter consists
of a clock generator, and models for the two requesting devices. Fig 1.3 shows
a simple test bench for our arbiter1.

1 Such a simplified model may not model the exact request patterns of the devices
– for example, it does not model the memory access latency.
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The implementation of our arbiter has a bug. Consider the case when both
requests are low for two consecutive cycles. The specification demands that
the grant be parked on g2 (by default), but in our implementation both grants
will be low. Though the specification guards against the error, the bug will
escape detection because our test bench never creates the relevant cases. �

The example brings out one of the major challenges in property verifica-
tion. In view of the volume of directed tests that needs to be written in order
to achieve a meaningful level of functional coverage, the industry is moving
towards coverage driven randomized test generation. This helps in reaching a
high level of coverage in short time, but the difficult corner case behaviors are
typically left out. Formal properties target these corner case behaviors, but
dynamic ABV is not effective unless we can force the test bench to create the
relevant scenarios.

The task of manually deriving the tests that cover the scenarios that are
relevant to a formal property is a very complex one, even for the seasoned
practitioner of ABV. We therefore require automated formal methods that
can analyze a property and generate the tests that trigger those properties.
Chapter 7 outlines some recent research on this topic.

1.4.2 The FPV Approach

The FPV setup is shown in Fig 1.4. At the heart of this approach we have
a model checking tool. A model checking algorithm has two main inputs – a
formal property and a finite state machine representing the implementation.
The role of the algorithm is to search all possible paths of the state machine
for a path which refutes one or more properties. If one exists, then the path
trace is reported as the counter-example. Otherwise the model checker asserts
that the property holds on the implementation.

Example 1.6. Let us again consider the implementation of our arbiter shown in
Fig 1.1. The state machine for the arbiter is shown in Fig 1.5. The transitions
are labeled by the inputs that enable the transition. The symbol ”x” indicates
that the value of the signal is a don’t care.

The objective of model checking is to search for a path in this state machine
that refutes one or more properties from our specification. Indeed all paths
through the state 00 refute the property:

G[ ¬g1 ⇒ g2 ]

The model checker will find a refuting path. Since the path also contains
the input sequence for which the refutation occurs, it produces a complete
counter-example trace with the appropriate inputs that trigger the incorrect
behavior of the module. �
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State−machine
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Fig. 1.4. Formal Property Verification Platform
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Fig. 1.5. Arbiter State Machine

We outline some of the popular model checking approaches in Chapter 2.
The interested reader may refer to [38] for details on model checking methods.

The main limitation of model checking technology is in capacity. There is a
popular misconception in this context – verification engineers not conversant
with the model checking algorithms often tend to believe that the core model
checking algorithms suffer from capacity bottlenecks. This is not exactly the
case. Typically the main bottleneck is in the size of the FSM extracted from
the implementation. For example, the complexities of both CTL and LTL
model checking are linear in the size of this FSM. CTL model checking is
also linear in the size of the property. LTL model checking algorithms are
exponential in the size of the properties, but there is not much of a capacity
issue here, since typical properties written by verification engineers are small
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in size. The number of states in the machine typically grows exponentially
with the number of concurrent components. For designs of moderate size this
leads to state explosion.

Most of the recent research in formal property verification has been on
developing engineering solutions to the state explosion problem. Some of the
notable approaches are:

1. BDD-based approaches. Several model checking tools use binary decision
diagrams to represent the state transition relation succinctly. Typically
the size of BDDs tend to grow alarmingly after about 200 variables –
hence BDD based approaches face capacity problems on state machines
having more than 100 state bits.

2. Bounded model checking. Often the verification engineer expects a prop-
erty to pass or fail within some definite number of cycles. BMC based tools
accept a bound on the expected length of a counter-example (if one exists)
and unfold the property and the state machine up to the given bound.
The clauses generated by this unfolding are fed into a Boolean SAT solver
and the result indicates the truth of the property up to the given bound.
Since recent SAT solvers are able to handle millions of clauses, BMC can
handle larger designs – but the limitation is that we need to know the
bound on the length of counter-examples. The bound can be iteratively
increased, but the complexity of the SAT instances grow with the increase
in the bound.

3. Abstractions and Approximate Model Checking. Often the cone of influ-
ence of a property covers only a fraction of the design. Some of the com-
ponents of the design may not affect the truth of a property. In such cases
it is possible to extract the relevant components and check the property
on the reduced state machine. In the other cases also we may choose the
components that directly relate to the property and attempt to prove that
the property holds in the reduced machine under the assumption that the
inputs received from the other components can be arbitrary. If the prop-
erty holds under this assumption, then obviously it holds on the given
design. The reverse is not true, since the inputs under which the property
fails may not be asserted by the other components. Hence such methods
are referred to as approximate model checking methods.

4. Assume-guarantee Verification. Existing model checking tools can only
handle RTL blocks of small size. These are typically open systems, that
is, their behavior is a function of the inputs that they receive from the
other components of the design. In order to verify the block in the context
of the design, we need to model the behavior of the neighboring compo-
nents as well, so that the verification considers only meaningful inputs into
the block. Assume-guarantee verification is a paradigm that attempts to
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discover and model the appropriate assumptions on the input behavior of
a block, and to verify the functionality of the block under these assump-
tions. We attempt to beat the state explosion problem by verifying each
block separately – each block is verified under appropriate assumptions
on the remaining blocks.

In spite of the advances in the engineering of the model checking tools, it is
unlikely that such tools will scale beyond a point because of the magnitude
of the underlying state explosion problem. We need a new approach towards
formal property verification. We also need a verification flow that demon-
strates synergy between the traditional simulation-based verification flow and
the formal verification flow.

1.5 Verification by Specification Refinement

As formal property verification tools approach the inherent complexity barrier
of the model checking problem, we must investigate other formal methods that
can take property verification technology to new heights. We believe that the
clue lies in investigating the design flow itself. Formal verification tools are
available only recently – designers have been taping out chips for decades
without using formal methods. Given the success of the silicon industry and
the designer’s ability to cope up with Moore’s law in the context of growing
logical complexity of designs, the number of design errors that have escaped
verification have been remarkably few.

One of the cornerstones of this success is the modularity in the design flow.
This relates largely to the design architect’s ability to hierarchically decom-
pose the functionality of large and complex modules into the functionality of
smaller and less complex submodules. At the higher levels of the design flow
(RTL or higher), the decomposition leads to design refinement, as implemen-
tation specific details are added. The process is continued in the design flow,
until the modules are simple enough to be treated as unit level modules.

Today, the decomposition of the architectural specification of a design into
the functional specification of the component modules is done manually. The
task is non-trivial, and no tool exists that can formally verify the correctness of
the decomposition. As a result some of the most complex logical bugs reside in
the gap between the architectural specification and the RTL implementation.
We believe that this is one of the most important problems before the design
verification community.

Recent advances in property specification languages make it possible for
the architects to write formal specifications to express the design’s architec-
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tural intent2. Unfortunately, such properties cannot be verified formally on
the design due to capacity limitations. Today verification engineers use FPV
at the unit level or over small modules – this helps in validating the mod-
ule against its own specs, but does not solve the larger problem of verifying
whether the modules taken together satisfy the global architectural properties.

We believe that the key to solving the problem lies in using a specification
refinement approach . At the highest level, we start with the formal archi-
tectural properties and the design specification (in English). In the top-down
design flow, whenever we decompose the design functionality into that of its
component modules, we also decompose the formal specification into proper-
ties over the component modules. We recursively follow this approach until
we reach a level where the modules are within the capacity limits of existing
FPV tools.

RTL

Formal RTL Specs

RTL FPV

New!

Design
Refinement

Architectural Model

Architectural Specs

Design intent
verification

Design Flow

Validation Flow

Specification
Refinement

M2

M3

M1

M1
Specs

M2
Specs

M3
Specs

Fig. 1.6. Specification Refinement

The notion of specification refinement is not new to current practitioners
of FPV. Faced with capacity issues, verification engineers often attempt to
check a design property by verifying smaller properties on component modules.
Today they lack a formal proof that the component properties together cover
the original design property, thereby allowing bugs to hide in the gap between
the two specifications. In Chapter 6 we present formal methods for verifying
this coverage. We either reach a specification refinement proof, or we point
out the gaps between the two.

2 Today architects are notoriously resistant towards writing formal specifications,
but hopefully the picture will change when the benefits of the new approach
become apparent.
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The specification refinement checker is the heart of the specification re-
finement approach, because it helps us to formally verify the correctness of
a specification refinement step, that is, whether all behaviors that refute the
original specification also refute the refined specification. For example, let A
denote the set of architectural properties of a design. Suppose we implement
the design in terms of a set of RTL modules, M1, . . . ,Mk (Fig 1.6 shows a
case with k = 3). Since capacity limitations of FPV tools prevent us from ver-
ifying A on the whole design, we manually refine the specification to create
sets of properties, R1, . . . ,Rk for the component modules M1, . . . ,Mk. Veri-
fying each Mi with respect to Ri does not guarantee the conformance of the
whole design with A unless we prove that R1, . . . ,Rk together cover A. This
is what a specification refinement proof does for us – it verifies the correctness
of the specification refinement, and points out gaps, if any. Since the checker
compares specifications (and not a specification versus an implementation),
this approach does not have major capacity limitations.

Not all properties are amenable to specification refinement easily, but it
is hard to find a case where the design functionality can be decomposed into
modules, but the specification cannot be refined.

The specification refinement approach has several associated benefits. Two
of the most significant advantages are:

1. Reuse. Since verification accounts for more than 70% of the design cycle
time, design reuse has marginal benefits unless we can reuse the verifi-
cation effort. If we simply integrate a pre-designed module with other
modules in a new design, we will not save any system level simulation
cycles. We believe that in future, every pre-designed module will be ac-
companied by formal properties that the module is known to guarantee.
If we use these properties along with the properties of the other modules
to formally prove that the architectural properties are guaranteed, then
we will save the additional effort of writing directed simulation tests for
the complex behaviors covered by the architectural properties.

2. Coverage. Existing RTL FPV coverage metrics are all structural in nature.
In the absence of a functional specification that can act as the reference
for coverage analysis, most existing FPV coverage metrics use the RTL
implementation as the reference. In the specification refinement approach,
the higher level functional specification acts as the reference for the lower
level specification, and we are able to define a truly functional coverage
metric. We discuss this in detail in Chapter 6.
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1.6 The New Flow

The end objective of this book is to discover a roadmap for integrating these
new and evolving ideas with the existing methodologies for design verification
into a unified verification flow. Chapter 8 presents our preliminary ideas on
this, based on our interactions with designers, verification engineers, design
architects, and EDA companies.

The evolution of a verification flow has its own inertia, and is fraught
with hurdles that are not necessarily technical in nature. Our audacity in
proposing a new flow is therefore subject to criticism. However, our main aim
in proposing the roadmap is to show how the diverse techniques presented
in this book can be glued together to suppliment each other, to find the
best position of these evolving methodologies in the verification flow, and to
answer some of the questions that are being heard regularly from chip design
companies who are exploring FPV technology.



2

Languages for Temporal Properties

Formal verification makes sense only when we have a formal specification that
acts as the reference for verifying the correctness of a given design implemen-
tation. The notion of formal specifications is not new. Fundamentally we are
aware that the functionality of all digital circuits may be formally expressed
in terms of Boolean functions. For example, a half adder which receives two
1-bit inputs, a and b and produces two 1-bit outputs, namely the sum, s, and
the carry c may be specified completely by the Boolean functions:

s = (a ∧ ¬b) ∨ (¬a ∧ b)
c = a ∧ b

Given an implementation of a half adder (say, in Verilog RTL) and the above
equations, we can formally verify whether the RTL is correct. Typically this is
done by translating both the RTL and the Boolean functions into some canon-
ical representation of Boolean functions and then by checking whether the
representations are isomorphic. There is a wide range of choices for Boolean
function representation, including Binary Decision Diagrams (BDD) [21], Bi-
nary Momemt Diagrams (BMD) [22], and ZBDDs [82]. There is also an arsenal
of tools and libraries that support these representations, which facilitates the
development of formal equivalence checking tools.

Given that the functionality of all digital circuits can be represented by
Boolean functions, why do we need these new languages such as PSL and SVA?
The reason is fundamental and is very significant towards understanding the
basic tenets of formal property verification.

Let us consider the design of an arbiter having request lines r1 and r2, and
grant lines g1 and g2. Suppose we specify the following properties to describe
the functionality of the arbiter:

1. Whenever r1 is raised, the arbiter must assert g1 within the next two
cycles.
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2. Whenever r2 is raised, the arbiter must eventually assert g2.

3. The grant lines g1 and g2 are never asserted together.

Let us now compare the nature of this specification with the one for our half
adder. In both cases it is possible to have more than one implementation,
which satisfies the specification. Let us consider the following two implemen-
tations of the arbiter:

Implementation-1: The arbiter simply asserts g1 and g2 in alternate cycles –
regardless of the status of the request lines.

Implementation-2: Whenever r1 is raised, the arbiter asserts g1 in the next
cycle. In all other cycles, it asserts g2.

Fig 2.1 shows the two implementations. It is obvious that these two imple-
mentations are not logically equivalent, that is, the Boolean functions repre-
senting their functionality are not identical. On the other hand, by specifying
the Boolean functions for the sum and carry bits of the half adder, we have
enforced that every implementation for the half adder must have the same
Boolean functionality.

r1 g1

g2r2

Implementation−1

r1 g1

g2r2

Implementation−2

Fig. 2.1. Two implementations of the arbiter

At a high level of abstraction, the design intent is typically expressed in
terms of several high-level correctness requirements. Specification of the ex-
act Boolean functionality of the implementation may neither be practical, nor
desirable at the high-level. Therefore properties allow us to express a more
relaxed version of the specification, covering the critical correctness require-
ments of the design, but leaving room for design optimization by not specifying
the exact Boolean functionality. Recent experience shows that specifying for-
mal properties at the higher levels of the design flow of large and complex chips
is both feasible and beneficial – it helps in capturing the essential elements of
the design intent in an accurate and non-ambiguous way.

We have not yet justified the need for new languages for formal property
specification. One may argue that partial specifications of the Boolean func-
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tionality is also a form of formal property specification. This is indeed true.
For example, the mutual exclusion between the grant lines of the arbiter can
be expressed by the Boolean function: ¬g1 ∨ ¬g2.

On the other hand, let us consider the first property of the arbiter, namely
that, whenever r1 is raised, the arbiter must assert g1 within the next two
cycles. This is a property that spans across cycle boundaries. In order to
express this property we need the notion of time. The signals r1, r2, g1, g2,
assume different values at different instants of time – the change of values of
a signal over time cannot be expressed in terms of the single Boolean variable
representing that signal. We may express the property by indexing the signals
with a time variable, t, as follows:

∀t [ r1(t) ⇒ g1(t + 1) ∨ g1(t + 2) ]

r1(t) and g1(t+1) denote the value of r1 and g1 at time t and t+1 respectively.
Each time instant, t, describes a state of the signals, r1, r2, g1, g2, which
constitutes the world at time t (see Fig 2.2). Intuitively, a property is temporal
if it involves signals from more than one world.

r1(0)
r2(0)
g1(0)
g2(0)

r1

r2

g1

g2

r1(1)
r2(1)
g1(1)
g2(1)

r1(2)
r2(2)
g1(2)
g2(2)

time:0 time:1 time:2

Two−input arbiter Temporal worlds of the arbiter

Fig. 2.2. The notion of temporal worlds

The time variable, t, is not a Boolean. Hence the above property is not
Boolean. In formal terms, it is not in propositional logic since it contains the
first-order variable, t.

We can get rid of the time variable, t, by using two temporal operators,
namely next and always. In Chapter 1, we introduced the meaning of these
operators. For example, the above arbiter property can be rewritten with these
operators as:

always (r1 ⇒ (next g1) ∨ (next next g1) )

This is a property which contains only Boolean variables, but is not a Boolean
function, since it has the new temporal operators. Since the property contains
only Boolean variables (propositions), it is a propositional temporal property.

The use of temporal logics in verification was proposed by Pnueli in a
seminal paper [89]. Since then several different logics have been proposed for
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specifying temporal properties. All these logics use the two basic temporal
operators – next and until. Some of these logics also use additional temporal
operators that can be derived out of the basic two. The logics differ in terms
of how we are allowed to mix these operators to express the desired property.

This chapter has two main parts. The first part will introduce the popular
temporal operators and the logics that are built around them. In this part
we will also introduce some formalisms in an intuitive way that show us how
these logics are interpreted over time. In the second part we will look at
SystemVerilog Assertions as a language standard and show how it captures
the basic temporal operators. We will also study some of its salient features
which makes it suitable for specifying design properties.

2.1 The Basic Temporal Operators

The formal introduction to a language has two main parts, namely the syntax
and the semantics. The syntax defines the grammar of the language – it tells us
how we may construct properties using the basic set of signals and operators.
The semantics define the meaning of the properties.

The semantics of the traditional temporal logics were defined over closed
systems, which are finite state machines without any inputs. This tradition
has been followed in languages such as SVA and PSL as well – there is no
distinction between input and non-input variables in these languages. At this
point we will present the semantics of these languages in the traditional form
over a non-deterministic finite state machine. Open systems (modules having
input bits) can be modeled by treating the input bits also as state bits. This
will typically yield a non-deterministic state machine, since the choice of in-
puts in the next state lies with the environment, and is not a function of the
present state.

Suppose J is a finite state machine having k state bits. Each of the 2k

valuations of these state bits represent a state of the machine. Let S denote
the set of these states. Let R denote the state transition relation of J . R
consists of pairs of states, (si, sj), where it is possible to transit from state si

to state sj . Finally, J has a start state s. Formaly we say that J is a tuple
〈S, s,R〉.

Example 2.1. Fig 2.3 shows a 3-bit finite state machine. Let the state bits be
n0, n1, n2. The state bits are shown on the nodes. The start state is s0. Fig 2.3
shows 5 states – the remaining three states are not reachable from the start
state and are not shown. The circuit has three outputs, which are functions
of the state bits. These are:

p = n0 ∨ n1
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s0
(010)

p

p p,q

q r
s1

(001)

s2
(100)

s3
(111)

s4
(000)

Fig. 2.3. A sample finite state machine

q = n2

r = ¬n0 ∧ ¬n1 ∧ ¬n2

The nodes of Fig 2.3 are labeled by the outputs that are true at that state. We
shall use this toy example to demonstrate the meaning of various temporal
properties. �

2.1.1 Intuitive Explanation

To convey the semantics of the basic temporal operators, we will first introduce
the notion of a run (alternatively, a path or a trace). A run, π, of J is a sequence
of states, ν0, ν1, . . ., where s = ν0 is the start of the run, and for each i, νi

represents a state in S, and R contains a transition from the state represented
by νi to the state represented by νi+1. In other words, the run is a sequence
of states repesenting a valid sequence of state transitions of J . For example
the run, π = s0, s1, s3, s1, s4, . . ., is one run of the state machine shown in
Fig 2.3. States of the machine may be revisited in the run – for example we
have ν1 = ν3 = s1 in π. The run, π′ = s0, s2, s0, . . ., does not belong to this
state machine, since it has no transition from s2 to s0.

Let us now consider the two fundamental temporal operators, namely next
and until, and a run π = s0, s2, s3, . . ..

Next operator: A property, next f , is true at a state of a run iff the property
f is true at the next state on the run. For example, next q is false at the
state, s0, of the run, π = s0, s2, s3, . . ., since q is false at the next state s2.
The property next next q is true at s0, of π, because q is true at s3.

Until operator: A property, f until g, is true at a state of a run iff the prop-
erty g holds on some future state, z, of the run, and the property f holds
on all states preceding z on the run. For example, the property, p until q,
is true at the start state of π, since q is true at the state s3 and p is true
at the states s0, s2 preceding s3 in π. The property, p until r, is false on
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all paths of Fig 2.3, because no r-labelled state can be reached along a
p-labelled path starting from s0.

We will now define the two other operators shown in Chapter 1, namely,
always and eventually. To do this, we need the definitions of the propositions,
TRUE and FALSE. We say that the proposition, TRUE, holds in all states,
and the proposition, FALSE, is false in all states.

Eventually operator: A property, eventually f , is true at a state of a run iff
the property f holds on some future state in the run. Since the proposition,
TRUE, holds on all states, we can express the eventually operator using
the until operator as:

eventually f = TRUE until f

The property, eventually q, holds on all runs starting from s0 in Fig 2.3.
The property, eventually r, does not hold in the run which loops forever
in the loop s0, s2, s3, s0.

Always operator: A property, always f , is true on a run iff the property f
holds on all states of the run. This is the same as saying that ¬f never
holds on the run. In other words we may write:

always f = ¬eventually ¬f

eventually f = ¬always ¬f

The first equation allows us to express the always operator using the even-
tually operator, and in turn, in terms of the until operator. The second,
says: sometimes is not never – there is a seminal paper with this title by
Leslie Lamport [78].

The property, always p is true in the run which loops forever in the loop,
s0, s2, s3, s0, in Fig 2.3. The property is false in all other runs of the same
state machine.

The duality between the always and eventually operators is not surprising. In
fact, it is a variant of DeMorgan’s Laws when we interpret the properties over
time. This is because:

eventually f = f ∨ next f ∨ next next f ∨ next next next f . . .

= ¬ (¬f ∧ next ¬f ∧ next next ¬f ∧ next next next ¬f . . .)
= ¬ (always ¬f)

2.1.2 Formal semantics

It is very important to know the formal semantics of a formal property spec-
ification language. If the semantics is specified ambiguously, there may be a
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gap between the property that the designer intends to express and the for-
mal property tool’s interpretation of the property that she writes. Bugs may
hide in this gap thereby defeating the whole purpose of formal property veri-
fication. Language lawyer volunteers who make up the working groups of the
language standards committees spend years debating over the exact formal
semantics of the languages that they standardize. The goal of standardiza-
tion is to ensure that languages with precise definitions are made available to
improve communcation within the industry.

The problem with understanding formal semantics is that they are replete
with terse notations. It is widely suspected that the intimidating nature of
the notations used in existing literature on formal property verification is one
of the main deterants to its wider adoption in practice.

In reality, the formal semantics of the temporal operators do not convey
anything more than what we have discussed already. Nevertheless it is worth-
while to present the formal semantics, not only for the sake of completeness,
but also to familiarize ourselves with the notations that appear in almost all
texts on formal property verification, including some chapters of this book.

To start with, we will use a set of short-forms. We will use X to denote
the next operator, U to denote the until operator, G to denote the always
operator, and F to denote the eventually operator. G means globally with
respect to time, and F means in the future.

Let π = ν0, ν1, . . . denote a run, and πk = νk, νk+1, . . . denote the part
of π starting from νk. We will use the notation π |= f to denote that the
property f holds on the run π. Given a run π, we will also use the notation
νk |= f to denote πk |= f . In other words, a property is said to be true at
an intermediate state of the run iff the fragment of the run starting from
that state satisfies the property. The formal semantics of the basic temporal
operators are as follows:

• π |= Xf iff π1 |= f

• π |= f U g iff ∃j such that πj |= g and ∀i, 0 ≤ i < j we have πi |= f .

Fg is a short-form for TRUE U g, and Gf is a short-form for ¬F¬f .

2.2 Logics for Temporal Specification

Temporal logics tell us how we can create complex temporal properties by
putting together one or more temporal operators. There are broadly two
classes of these logics, namely linear time logics and branching time logics.
Linear time logics allow the specification of properties over linear traces or
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runs of a finite state machine – intuitively, we say that the property holds on
the machine if it holds on all runs of the machine. Branching time logics allow
the specification of properties over the computation tree created by a state
traversal of the state machine.

2.2.1 Linear Temporal Logic

Designers and validation engineers typically express and interpret the RTL
in terms of the simulation semantics of the HDL. They are accustomed to
verifying the correctness of the RTL by checking certain behaviors over simu-
lation traces. Therefore it is not suprising that linear time logics have been the
natural choice for design validation, and form the backbone of most existing
property specification languages, including Forspec, PSL and SVA.

Linear Temporal Logic (LTL) is the most popular among linear time logics.
We can define the language recursively as follows:

• All Boolean formulas over the state variables are LTL properties.

• If f and g are LTL properties, then so are: ¬f , Xf , and f U g.

We can also use the short-forms, Fg for true U g, and Gf for ¬(true U ¬f).

The semantics of LTL is as follows. We will say that the property f holds
on a state machine, J , iff f holds on all paths of the state machine starting
from its start state. The semantics of f on a path is as defined in the last
section.

Let us see some sample LTL properties obtained by using one or more
temporal operators. We refer to Fig 2.3.

• The property p U q is true in the state machine, since all paths from s0

satisfy this property.

• The property Fq is true in the state machine, but the property GFq is
not true. This is because we have the path, π = s0, s1, s4, . . ., which does
not satisfy Fq from s4 onwards.

• The property p U (q U r) is not true in the state machine, because it may
get trapped in the loop, s0, s2, s3, s0.

Fig 2.4 shows some sample LTL properties and some sample runs that satisfy
these properties.
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Fig. 2.4. Some sample LTL properties

2.2.2 Computation Tree Logic

Computation Tree Logic (CTL) is a branching time temporal logic. Properties
described in this logic are interpreted over the computation tree obtained by
unfolding the state machine as a tree. We will elaborate on this shortly, but
let us first study the basic features of this logic.

CTL has two path quatifiers in addition to the usual temporal operators.
These are the existential path quantifier E, and the universal path quantifier
A.

• The property Aϕ is true at a state, ν, iff ϕ is true on all runs starting from
ν.

• The property Eϕ is true at a state, ν, iff ϕ is true on some run starting
from ν.

In CTL we have the restriction that every subformula of the form Xf , Gf ,
Fg, and f U g must be prefixed by an E or A. Therefore, we may define the
language as:

• All Boolean formulas over the state variables are CTL properties.

• If f and g are CTL properties, then so are: ¬f , AXf , EXf , A[f U g] and
E[f U g].

We also have the usual short-forms Fg for true U g, and Gf for ¬(true U ¬f).
Consequently, EFg, AFg, EGf , AGf are CTL properties. Fig 2.5 shows some
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Fig. 2.5. Some sample CTL properties

sample CTL properties and some sample computation trees that satisfy these
properties.
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Fig. 2.6. The notion of a Computation Tree
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What is the significance of a computation tree? Let us consider the state
machine of Fig 2.3. We can unfold the state machine into the infinite tree
shown in Fig 2.6. Each path of this tree is a run or a computation of the state
machine. CTL allows us to define properties over the nodes of this computa-
tion tree.

For example, consider the property:

A[p U E[q U r]]

This property is true at the start state s0 of our state machine. This follows
from the fact that E[q U r] is true at s1 and s3 (since there is a q-labeled
sequence of states to the r-labelled state s4), and every path from s0 reaches
one of these states through p-labelled states. It is not possible to express this
property in LTL.

2.2.3 LTL versus CTL

Can all LTL properties be expressed in CTL using the universal path quan-
tifier, A? The answer is, no. For example, the LTL property, FGp, is not
equivalent to the CTL property, AFAGp. Fig 2.7 shows an example which
satisfies FGp but does not satisfy AFAGp.

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

s0

s1

s2

p

p

State machine: M Computation Tree of M

Fig. 2.7. Module M satisfies FGp, but not AFAGp

When do we use a linear time logic, and when do we use a branching time
logic? This is a matter of considerable debate, and is hardly agreed upon.
However, experience shows that linear time logics are the natural choice for
black-box testing. For example, while specifying the behavior of a module, we
can write linear time properties over its interface signals without knowing the
internal state machine of the module.
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On the other hand, branching time logics are useful for verifying properties
over a given state machine. For example, when we develop an automotive
control system we may typically model the control system as an abstract state
machine, verify whether this control system satisfies certain safety properties
and then expand the abstract state machine into the actual control system.
When a branching time property fails, we must interpret the failure in terms
of the actual states of the system, which is not possible in black-box testing.

The temporal logic CTL∗ combines the expressive power of linear and
branching time temporal logics. CTL and LTL are fragments of CTL∗. There
has been several interesting extensions of these languages that demonstrate
the tradeoff between the expressive power of the language and the complexity
of model checking (that is, formally verifying) properties specified in these
languages.

2.2.4 Real Time Temporal Logics

The temporal operators discussed so far, namely next (X), until (U), always
(G), and eventually (F), are temporal because they can define sequences of
events over time. Significantly, none of these operators with the exception
of the next operator, attempt to quantify time. For example the property,
eventually f , requires f to be true in future, but does not specify any time
bound by which f needs to be true.

Real time temporal operators are intuitively simple extensions of the ba-
sic untimed temporal operators where we annotate the operator with a time
bound. The real time extensions of CTL and LTL simply use these bounded
operators (as well as the unbounded ones).

The bounded Until operator: The property fU[a,b]g is true on a run, π =
s0, s1, . . ., iff there exists a k, a ≤ k ≤ b such that g is true at sk on π,
and f is true on all preceding states, s0, . . . , sk−1. Formally,

π |= f U[a,b] g iff ∃k, a ≤ k ≤ b, νk |= g and ∀i, 0 ≤ i < k we have νi |= f

The bounded LTL property p U[1,3] q is true at the state s0 of Fig 2.3.
The bounded CTL property:

A[p U[1,3] E[q U[1,2] r]]

is also true at s0. This is because s3 and s1 satisfy E[q U[1,2] r] (since
they can reach s4 within the time bound [1, 2]), and we will reach s1 or
s3 along all paths from s0 within the time bound [1, 3].

The bounded Eventually operator: The property F[a,b]g is true on a run, π =
s0, s1, . . ., iff there exists a k, a ≤ k ≤ b such that g is true at sk on π.
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For example, the bounded LTL property F[1,3]q is true at the state s0 of
Fig 2.3. The bounded CTL property EF[2,4]r is true at s0. The property
F[a,b]g is equivalent to the bounded-until property, true U[a,b] g.

The bounded Always operator: The property G[a,b]f is true on a run, π =
s0, s1, . . ., iff f is true in every state in the sequence, sa, . . . , sb. The
bounded CTL property EG[3,9]q is true in the state s0 of Fig 2.3 – con-
sider the run from s0 through s2 which alternates between s3 and s1 at
least 8 times. The bounded LTL property G[0,1]¬r is true at s0 since no
run can reach s4 is less than 2 cycles.

Real time operators are extremely useful in practice. Most design proper-
ties have a well defined time bound, and must be satisfied within that time.

Since the real time operators deal with finite bounds, a and b, they can be
expressed in terms of the X operator. For example, the property F[2,4]q can
be rewritten as:

F[2,4] q = XX(q ∨ Xq ∨ XXq)

and p U[3,4] q can be rewritten as:

p U[3,4] q = (p ∧ Xp ∧ XXp) ∧ XXX(q ∨ (p ∧ Xq))

The first part of the property specifies that p be must be true in the present
cycle and the next two cycles. The second part of the property specifies that
q must be true in the third cycle, failing which, p must be true in the third
cycle and q must be true in the fourth cycle.

Therefore, real time operators actually help us to succinctly express prop-
erties that would require too many X operators otherwise.

2.3 SystemVerilog Assertions

The success of property verification in the industry depends to a large extent
on the evolution of language standards for property specification. The task of
building language standards to be followed by many companies is one of the
hardest tasks, and not entirely for technical reasons. Currently SystemVerilog
Assertions (SVA) [102], Property Specification Language (PSL) [92], and Open
Verification Library (OVL) [85] are the three main alternatives for property
specification. SVA is the natural choice for designers using SystemVerilog;
PSL is a good choice if one is working with VHDL, Verilog or SystemC; and
OVL is a good choice if one is not willing to learn either SVA or PSL.

OVL, PSL and SVA were all developed initially under Accellera [3]. At
this point, PSL has become an IEEE standard (IEEE 1850 PSL), and SVA is
part of the IEEE 1800 SystemVerilog standard.
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The syntax and semantics of SVA and PSL have minor differences. There-
fore, it is equivalent to study any one of the two for formal property specifi-
cation. We choose SVA in this book for the following reasons:

1. SVA is part of the SystemVerilog language – which is a design and verifi-
cation language. We will demonstrate how property specification is glued
with the design and test bench language to create an integrated verifi-
cation platform. This platform will be a key component of our proposed
formal verification roadmap.

2. Some of our tools outlined in this book are based on SystemVerilog. For
several reasons our research group has been inclined towards SystemVer-
ilog as a design and verification language.

An excellent overview of PSL is given in the book, Applied Formal Verification,
by Perry and Foster [88].

This section is not intended to be a comprehensive overview of the Sys-
temVerilog Assertions language. The complete syntax and semantics is given
in the SystemVerilog LRM. Our goal in this section is to expose the reader
to some of the interesting modeling features of the language, and to share
some of our experiences in developing verification IPs with this language. Our
presentation is based on SystemVerilog 3.1a.

2.3.1 A Quick Overview

We will start with our 2-way priority arbiter described in Chapter 1. The
arbiter has the following interface:

mem-arbiter( input r1, r2, clk, non-input g1, g2 )

r1 and r2 are the request lines, g1 and g2 are the corresponding grant lines,
and clk is the clock on which the arbiter samples its inputs and performs
the arbitration. We developed the following LTL properties for the arbiter in
Chapter 1:

P1: G[ r1 ⇒ Xg1 ∧ XXg1 ]
P2: G[ ¬g1 ⇒ g2 ]
P3: G[ ¬g1 ∨ ¬g2 ]
P4: G[ ¬r1 ∧ X¬r1 ⇒ XX¬g1 ]

We will start by writing these properties in SVA. Then we will integrate these
properties into an assertion-based verification framework. We will use the
(incorrect) arbiter implementation (in Verilog) of Chapter 1 for this purpose.
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Each temporal property describes a sequence of events. In SVA we capture
sequences of events through sequence expressions. For example, the property
P1, which says that whenever r1 is high, g1 must be high in the next two
cycles, can be written in SVA as follows:

r1 |− > ##1 g1 ##1 g1

The symbol, |− >, represents the implication operator.

The ##1 operator can be used to implement the X (next) operator of LTL.
##1 g1 is true at a state if g1 is true in the next state of the run. The sequence:

##1 g1 ##1 g1

is true at a state if g1 is true in the next two cycles.

Since the semantics of LTL is defined over a state machine, the clock is
implicit in LTL properties. In practice, a circuit may have several clocks. Also
we may define a property over signal values which are sampled only at the
occurrence of a specific event. To provide this flexibility, SVA allows us to
define the sampling clock for a property. The property P1 may therefore be
written as:

property P1;
@(posedge clk)
r1 |− > ##1 g1 ##1 g1 ;

endproperty

The expression, r1 |− > ##1 g1 ##1 g1, is evaluated at every posedge
of clk, which was our intent while using the G (always) operator in the LTL
formula for P1. The property P2 can be similarly written as:

property P2;
@(posedge clk)
!g1 |− > g2 ;

endproperty

The NOT operator, !, denotes the negation operator, ¬, of Boolean alge-
bra. We will use a separate operator for negation of SVA properties.

The property P3 can be written in SVA as:

property P3;
@(posedge clk)
!g1 || !g2 ;

endproperty
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The OR operator, ||, is used over Boolean expressions. We will use a
separate operator for logical OR between SVA properties.

The property P4 shows an interesting difference between the semantics of
SVA and LTL. We may write P4 in SVA as:

property P4;
@(posedge clk)
!r1 ##1 !r1 |− > ##1 !g1 ;

endproperty

We have the sequence, !r1 ##1 !r1, in the antecedent of the implication.
This sequence matches at time t+1 iff r1 is false at t and t+1. The property
specifies that g1 must be false at time t + 2 whenever the sequence matches
at time t + 1. Therefore the matching of the consequent of the implication
begins after the matching of the antecedent succeeds. Compare this with the
LTL property:

G[ ¬r1 ∧ X¬r1 ⇒ XX¬g1 ]

If r1 is false at time t and t + 1, the antecedent of the implication evaluates
to true. The consequent XX¬g1 is defined with respect to time t, from which
we started to match the antecedent, that is, we expect g1 to be false at t + 2
(specified by the two X operators). On the other hand in the SVA property,
the consequent, ##1 !g1, is defined with respect to time t + 1, that is, the
time at which we successfully completed the matching of the antecedent. This
explains the use of a single ##1 operator in the consequent part of the SVA
property, as opposed to the use of two X operators in the consequent part of
the LTL property.

Having written our properties in SVA, we must now bind the properties
with the RTL for the arbiter module. SystemVerilog provides the notion of
an interface to facilitate this task. The interface defines the set of signals of
the module that are visible to the test-bench or the assertion checker. For
example, in our arbiter the interface consists of the signals, r1, r2, g1, g2. We
define the properties in the interface and then use them as assertions.

The definition of the interface and assertions for the arbiter is shown in
Fig 2.8. Each assertion has a name, an assert statement, and a clause which
indicates the action to be taken when the assertion fails. For example, consider
the assertion:

Mutex:
assert property(P3)
else $display("Property P3 has failed");

The name of the assertion is mutex. This name is typically used by the
assertion checker to refer to the assertion (say, when it fails or passes vac-
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interface ArbChecker( input g1,

input g2,

input r1,

input r2,

input clk ) ;

property P1;

@(posedge clk) r1 |− > ##1 g1 ##1 g1 ;

endproperty

property P2;

@(posedge clk) !g1 |− > g2 ;

endproperty

property P3;

@(posedge clk) !g1 || !g2 ;

endproperty

property P4;

@(posedge clk) !r1 ##1 !r1 |− > ##1 !g1 ;

endproperty

GrantWhenRequest:

assert property(P1)

else $display("Property P1 has failed");

OneGrantHigh:

assert property(P2)

else $display("Property P2 has failed");

Mutex:

assert property(P3)

else $display("Property P3 has failed");

NoGrantWhenNoRequest:

assert property(P4)

else $display("Property P4 has failed");

endinterface

Fig. 2.8. SVA interface and property definitions for the arbiter
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uously). The statements following the else clause are executed when the
assertion fails (typically these are non-synthesizable statements). In this case
we use this clause to print an error message.

module Top;

wire r1;

wire r2;

wire g1;

wire g2;

reg clk;

// Instantiation of the module arbiter

arbiter A(r1, r2, g1, g2, clk);

// Clock generator

initial begin

clk = 1;

forever begin

#1 clk = ∼ clk;

end

end

// Rest of the test bench code ...

endmodule

Fig. 2.9. Structure of the test bench

Fig 2.9 shows the structure of the test bench for the arbiter. We need to
bind the interface, ArbChecker, with the arbiter. One way to do this is to bind
the interface with the test bench using the following statement.

bind Top ArbChecker ArbC( g1, g2, r1, r2, clk )

Binding is an important step in assertion-based verification. It associates the
names of the signals used in our properties with the names of the correspond-
ing signals in the RTL module. This ability to create an association between
the propositional variables in the properties and the RTL variables used in
the module enables us to delineate the task of creating a verification IP for
a design from the task of writing the RTL. Today, numerous verification IPs
for standard protocols, such as PCI, PCI-XP, AMBA, USB, etc are available
off-the-shelf. The validation engineer only needs to bind these property suites
with the corresponding signal names in the design implementation in order to
check these properties. Fig 2.10 shows the complete picture.
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module arbiter

Test bench

Interface

Properties

Simulator + Property Checker

Bind

Fig. 2.10. Binding a verification IP

2.3.2 The Notion of Sequences

Sequence expressions are the basic building blocks of SVA. Some typical ex-
amples of sequence expressions are as follows.

##0 r1 // r1 is true in this cycle
##1 r1 // r1 is true in the next cycle
##5 r1 // r1 is true exactly after 5 cycles
##[5:9] r1 // r1 is true sometime between the 5th and 9th cycle.

It is easy to see the equivalence between these and the bounded LTL
operators of Section 2.2.4. For example:

##1 r1 is the same as Xr1
##5 r1 is the same as F[5,5]r1
##[5:9] r1 is the same as F[5,9]r1

The sequence expression, r2 ##3 g2, matches if r2 is high and after 3 cycles
g2 is high. In other words, r2 ##3 g2, is equivalent to the bounded LTL
property, r2 ∧ F[3,3]g2.

Sequence expressions can be used to express sequences of signal values.
For example, consider the sequence:

a ##[1:5] (b||c) ##3 d

The sequence matches when we have a followed by b or c after k cycles followed
by d after 3 cycles, where k is any integer between 1 and 5. This property is
equivalent to the bounded LTL property:

a ∧ F[1,5][ (b ∨ c) ∧ F[3,3]d ]
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We can associate a name with sequence expressions and then use them to
define other sequences. For example, we can rewrite the previous property as
follows.

sequence s1;
(b||c) ##3 d;

endsequence

sequence s2;
a ##[1:5] s1;

endsequence

Sequence s2 uses sequence s1. The ability to define sequences in this way
is very useful in practice. Complex temporal events can be defined using se-
quences, and then these can be used in properties that are triggered by these
events.

2.3.3 Sequence Operations: Repetition

Sequences of events over time may often be expressed by regular expressions.
For example, the LTL property, p U q, may be expressed by the regular
expression, p∗q, which matches every run where we have zero or more p-
satisfying states followed by a q-satisfying state.

SVA supports the notion of regular expressions through three repetition
operators. These are:

1. Consecutive repetition. The sequence, p [*5], matches when five consec-
utive states satisfy p. Therefore, the sequence p [*5] ##1 q, matches
when 5 consecutive states satisfy p followed by a state satisfying q. This
is similar to the bounded LTL property, p U[5,5] q.

The sequence, p [*3:5] ##1 q, matches when k consecutive matches of
p is followed by a match of q, where k is an integer between 3 and 5. This
is similar to the bounded LTL property, p U[3,5] q.

To specify an unbounded number of repetitions, we may use the dollar sign
($). The sequence, p [*3:$] ##1 q, matches when k consecutive matches
of p is followed by a match of q, where k is any finite integer greater than
or equal to 3.

Suppose we wish to express the property: whenever the request r2 of our
arbiter is raised, the arbiter must eventually assert g2, and the requesting
device must hold the request line at high until the grant arrives. We can
express this intent as:
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r2 |− > r2 [*1:$] ##1 g2

The LTL property, p U q, is equivalent to: p [*0:$] ##1 q.

2. Goto repetition. Consecutive repetition enables us to count consecutive
occurrences of an event. Sometimes we want to count events which may
not occur in consecutive cycles. For example, suppose a slave splits a burst
transfer when it becomes non-available during the ongoing transfer, and
we wish to abort a transaction if more than two splits occur during the
transaction. The property may be expressed in SVA as:

split [*->2] ##1 abort

The two split events may not be consecutive. The abort event occurs
one cycle after the second split event.

The sequence, p [*->5] ##1 q, matches at time t, if q matches at time
t, and p matches 5 times before time t, including one at time t − 1. The
last phrase is important, and is the main difference with non-consecutive
repetitions.

The sequence, p [*->3:5] ##1 q, matches at time t, if q matches at time
t, and p matches between 3 to 5 times before time t, including one at time
t − 1.

3. Non-consecutive repetition. Non-consecutive repetitions are similar to
Goto repetitions with a minor difference. For example, our expression:

split [*->2] ##1 abort

required the abort event to happen exactly one cycle after the second split
event. On the other hand, the same expression using the non-consecutive
repetition operator:

split [*=2] ##1 abort

specifies that the abort event must occur sometime after the second split
event – not necessarily in the next cycle.

The sequence, p [*=3:5] ##1 q, matches at time t, if q matches at time
t, and p matches between 3 to 5 times before time t.

The repetition operators can be applied on more complex sequence expressions
as well. For example, the expression:

(r1 ##1 g1) [*3] |− > ##1 g2

specifies that whenever three consecutive alternations of r1 and g1 occur, it
is followed by a grant to the default slave, g2. This sequence is equivalent to:
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(r1 ##1 g1 ##1 r1 ##1 g1 ##1 r1 ##1 g1) |− > ##1 g2

The repetition operators significantly contribute to the expressive power of
SVA. They are also one of the main sources of errors in property specifications.
Arbitrary nestings of repetition operators must be avoided for the sake of
clarity and readability of the formal specification.

2.3.4 Sequence Operations: AND, INTERSECT, OR

The semantics of logical operations over temporal properties is not obvious
from their Boolean counterparts. This is because logical operations on tem-
poral properties are interpreted over runs, and different temporal properties
may match at different points of time.

Given an AND / INTERSECT / OR over two sequence expressions, s1

and s2, the main issue is to define the time point at which we may return
success or failure. For example, if x and y are boolean variables, then the
Boolean property, x && y, is true at all states where both x and y are true.
On the other hand, consider two sequences, s1 and s2, where s1 is x ##2 y,
and s2 is x [*0:$] z. Then the sequence expression, s1 and s2, can match in
many ways, such as:

(x && z) ##2 y
x ##1 z ##1 y
x ##1 x ##1 (y && z)
x ##1 x ##1 (y && x) ##1 (x [*0:$] z)

In other words, the run must satisfy both s1 and s2. The end of a successful
match is the earliest point of time when both sequences have matched. A
failure can happen much earlier. For example, if the first state does not satisfy
x, then we have an immediate failure.

Similarly, the sequence expression, s1 or s2, holds on all runs that satisfy
s1 or s2 (or both). The end of a successful match is the earliest point of time
when at least one among s1 and s2 have matched. A failure can be detected
only after both s1 and s2 have failed.

The intersect operator is a variant of the and operator, where both
sequence expressions must match starting at the same cycle and ending at
the same cycle. Therefore if s1 is x ##2 y, and s2 is x [*0:$] z, then the
sequence expression, s1 intersect s2, can match in only one way, namely:

x ##1 x ##1 (y && z)
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2.3.5 Local Variables

Let us consider the FIFO queue shown in Fig 2.11. The queue stores integers.
The module raises the QFull signal when the queue is full. In order to push a
number into the queue when QFull is low, we float the number on the DataIn
lines and raise the Put signal. When the queue is full, we flush the queue by
performing a sequence of pop operations. In each pop operation, we raise the
Get signal and read the data from the DataOut lines.

Queue

FIFO

DataIn DataOut

Get

Put
QFull

Fig. 2.11. A FIFO Queue

We can express the FIFO property as follows. If X and Y are any two
data items such that X was pushed before Y , then X will come out of the
queue before Y . In this property, the values of X and Y are not important –
they are placeholders for any two data items entering and leaving the queue.

The concept of local variables in SVA properties enable us to express such
properties formally. For example, we can express the FIFO property in SVA
as follows.

property FIFO check;
int x;
int y;
@(posedge clk)
((Put && !QFull, x = DataIn) ##[1,$]

(Put && !QFull, y = DataIn)) |− >
##[1,$] ((Get && x == DataOut) ##[1,$]

(Get && y == DataOut)) ;
endproperty

The variables x and y are local variables for this property. In order to
match the property the checker will attempt all possible instantiations of
these variables on the run. For example, if the queue size is 3 and we insert 2,
5 and 3, before flushing the queue, then the checker will match the antecedent
in three ways, namely (x = 2, y = 3), (x = 2, y = 5), and (x = 5, y = 3). If
the sequence in which data is popped is 2, 3 and 5, then the checks for the
first two cases will match, while the check for the case (x = 5, y = 3) will fail
and the report will show this failure case.
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2.3.6 Properties

Properties specify a behavior of a system. We can use a property as an assert,
assume or cover. We will explain the use of each of these types in the next
two sections.

In the arbiter example, we declared the properties inside the interface,
ArbChecker. Properties can be defined at other places also (such as inside a
module definition), but it is good practice to define the properties inside the
interface definition if we wish to reuse the properties. For example, the prop-
erties used for verifying whether a master device is compliant with the PCI
Bus protocol may be defined within the master interface definition. Then the
properties will be reused automatically for all PCI masters that use instances
of the same interface.

SVA supports several operators for defining properties from sequence ex-
pressions. These include, not, and, or, if . . . else, and the implication oper-
ators, |− > and | =>. The semantics of the operators, and and or, are similar
to those for sequence expressions. The operator, not, represents negation over
temporal properties – not P is true on a run iff P fails on the run. This oper-
ator is not the same as the ! operator which is used for negation over Boolean
formulas.

Suppose we wish to express the following property in SVA: If the request
line r1 goes high, then in the next cycle, the grant line g1 must go high and
r1 must be de-asserted, otherwise in the next cycle, the grant g2 must go high.
We may express this property in SVA as:

property P;
@(posedge clk)
if (r1) then ##1 (g1 && !r1)

else ##1 g2 ;
endproperty

SVA does not allow the conditional expression of the if-statement to be
a sequence expression. For example, we may want to express the property
that, whenever the request line r2 is not granted for two consecutive cycles,
the request is lowered in the next cycle as:

property ThisIsNotOkay;
@(posedge clk)
if (r2 ##1 (!g2 && r2) ##1 !g2) then ##1 !r2 ;

endproperty
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This is not allowed by SVA, because the sequence expression, r2 ##1 (!g2
&& r2) ##1 !g2 is not supported as a conditional for the if-statement. In
such cases, we may use the implication operator as follows:

property ThisIsOkay;
@(posedge clk)
r2 ##1 (!g2 && r2) ##1 !g2 |− > ##1 !r2 ;

endproperty

The antecedent of the implication operators can be a sequence expression,
but it cannot be a property expression. For example, the following property
is not supported:

property WrongAgain;
@(posedge clk)
(a |− > ##1 b) |− > ##1 c ;

endproperty

This is not supported because the antecedent of the second implication
operator is not a sequence expression.

SVA supports two types of implication operators, namely |− > and | =>.
The semantics of these operators are almost the same except for the following
difference:

• In the property, s1 |-> s2, the match of s2 starts from the same cycle as
the one in which we complete a match for s1.

• In the property, s1 |=> s2, the match of s2 starts from the cycle after
the one in which we complete a match for s1.

Not surprisingly, the first operator is called the overlapped implication opera-
tor, while the latter is called the non-overlapped implication operator.

One interesting feature of SVA property specifications is the use of the
disable iff clause. Suppose we expect the arbiter to service the request r2
by asserting g2 within the next 32 cycles. However if the requesting device
lowers r2 before receiving g2, then the arbiter no longer needs to service the
request. We may write this property in SVA as:

property UseOfDisableIff;
@(posedge clk)
disable iff (!r2) r2 |− > ##[1:32] g2 ;

endproperty
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The match of the sequence, r2 |− > ##[1:$] g2, starts at every cycle
where r2 is true. The property can be satisfied in two ways:

• g2 is asserted within 32 cycles of r2, or

• r2 is lowered before 32 cycles and before g2 is asserted. This returns a (vac-
uous) match because the property matching is disabled when !r2 becomes
true.

The property can fail in only one way – r2 remains asserted for the 32 cycles,
but g2 is not asserted.

The common use of the disable iff clause is in aborting the matching
of a property when an interrupt occurs. For example, consider the following
property:

property DisableOnReset;
@(posedge clk)
disable iff (reset) x |− > ##[1:16] y ;

endproperty

The property requires y to be asserted within 16 cycles after the occurrence
of x, except when reset is asserted in between.

The disable iff clause is sometimes used in verification IPs to allow the
user to turn selected properties on/off. For example, suppose the designer of
a PCI XP based system has not yet implemented flow control in the system.
In order to verify the existing system with a verification IP for PCI XP, the
validation engineer must turn off all properties related to flow control. If the
architect of the verification IP uses a common flag variable in disable iff
clauses to guard all flow control properties, then the validation engineer can
simply set/reset the flag value to turn the flow control properties on/off. Since
the actual properties are not visible to the user of the verification IP (because
of IP reasons), this mechanism has almost the same effect as commenting out
the unwanted properties (with a minor overhead).

2.3.7 Assume-Assert Specifications

Since the semantics of temporal logics are defined over closed systems, there
is no syntactic difference between input and output signals. However, the
behavior of most modules that we verify in practice is a function of the inputs
received from the environment of the module. For example, when we define the
compliance requirements for a master device with the PCI Bus protocol, we
assume that the other devices in the system (which includes the Bus arbiter,
slave devices, and other master devices) work correctly, that is, they drive PCI
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Bus compliant inputs into the module under test. In other words, we expect
the module to satisfy the PCI Bus properties correctly in a valid PCI Bus
based system, not in every arbitrary environment.

A formal specification for an open system such as a module must therefore
include the assumptions that we make about the environment of the module
under test – assumptions under which we expect the module to satisfy certain
properties.

SVA allows us to specify assume properties to describe the assumptions
about the environment, and assert properties to describe the properties that
must be guaranteed by the module under the given assumptions. This style of
reasoning is called assume-guarantee reasoning.

As an example, let us return to our priority arbiter example. Suppose we
add the property: every low priority request, r2, is eventually granted by the
arbiter by asserting g2. We can write this property as:

property NoStarvation;
@(posedge clk)
r2 |− > ##[1:$] g2 ;

endproperty

This property will not hold under all circumstances. This is due to the
property, P1:

property P1;
@(posedge clk)
r1 |− > ##1 g1 ##1 g1 ;

endproperty

If r1 is never low for two consecutive cycles, then P1 requires g1 to be
asserted forever, which in turn will starve the low priority device. Adding
property NoStarvation into our specification will make the specification self-
conflicting and inconsistent.

Now suppose we are given that whenever g1 is asserted, r1 remains low
for the next 4 cycles. We can express this as another property:

property FairnessOfr1;
@(posedge clk)
g1 |− > ##1 (!r1) [*4] ;

endproperty

The above property cannot be guaranteed by the arbiter, because it has no
control over its input, r1. However if we expect the request pattern to honor
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this requirement, then we can treat this property as an assumption on the
environment behavior. Under this assumption, the property, NoStarvation, is
consistent with P1 and actually expresses the design intent. SVA allows us to
express the desired intent as follows:

property FairnessOfr1;
@(posedge clk)
g1 |− > ##1 (!r1) [*4] ;

endproperty
AssumeR1IsFair: assume property (FairnessOfr1);

property NoStarvation;
@(posedge clk)
r2 |− > ##[1:$] g2 ;

endproperty
AssertNoStarvation: assert property (NoStarvation)

else $display("Low priority device is starving");

There are several notable points here:

1. The assume directive is used to specify that the property is an assumption.
The assert directive is used to specify that the property is an assertion.

2. Both the assume and the assert properties have input and output vari-
ables of the module. A common misconception among early users is that
assume properties may only use input signals.

3. The assume properties are not bound to any specific assert property. The
assume properties express assumptions about the environment behavior
regardless of what is expected from the module under test.

4. In dynamic assertion based verification, both the assume and the assert
properties need to be checked during simulation. If the assume property
fails, then the check for the assert property may simply be aborted, since
the assert property is required to hold only when the assume property
holds.

5. In formal property verification, the assume properties are interpreted as
constraints under which the assert properties must be checked. In other
words, if A is an assume property and B, C and D are assert properties,
then the formal tool will attempt to check the property, A ⇒ B ∧C ∧D
on the design implementation. We will discuss the implications of assume
properties on the capacity issues of FPV tools in Chapter 3.

assume properties can also be used to specify the value ranges of inputs as
well as the relative probabilities of each value. This feature is very useful for
generating random tests. We will pick up this issue again in Chapter 7.
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2.3.8 The Cover Statement

Writing assertions for specific scenarios is not sufficient to expose bugs by
dynamic property verification unless the simulation comes up with the relevant
scenarios that sensitize the bug. It is therefore an important objective to
check whether the properties that we have written are actually interpreted
non-vacuously during simulation. For example, consider the property:

property P4;
@(posedge clk)
!r1 ##1 !r1 |− > ##1 !g1 ;

endproperty

This property is interpreted non-vacuously only when r1 is low in two con-
secutive cycles, that is, when we have a match for the sequence, !r1 ##1 !r1.
Formally, vacuity is defined in SVA only for properties having the implication
operators – a property is satisfied non-vacuously only if the consequent part
of the property has a role in it. Whenever the antecedent fails, the property
matches vacuously.

One of the main benefits of the cover directive of SVA is that it gives us
the number of non-vacuous interpretations of an assertion during simulation.
For example, suppose we specify the cover property:

property P4;
@(posedge clk)
!r1 ##1 !r1 |− > ##1 !g1 ;

endproperty
cover property (P4)

The results of the coverage statement for this property will show the num-
ber of times the property was attempted, the number of times it succeeded,
the number of times it failed, and the number of times it succeeded because
of vacuity.

2.4 Architectural Styles for Assertion IPs

The task of deriving a set of formal properties from the English language
specification of a design or a protocol is a non-trivial task having many differ-
ent considerations. As a result, off-the-shelf assertion IPs for many standard
protocols, such as PCI Bus, AMBA Bus, IBM Coreconnect and PCI XP, are
in demand, and are available from multiple vendors. Assertion IPs consist of
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assertion suites and interface definitions that are used to bind the assertions
with the design under test.

An assertion IP is an integral part of a verification IP. A verification IP
typically consists of an assertion IP and a collection of models that may be
used to construct the environment for the design under test. For example,
to create a realistic test environment for a PCI XP endpoint device, we need
models for the switches, the root complex, and other endpoints. While using a
verification IP, the validation engineer will be able to build a test environment
by instantiating one or more such models in the test bench. Fig 2.12 shows
the complete picture.

Design under test Model M1

Model M2

Interface + Assertions

Test Environment

Fig. 2.12. Test environment using a verification IP

More recently several methodologies have been proposed for developing
verification suites. These include the e Reuse Methodology, RVM for Open
Vera and VM for SystemVerilog. These verification methodologies provide
guidelines for structuring the test environment using models, defining the
coverage points, and monitoring the progress of coverage driven constrained
random test generation.

What are the steps and the issues in developing the core assertion IP? The
steps are intuitively simple, but the issues are many. For example, the issues
in developing an assertion IP for a formal (static) property verification tool
are quite different from that for dynamic property verification. Data path
properties such as verifying whether a transfer protocol uses big endian or
little endian memory addressing is not a major issue for dynamic property
verification, but may run into capacity issues for a FPV tool. Most of the
existing styles are evolving, and it is possibly premature to expect a single
undisputed development style. Nevertheless, we shall highlight some of the
design choices in the main steps. These are purely our own insights based on
developing several verification IPs, such as ARM AMBA Bus, IBM Corecon-
nect, Hypertransport and PCI XP.
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2.4.1 The Main Steps

The development of an assertion IP typically starts with a design/protocol
specification. The tasks involved in building an assertion IP are as follows –
these are not necessarily executed in the given order.

1. Identifying the functional properties. The complexity of this task varies
largely with the clarity and details provided in the design specs. For ex-
ample, we found the ARM AMBA Bus specification to be particularly
well documented. This was more of an exception than the rule, since de-
sign specs often have lots of ambiguity and this accounts for a significant
fraction of the logical bugs in the design.

2. Identifying the interface. This represents the task of identifying the set
of signals that should be made visible to the assertion monitor. In other
words, these are the signals over which the assertions will be written. In
some cases this task is not obvious.

For example, let us consider the task of CRC checking on packets in the
PCI XP protocol. In order to execute the CRC check we need the whole
packet, but the packet is broken down into words and transmitted over
many cycles. PCI XP has several properties that define the behavior when
a CRC check fails. There are two options for checking these properties:

• We locate the signal that indicates CRC check match/fail in the des-
tination endpoint, and use that signal to trigger the assertions that
relate to actions taken on CRC failure. In this case, we need the single
Boolean signal at the interface.

• We make the receive-buffer at the destination endpoint visible at the
interface. In this case the interface definition should call the CRC
function to determine whether the buffer contents are valid, and then
use the result to trigger the appropriate properties.

In the first case, we are implicitly assuming that the CRC checker at the
destination endpoint is functionally correct. In the second case the CRC
check is part of the verification effort. The first approach is clearly more
amenable for formal verification, since the interface is light-weight – but
the functional correctness of the CRC checker at the destination endpoint
must be verified separately.

3. Coding the assertions. The same set of properties may be expressed in
different ways in a given language. We will study some coding styles later
in this section.

4. Evaluating the consistency of the assertion IP. Since assertion IP devel-
opment is a non-trivial task, mistakes are common. In Chapter 4 we will
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study some of the common forms of inconsistencies, and formal methods
for detecting such inconsistencies.

5. Evaluating the completeness of the assertion IP. One of the main chal-
lenges of formal property verification comes from bugs which like to hide
between the design intent and the formal specification. We will present
formal methods for evaluating the coverage of an assertion IP in Chapter 5
and Chapter 6.

In the remainder of this Chapter we will focus on the styles for coding
assertions in an assertion IP.

2.4.2 Coding Styles: Event and State-based Checkers

The easiest way to present the architectural styles for assertion IPs is through
an illustrative example. The relative benefits of these styles become apparent
when one attempts to code a specification having many properties. Never-
theless we shall make an attempt to convey the basic ideas through a toy
example.

The MyBus Protocol

We consider a simple Bus protocol that supports multiple master devices,
multiple memory-mapped slave devices, and a single arbiter. The Bus has 64-
bit multiplexed address and data lines. During a transfer, address and data
are time multiplexed on these 64 lines, with address and data appearing alter-
nately in address and data cycles respectively. We will focus on the behavior
of master devices. The master interface is shown in Fig 2.13.

Master

Interface

req
gnt

rdy

DADDR (Data / Address)

R/W

Fig. 2.13. Master interface for the MyBus protocol

A master interface is IDLE when the master device does not intend to
perform a transfer. When the master intends to start a transfer, it raises its
request line, req, and waits for the arbiter to return a grant, gnt.
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On getting a gnt, the master floats the address in the Bus and waits from
the next cycle onwards for the rdy signal from the slave device. We refer to
this phase of the transfer as the ADDRESS cycle.

The rdy signal from the slave indicates that the slave is ready for the
transfer – on receiving this signal the master enters the DATA cycle and does
the following:

1. In the case of a write transfer, it floats the data on the Bus.

2. In the case of a read transfer, it expects the slave to produce the data on
the Bus.

The intent to read/write is indicated by a R/W signal – high indicates
write intent, low indicates read intent. In both cases, the slave is expected to
lower the rdy signal in the data cycle and raise it again in the next cycle or
whenever it is ready for the next transfer. After each data cycle, the master
may start another address cycle by floating the next address on the Bus. At
any point of time the master can return to the IDLE state by lowering the req
line, which signals the end of the transfer to the arbiter. A sample transfer is
shown in Fig 2.14.

T1 T2 T3 T4 T5 T6 T7 T8 T9

req
gnt

clk

Data/Addr

rdy

Master state

D1 A2 D2

IDLE WAIT INIT ADDR DATA ADDR DATA IDLE

A1

Fig. 2.14. A sample transfer for the MyBus protocol

We choose the following properties of the MyBus protocol for our analysis.

1. The protocol is non-preemptive. Once granted, the master owns the Bus
until it lowers its req line.

2. If the master is in the ADDRESS cycle, it should not change the address
floated in the Bus until it receives the rdy signal from the slave.

3. Each DATA cycle is of unit cycle duration.
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Let us start by coding these properties directly in SVA. The first property
can be expressed as:

property NoPreemption;
@(posedge clk)
$rose(gnt) |− > ##1 gnt [*1:$] ##0 !req ;

endproperty

The predicate $rose(gnt) is true in a cycle if the signal gnt rose in that
cycle.

The triggering condition for the second property is that the master must
be in the ADDRESS cycle. How do we express that the master is in the AD-
DRESS cycle? This is a non-trivial question. For example, we may attempt
to express the intent through the following property:

property IncorrectAddressStable;
int x;
@(posedge clk)
(req && gnt && !rdy, x = DADDR)

|− > ##1 (x == DADDR) ;
endproperty

The property says that the address lines must remain stable when the
master has control of the bus (given that req and gnt are high), but the slave
is not ready (that is, rdy is low).

On closer inspection of Fig 2.14 we find that the antecedent of the above
property is not quite correct. This is because the protocol multiplexes the
address and data lines, and the antecedent matches at T6 also. In order to
differentiate between the ADDRESS cycle and the DATA cycle, we may write
the property as:

property AddressStable;
int x;
@(posedge clk)
(req && gnt && !rdy && !$fell(rdy), x = DADDR)

|− > ##1 (x == DADDR) ;
endproperty

The predicate !$fell(rdy) excludes T6 from being treated as an AD-
DRESS cycle.

The third property requires us to identify the DATA cycle and express
that the master does not spend consecutive cycles in this phase. The master



2.4 Architectural Styles for Assertion IPs 53

is in the DATA cycle when gnt is high, and rdy fell in this cycle. We intend
to express that this combination is never true on two consecutive cycles.

property SingleCycleDataTransfer;
@(posedge clk)
(gnt && $fell(rdy)) |− > ##1 (!gnt || !$fell(rdy)) ;

endproperty

IDLE

DATA ADDR

WAIT

INIT

req && !gnt

!req

req && !rdy

req && rdy

req

!req req && !gnt

req && gnt

!req

req && gnt

!req

!req

req

Fig. 2.15. State Machine for the MyBus Master Device

There are several problems in writing properties in this way, particularly
the last two.

1. The antecedent parts of the implications become large and complex. This
is because the antecedent typically refers to some state of the protocol, and
expressing that state in terms of the signal values is not straightforward.
In many cases, the signal values do not uniquely identify the state of the
protocol, and one has to encode recent history (as sequence expressions)
in the antecedent in order to uniquely indicate the state at which the
property becomes applicable.

2. The properties are not readable. Looking at the SVA code for the third
property, it is hard to read the intent of the property, unless explicit
documentation proves that the expression, gnt && $fell(rdy), identifies
a DATA cycle.

3. Since the antecedent parts of the implications are not obvious, errors in
coding the properties are common and debugging is hard.

In order to get around the above problems of such an event-based coding of
properties, validation engineers employ a state-based coding of the properties.
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In this approach, we first create an abstract state machine for the protocol
and code it in SVA. The assertions are then coded in terms of these states.

Fig 2.15 shows an abstract state machine for the MyBus master device.
Fig 2.16 shows the structure of the master interface definition with an encod-
ing of this state machine in SystemVerilog.

The state machine contains only sufficient information that carries it
through the major phases of the protocol. For example, the status of the
gnt lines are not indicated in the DATA and ADDR cycles, though this is
relevant to the first property.

interface MasterInterface( input req,

input gnt,

input rdy,

input int DADDR,

input clk ) ;

logic [2:0] state;

‘define IDLE 3’b000

‘define WAIT 3’b001

‘define INIT 3’b010

‘define ADDR 3’b011

‘define DATA 3’b100

always @ (posedge clk)

begin

case (state)

‘IDLE: state <= req? (gnt? ‘INIT : ‘WAIT) : ‘IDLE ;

‘WAIT: state <= req? (gnt? ‘INIT : ‘WAIT) : ‘IDLE ;

‘INIT: state <= req? ‘ADDR : ‘IDLE ;

‘ADDR: state <= req? (rdy? ‘DATA : ‘ADDR) : ‘IDLE ;

‘DATA: state <= req? ‘ADDR : ‘IDLE ;

endcase

end

----

// Property and Assertion definitions ....

----

initial begin

state = ‘IDLE;
end

endinterface

Fig. 2.16. State machine model defined inside an Interface
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We can now use the state machine to define our properties. The first
property remains as it is. The second and third properties are rewritten as
follows:

property AddressStable;
int x;
@(posedge clk)
(state == ‘ADDR, x = DADDR) |− > ##1 (x == DADDR) ;

endproperty

property SingleCycleDataTransfer;
@(posedge clk)
(state == ‘DATA) |− > ##1 !(state == ‘DATA) ;

endproperty

The antecedents of the implication are now intuitively simple, and close
to the English language statements of the properties. For large and complex
protocols, this turns out to be a significant benefit.

The main challenge in this approach is in creating the state machine model
for the protocol – specifically in deciding the level of details that should go
into the state machine model. If we make the state machine too detailed, then
the coding of the state machine will become complex, unreadable and error
prone. If we make it too abstract, we will not be able to simplify the coding
of the properties. Therefore a hybrid approach seems to be the best choice.

Typically the state machine model of a protocol can be factorized into a set
of simple state machine models. For example, the state machine of Fig 2.15
may be factorized into two state machines, as shown in Fig 2.17. The first
state machine describes the state of the Bus access in terms of the req and
gnt lines. The second state machine is triggered by the outedge from the INIT
state of the first, and describes a more detailed state of the master during the
transfer.

IDLE

TRANSFER

DATA

WAIT

INIT

req && !gnt

req && gnt
!req

req

ADDR !rdy

rdy

Bus Access State Machine Transfer State Machine

start

startreq && !gnt

req && gnt

!req

!req

!req

Fig. 2.17. Factored State Machines for the MyBus Master
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Suppose we encode the first state machine in terms of the 2-bit variable,
state1, and the second state machine in terms of the 1-bit variable, state2. We
may rewrite the properties again as follows:

property AddressStable;
int x;
@(posedge clk)
(state1 == ‘TRANSFER && state2 == ‘ADDR, x = DADDR)

|− > ##1 (x == DADDR) ;
endproperty

property SingleCycleDataTransfer;
@(posedge clk)
(state1 == ‘TRANSFER && state2 == ‘DATA)

|− > ##1 !(state2 == ‘DATA) ;
endproperty

The advantage of the factorized state machine is that the individual state
machines are very simple. It allows us to use only the relevant signals in the
factored machine.

We found factored state machine models to be very useful when the pro-
tocol contains multiple concurrent activities which overlapped in time. For
example, in most modern Bus protocols the address and data lines are differ-
ent (not multiplexed) and the address and data phases are pipelined during a
transfer – the address for the next transfer is floated at the same time when
the previous data is being read/written. In such cases it helps to model the
status of the address lines and the status of the data lines as separate state
machines.

2.5 Concluding Remarks

This chapter presented the basics of formal property specification. Languages
such as SVA and PSL are based around a core set of temporal operators.
The operators are quite simple, but the way in which we allow them to be
combined dictates both the expressive power of the language, as well as the
complexity of checking properties specified in that language.

A basic exposure to the underlying temporal logics builds the foundation
for learning the exisiting property specification languages and their future
derivatives. In other words, the difference between static constraints on vari-
ables and temporal constraints on the way a variable is allowed to change over
time, is a fundamental concept that helps in developing the style of property
specification. Like any other new language paradigm, this basis is not built
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overnight, but cultivated through experience. The remainder of this book will
attempt to establish that the expected returns from this effort is rich and
promising in terms of reducing overall validation effort.

One question is being pondered upon by many chip design companies –
Who should spend the effort of mastering the art of formal property specifica-
tion? The answer possibly lies in finding out who benefits most from property
verification. Off course everyone benefits if the chip has fewer errors and faster
turn-around time, but this common goal does not typically unify the finer dy-
namics within the chip design flow. Micro-architects are often notoriously
resistant towards writing formal properties, designers do not often consider
themselves to be a part of the validation flow, validation engineers are of-
ten not sure whether the properties that they code actually mean what they
expect them to mean. We will return to these issues in Chapter 8.

Existing property verification tools have to be supported by an arsenal
of new formal tools that will enable the validation engineer to evaluate the
formal specification – in terms of correctness and completeness. We will pick
up these challenges in Chapter 4 and Chapter 5.

2.6 Bibliographic Notes

The notion of temporal reasoning is not new. Temporal logics were originally
developed by philosophers for reasoning about events across temporal worlds
using natural language [69]. Pnueli was the first to use temporal logics to
reason about the correctness of concurrent progams [89]. This was also the first
time that Linear Temporal Logic was used for reasoning about the temporal
behavior of programs.

In [35], Clarke, Emerson and Sistla proposed the use of Computation Tree
Logic for the specification and verification of branching time properties. This
was also one of the first papers to present algorithms for temporal logic model
checking.

The notion of extending the basic temporal operators with quantitative
constructs was introduced by Emerson, Mok, Sistla and Srinivasan in [53]. In
this paper, the authors introduced the logic RTCTL, which is the real time
extension of CTL. Extensions to dense real time temporal logics was presented
by Alur, Courcoubetis and Dill in [4, 5, 6].

The adoption of temporal logics in design validation started with several
independent developments of property specification languages for facilitating
the specification of formal design properties. Roy Armoni and others devel-
oped a language called Forspec [10] for Intel, and proceeded to build a com-
plete formal verification tool suite around this language. The language PSL
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originates from the language called Sugar developed at IBM labs at Haifa,
Israel [101]. Synopsys developed a language called Open Vera Assertions [84]
for formal property specification. The notion of using property libraries for
facilitating the task of specifying properties was also born with the OVL li-
braries [85].

Powered by a consortium of chip design and EDA companies, several tech-
nical committees within Accellera have contributed towards the arduous task
of developing language standards for property specification languages. The
Accellera Formal Verification Technical Committee chaired by Harry Foster
and Erich Marschner developed the standards for PSL [92], which is now be-
ing adopted as an IEEE standard. Foster and Marschner were also involved in
the development of SVA as a part of the Accellera SystemVerilog standards,
which again has been adopted by IEEE. OVL [85] is a collection of libraries
standardized by the Accellera OVL technical committee – for use by engineers
who do not want to write properties in SVA or PSL.
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In the early stages of the inception of formal property verification, one question
is heard quite often among design validation engineers – Do I need to know
the algorithms for formal property verification in order to use the technology?

Given the state of existing FPV technology, the answer to this question is
not entirely negative. Fortunately, what is required is a basic awareness of how
the FPV tool works. Formal verification is not a push-button solution to the
validation problem. It is a methodology - and the right methodology enables
the validation engineer to get around the many limitations of the FPV tools.
For example, some of the frequently asked questions are:

• Why does the tool get into capacity issues? What are my options if this
happens on a given design?

• What is a bounded model checker? When do I go for it?

• What are BDD-based and SAT-based tools? Which one do I want?

• How does the tool use the assume constraints during FPV?

The objective of this chapter is to provide a general idea about the FPV al-
gorithms so that the answers to the above questions become apparent. The
intention is to present the methodology without introducing too many for-
malisms. Readers interested in more details on the working of these formal
methods are referred to the excellent text by Clarke, Grumberg and Peled on
model checking [38].

Since our goal is a general awareness of the issues in FPV techniques, we
will restrict our attention to the basic temporal operators. This will enable
us to study the basic difficulties of model checking without getting into the
intricacies of verifying a more complex language such as SVA or PSL.

How Does the Property Checker Work?
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In this chapter, we will continue with the arbiter example presented in
Chapter 1. Let us recall the arbiter example.

FF

FFr1

r2

g1

g2

clk

00 01

1110

00 0101

00

1x
1x

1x

0x

1x

0x

start state

State: (g1,g2)
Input: (r1,r2)

Fig. 3.1. Arbiter implementation and state machine

Example 3.1. We consider the specification of a 2-way priority arbiter having
the following interface:

mem-arbiter( input r1, r2, clk, non-input g1, g2 )

r1 and r2 are the request lines, g1 and g2 are the corresponding grant lines,
and clk is the clock on which the arbiter samples its inputs and performs the
arbitration. We developed the following properties for the arbiter in Chapter 1:

P1: G[ r1 ⇒ Xg1 ∧ XXg1 ]
P2: G[ ¬g1 ⇒ g2 ]
P3: G[ ¬g1 ∨ ¬g2 ]
P4: G[ ¬r1 ∧ X¬r1 ⇒ XX¬g1 ]

We also developed an implementation for our arbiter. The implementation
and the state machine of the implementation are shown in Fig 3.1.

It is easy to see (informally) that the implementation has at least two
bugs:

• It refutes P1 when r1 is high for only one cycle. The arbiter asserts g1

for only one cycle, where as P1 requires g1 to be high for two consecutive
cycles.

• If r1 and r2 are both low at some time, then P2 fails in the next cycle
since both g1 and g2 are low.

In this Chapter we will demonstrate the way in which such bugs are detected
by the property verification techniques. �

How Does the Property Checker Work?



3.1 Checkers are State Machines! 61

3.1 Checkers are State Machines!

The first important observation in formal property verification is that the
property checker needs to maintain its state. In other words, based on what
it has seen so far, the checker has a state that determines what needs to be
checked now (in the present cycle) and what needs to be checked in the future.

Consider the property P1 in Example 3.1. Whenever r1 is asserted, the
checker needs to verify Xg1 ∧ XXg1, that is, it must check g1 in the next
two cycles. We can describe the state of the checker at a given point t in terms
of the property it needs to check from t onwards. For example, if r1 is true at
time t, then it needs to check Xg1 ∧ XXg1 at t, it needs to check g1 ∧ Xg1

at t + 1, and it needs to check g1 at t + 2.

Similarly, consider the property P4 in Example 3.1. If at time t, we have
¬r1 (that is, r1 is low), then the state of the checker at time t can be described
by the property, X¬r1 ⇒ XX¬g1. If r1 goes high at t+1, then the property
is satisfied. Otherwise, the state of the checker at time t + 1 can be described
by the property, X¬g1. At time t+2, this leads to failure if the arbiter asserts
g1, and success otherwise.

A checker may therefore be represented by a state machine. The first
step of formal property verification is to create this state machine from the
property. We will outline the methodology for this task through the following
property:

ϕ : p U (q U r)

Formally the input to the automaton is the state of the module under test
(that is, the current values of the signals) and the state of the automaton
encodes what needs to be checked henceforth. The set of states, S, of the
automaton consists of all subformulas of the given property, ϕ, and their
negations.

 q U r

    p U (q U r)

TRUE

 r

q r

q

p

TRUE

Fig. 3.2. Automaton for the property: p U (q U r)

For example, the subformulas of ϕ includes, p, q, r, q U r, and ϕ itself.
A simplified automaton for this property is shown in Fig 3.2. Initially the
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p U (q U r)

p p,q p q q r

q U r

Fig. 3.3. A run for the property: p U (q U r)

checker needs to check the whole property p U (q U r) – hence the initial
state is the root state. At this state we have the following possibilities:

1. If the module asserts r, the property is satisfied, and we reach the TRUE
state.

2. If the module does not assert r, then we have three cases.

a) The module asserts q, but not p. In this case, we need to check q U r
from the next state onwards – hence the checker automaton moves to
the state labeled by q U r.

b) The module asserts p, but not q. In this case, we need to check
p U (q U r) from the next state onwards – hence the checker au-
tomaton stays at the root state.

c) What happens if the module asserts both p and q? In this case, can
it simply look for q U r? The answer is negative. Consider the valid
run shown in Fig 3.3. In the second state of this run, both p and q
are true. If we abandon the check for p U (q U r) and only check
for q U r from the second state onwards, then we will reach failure
(incorrectly) in the third state, since neither r nor q is true at the third
state. Therefore, the checker needs to check both p U (q U r) as well
as q U r from the second state. This represents a non-deterministic
choice between staying in the state labeled by p U (q U r) and moving
into the state labeled by q U r.

State machines for properties, such as the one shown in Fig 3.2, are for-
mally known as weak alternating automata (WAA). Specifically, it has been
shown that a special class of WAAs, known as very weak alternating automata
(VWAA) represent exactly the class of properties that can be defined using
LTL formulas[74].

There are standard algorithms for converting a non-deterministic finite
automaton into a deterministic finite automaton. The deterministic equivalent
of the non-deterministic VWAA for a property is exactly the desired checker
automaton.

What is the size of the checker automaton for a property? This is an im-
portant question for estimating the capacity of several formal methods used

3 How Does the Property Checker Work?
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in FPV and related tasks. To answer this question we need to recall two
important facts:

1. The states of the automaton consists of all subformulas of the property.
Therefore, the number of states of the non-deterministic automaton is
linear in the length of the property.

2. The number of states in the deterministic version of a non-deterministic
automata can be exponential in the number of states of the non-deterministic
automaton. In other words, each state of the deterministic automaton
represents a set of subformulas of the original property, namely the set of
subformulas that needs to be checked from that state onwards.

The above observations lead us to conclude that the size of the deterministic
checker automaton is exponential in the length of the property. If our property
involves large bit vectors (such as data and address buses), then this figure
can become prohibitive.

3.2 The Verification Strategy

The task of verification may be interpreted as a search for a run of the im-
plementation that refutes the property. If we find such a run, then we have
found a bug.

The checker automaton for a property accepts all runs that satisfy the
property. Therefore we create the checker automaton for the negation of the
given property. This automaton accepts all runs that refute the original prop-
erty. Our objective is to check whether the implementation has any of these
runs. This can be done in broadly two ways:

1. Co-simulate the implementation with the checker automaton and report
a bug whenever the checker automaton for the negation of the property
reaches the TRUE state. This is what we do during dynamic property
verification.

2. Take the formal product of the state machine of the implementation with
the checker automaton of the negation of the property. If the product is
non-empty, that is, it contains at least one run, then we have found a bug.
Otherwise the implementation is guaranteed to satisfy the property. This
is the methdology followed in static or formal property verification.

In the next few sections we will elaborate the above approaches with examples.
We will also examine the main engineering issues that determine the feasibility
and scalability of these approaches.
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3.3 Dynamic Property Verification

Dynamic property verification is making significant penetration in pre-silicon
validation of digital chip designs. The advantage of this approach is that
it does not suffer from major capacity limitations. Consequently it is being
adopted for the verification of system level architectural properties. The flip
side of this approach is that it covers only as much of the behaviors as are
exercised by the simulation test bench. A given error will not be detected in
a given dynamic property verification run if the scenario in which it occurs is
not exercised in that run.

Why does dynamic property verification not suffer from serious capacity
issues? An intuitive understanding of the property monitor that checks the
properties during simulation will lead us to the answer.

Let us consider the following approach for dynamic property verification
for a given property ϕ:

1. Create the checker automaton for ¬ϕ and create its deterministic equiv-
alent.

2. Start the simulation of the implementation with the checker automaton
at the start state.

3. After each simulation step, determine the next state of the checker au-
tomaton by presenting the signal values at the end of the simulation step.

4. If the checker automaton reaches an accepting state then report the exis-
tence of a bug. Otherwise, proceed to the next simulation step.

The main additional overhead in this approach is in the first step, where we
create the checker automaton and then create its deterministic version. If the
length of the property is large (say, it has large bit-vectors), then the checker
automaton can be large.

Actually we can do better. We can create the checker automaton on-the-
fly. At the end of each simulation cycle we only require the possible next states
of the checker automaton. Since we get to know the signal values at the end
of each cycle, we can use the information to prune one or more next states of
the checker automaton.

How can we create a checker automaton on-the-fly? The answer lies in the
following simpler question: If we are to check a property ϕ at a given time t,
what do we need to check at time t + 1 for a given valuation of the signals
at time t? The answer to this question recursively gives us an answer to the
former question.

3 How Does the Property Checker Work?
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Temporal properties can be recursively re-written in terms of Boolean
propositions that must be satisfied by the current values of the signals and
temporal properties that must hold in the next state. The rewriting rules are
as follows:

f U g = g ∨ (f ∧ X(f U g))
Fg = g ∨ XFg

Gf = f ∧ XGf

At each time step we take the property that must be checked at that time
step and rewrite it using the above rules. At the end of the simulation step, we
substitute the current signal values in the right hand side (RHS) to determine
the temporal property that needs to be checked in the next cycle. We proceed
to the next simulation step with this new property.

Example 3.2. Suppose the designer wants to forbid the satisfaction of the prop-
erty:

ϕ = p U (q U r)

In other words, the correctness property is ¬ϕ, and in order to verify it we
search for a match of ϕ. We start the simulation with the property ϕ at t = 0.
Let us assume that the initial signal values are p = 1, q = 0, r = 0. At t = 0
we rewrite ϕ as:

ϕ = (q U r) ∨ (p ∧ X(p U (q U r)))
= (r ∨ (q ∧ X(q U r))) ∨ (p ∧ X(p U (q U r)))

Substituting the initial values, p = 1, q = 0, r = 0, we get:

X(p U (q U r)) = Xϕ

Therefore in the next cycle we need to check ϕ again. In other words, the
checker automaton stays in the start state (see Fig 3.2). We proceed to the
next simulation step. Suppose the signal valuations in the next cycle are p =
0, q = 1, r = 0. Again we rewrite ϕ as above and substitute the present state
signal values. This time the resulting property for the next cycle is:

ψ = q U r

In the next cycle we will rewrite ψ using the same rules:

ψ = r ∨ (q ∧ X(q U r))

Suppose simulation now returns p = 1, q = 0, r = 1. Substituting this in the
above formula yields true. Hence we have a match for ϕ, which is in turn is a
refutation of our correctness property. Therefore, we have found a bug! �
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Example 3.3. As another example, let us consider the arbiter of Example 3.1
and the property P1, that is:

P1 : G[ r1 ⇒ Xg1 ∧ XXg1 ]

We will first create the negation of P1 - let us call it ϕ:

ϕ = F ( r1 ∧ (X¬g1 ∨ XX¬g1))

At the start state, we need to check ϕ – we will therefore rewrite it as:

ϕ = (r1 ∧ (X¬g1 ∨ XX¬g1)) ∨ Xϕ

As long as the test bench does not assert r1, the first term in this formula
will be false, and therefore our checker automaton will stay at the start state,
that is, it will check ϕ itself in every cycle.

When the test bench drives r1 (say at time t), the new property will be:

(X¬g1 ∨ XX¬g1) ∨ Xϕ

which is obtained by substituting r1 = 1 in ϕ. Therefore, in the next cycle,
t + 1, the checker will look for:

ψ = ¬g1 ∨ X¬g1 ∨ ϕ

= ¬g1 ∨ X¬g1 ∨ ((r1 ∧ (X¬g1 ∨ XX¬g1)) ∨ Xϕ)

In response to the stimulus r1 = 1, the arbiter implementation of Example 3.1
will assert g1 at time t + 1. Suppose that the test bench drives r1 = r2 = 0 at
time t + 1. Substituting this information in ψ gives us:

X¬g1 ∨ Xϕ

which yields the property:
η = ¬g1 ∨ ϕ

for the checker automaton at t+2. In the response to the stimulus r1 = r2 = 0
at time t + 1, the arbiter will assert g1 = 0 at time t + 2. This will satisfy η
and will indicate a match of ϕ. Since ϕ is the negation of P1, we have found
a refutation of P1, and thereby uncovered a bug! �

Our success in finding the bug of Example 3.3 relies on the assumption
that the test bench will drive r1 = 1 at some time t and then drive r1 = r2 = 0
in the next cycle, t+1. If the test bench never drives such a sequence of inputs,
the bug will escape detection.

This is one of the major issues in dynamic assertion based verification.
On the one hand the industry is moving towards coverage driven randomized

3 How Does the Property Checker Work?
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test generation to relieve the validation engineer from writing a large number
of directed tests. On the other hand assertions often describe temporal prop-
erties over complex corner case behaviors that rarely occur in practice, and
therefore have a low probability of occurrence in a randomized test genera-
tion environment. Writing directed tests for such complex cases is non-trivial.
Since the checker automaton actually interprets the property over simulation
runs, it makes sense to use the automaton to determine the right kinds of test
inputs for the given property. This is one of the main challenges in dynamic
ABV. We present some of our research on this topic in Chapter 7.

3.4 Formal Property Verification

Why do we need formal property verification? The most formidable argument
in favor of FPV is that the formal properties are checked exhaustively, that
is, for all possible behaviors of the module-under-test under all possible input
scenarios. The number of possible inputs at a given time t for a module having
k inputs is of the order of 2k. For verifying a temporal property we may have
to consider input sequences over multiple cycles. The number of possible input
sequences over n cycles is of the order of n2k

, which grows alarmingly with n
and k.

For example, consider the property P4 of Example 3.1:

P4 : G[ ¬r1 ∧ X¬r1 ⇒ XX¬g1 ]

To verify this property, we need to look at input sequences over two cycles. In
each cycle, we have 22 = 4 possible input vectors over the two inputs, r1 and
r2. Therefore we have 24 = 16 input sequences of length 2. If we had an arbiter
that arbitrates over 6 request lines, we would need to consider 226

= 264 input
sequences, which is quite formidable.

Therefore the task of verifying properties by exhaustive simulation requires
too many test sequences to be feasible in practice. FPV guarantees that the
property is automatically verified over all such test sequences. If the property
is critical for functional correctness, this guarantee is very valuable.

The formal model checking methodology for verifying an LTL property, ϕ,
over an RTL module, M , is intuitively quite simple:

1. We create the checker automaton for ¬ϕ.

2. We extract a finite state machine, J , from the module M .

3. We compute the product of J with the checker automaton.
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4. If the product contains a run, we have established that the module M has
a run which satisfies ¬ϕ (and therefore, refutes ϕ). We report the existence
of a bug, and report the run as the counter-example (or witness).

5. If the product is empty (it contains no run), then we report that M satisfies
the property, ϕ.

The main bottleneck of FPV tools is in Step 2. We will discuss this issue
shortly.

When a module fails to satisfy a property, the FPV tool will find the
bug and produce a counter-example trace. The counter-example establishes
the claim of the FPV tool that it has found a bug. On the other hand, if a
property holds on a module, then the FPV tool finds out that there is no bug
(by checking the emptiness of the product), but has no succinct way to prove
this result to the validation engineer.

This is a fundamental issue with many known problems. For example, in
the Boolean CNF satisfiability problem, it is easy to produce a witness when
a given property is satisfiable (any satisfiable assignment to the variables
acts as a witness), but there is no succinct proof to show that a property is
unsatisfiable.

Therefore the validation engineer has the following problem. If the FPV
tool returns a bug, it also produces the counter-example trace as a proof. If
the FPV tool returns no bugs, then we have no easy way to verify whether
the tool is right. We will return to this issue when we dicuss FPV coverage
methodologies.

We will now demonstrate the FPV methodology by walking through each
of its steps. We will use Example 3.1 as our running example.

3.4.1 Creating the Checker Automaton

In Section 3.1 we outlined the methodology for converting properties into
checker automata. There are a few subtle issues that need to be considered
while using these automata in FPV. We will study these issues through ex-
amples.

Let us consider the property P2 of Example 3.1, namely:

P2 : G[ ¬g1 ⇒ g2 ]

The property ensures that the bus is always owned by some master. In order
to verify this property over the implementation shown in Example 3.1, we will
create the checker automaton for the negation of P2, that is:

3 How Does the Property Checker Work?
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TRUE

F [¬g1 ∧ ¬g2] g1g2

¬g1 ∧ ¬g2

Fig. 3.4. Simplified checker for F [¬g1 ∧ ¬g2]

ϕ : F [ ¬g1 ∧ ¬g2 ]

Fig 3.4 shows a simplified VWAA for ϕ.

How would we verify this property by dynamic verification? Going by the
methodology presented in Section 3.3, we will rewrite this property as follows:

ϕ : (¬g1 ∧ ¬g2) ∨ Xϕ

We will then evaluate the Boolean property:

ψ : ¬g1 ∧ ¬g2

on the values of g1 and g2 in the current simulation cycle. If ψ evaluates to true
then we report a match for ϕ. Otherwise, we relegate the remaining term, Xϕ,
for the next cycle. If ψ never matches up to the end of the simulation we will
report that: ϕ never matched during simulation, and hence the implementation
possibly satisfies P2.

Dynamic verification checks the properties up to the number of simulation
cycles. For FPV we must report the truth of the property considering runs
of all lengths. This is made possible by the fact that the implementation has
a finite number of states. Therefore every run must eventually loop back to
some previous state. The key lies in detecting the loops and interpreting the
property appropriately over the loop.

There are broadly two methodologies for checking the properties. These
are:

1. On-the-fly Automata Theoretic Approaches. This methodology is similar
in flavor to the dynamic verification approach. We perform a depth-first
traversal over the state machine of the implementation. Along each path
generated by the depth-first traversal, we evaluate the properties dynam-
ically. If the path loops back to some previous state we use a set of rules
to determine whether the property holds on the path. For example, if we
encounter a p-labeled loop while checking for the property Gp, we will ac-
cept the loop as one that satisfies Gp. On the other hand, if we encounter a
¬p-labeled loop (one in which every state is labeled by ¬p) while checking
for the property Fp, then we will reject the loop, since it never reaches a
p-labeled state.
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2. Tableau based Model Checking. In this methodology we will construct the
checker automaton in a slightly different way, as a closed system. The
resulting automaton, called a tableau will contain all paths that satisfy the
property. We will take the product of the tableau with the state machine
from the implementation and check for emptiness.

We will elaborate the second approach in this section, and present a vari-
ation of the first approach while describing SAT-based approaches.

Creation of the Tableau

The tableau is simply a different representation of the checker automaton. It
is a state machine, where each state bit is an elementary subformula of the
given property. Intuitively, these elementary subformulas are of two types -
Boolean formulas over the present state variables, and temporal subformulas
over future state variables.

The set EL(f) of elementary subformulas of f is recursively defined as
follows:

• EL(p) = {p} if p is a signal or atomic proposition

• EL(¬g) = EL(g)

• EL(g ∨ h) = EL(g) ∪ EL(h)

• EL(g ∧ h) = EL(g) ∪ EL(h)

• EL(Xg) = {Xg} ∪ EL(g)

• EL(g U h) = {X[g U h]} ∪ EL(g) ∪ EL(h)

For example, the set of elementary subformulas of the property:

ϕ : F [ ¬g1 ∧ ¬g2 ]

consists of g1, g2, Xϕ. These three elementary subformulas represent the state
bits of the tableau, and thereby yields 23 = 8 states.

The elementary subformulas are really the ones whose truth dictates the
state of the checker. For example, the property ϕ above can be true at a state
in the following two ways:

1. Both g1 and g2 are false at that state. The truth of Xϕ is irrelevant here
– hence these cases are represented by two states of the tableau, namely:
{¬g1,¬g2,Xϕ} and {¬g1,¬g2,¬Xϕ}.

3 How Does the Property Checker Work?
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2. g1 or g2 is true at that state, and Xϕ is also true at that state. These
cases are represented by three states of the tableau, namely: {g1, g2,Xϕ},
{g1,¬g2,Xϕ} and {¬g1, g2,Xϕ}.

The second case needs more attention. Xϕ is true at a state only if ϕ is
true at the next state. Therefore, the tableau must have a transition from a
state satisfying Xϕ to a state satisfying ϕ. Similarly the tableau must have
transitions from states satisfying X¬ϕ to states satisfying ¬ϕ. Fig 3.5 shows
the resulting tableau.

¬g1,¬g2,¬Xϕ

¬g1,¬g2, Xϕ

¬g1, g2,¬Xϕ¬g1, g2, Xϕ

g1,¬g2,¬Xϕ

g1,¬g2, Xϕ

g1, g2,¬Xϕ

g1, g2, Xϕ

Fig. 3.5. Tableau for F [¬g1 ∧ ¬g2]

Let us refer to runs that satisfy ϕ as ϕ-satisfying runs. It is easy to see that
every ϕ-satisfying run belongs to the tableau and that these runs start from
the states which are either labeled by ¬g1∧¬g2, or are labeled by Xϕ. We shall
refer to these states (shown with double borders in Fig 3.5) as ϕ-satisfying
states. Every run that starts from the rest of the states gets trapped between
the three states (¬g1, g2,¬Xϕ), (g1,¬g2,¬Xϕ), (g1, g2,¬Xϕ), and therefore
does not satisfy ϕ.

Is every run starting from a ϕ-satisfying state a ϕ-satisfying run? Unfor-
tunately no. Consider the runs that remain forever within the three states,
(¬g1, g2,Xϕ), (g1,¬g2,Xϕ), and (g1, g2,Xϕ). These runs do not eventually
reach any state that satisfies ¬g1∧¬g2, and are actually not ϕ-satisfying runs.
Therefore only those runs are ϕ-satisfying runs, that start from ϕ-satisfying
states but do not get trapped in g1 ∨ g2 satisfying states. In general for any
property of the form, f U g, the run must not get trapped in ¬g labeled states.
This is a typical instance of a fairness constraint.

As per our verification strategy, we seek a ϕ-satisfying run in the im-
plementation. This may be done by computing the product of the tableau
with the state machine of the implementation and then checking whether the
product has any fair run starting from a ϕ-satisfying state.
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3.4.2 FSM Extraction

Since FPV must necessarily consider every possible run of the implementa-
tion, FPV techniques require the state machine model of the implementation.
Building the state machine model of the implementation is the single most
complex step of FPV, and accounts for the capacity limitations of existing
tools.
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State:(g1,g2,r1,r2)

Fig. 3.6. State machine: Open and Closed forms

Fig 3.1 shows the state machine of our running example – the arbiter.
Since the temporal properties do not distinguish between input and output
signals, we must transform this state machine into a closed system – where
inputs are also part of the state definition. This is a simple transformation,
and the new state machine model is shown besides the original one in Fig 3.6.
Each state of the original machine is now a cluster of four states (shown
as A, B, C, and D) – the four states in a cluster differ only in the input
bits, that is, they have the same values for g1 and g2. Each transition of
the original machine is represented by four transitions. To save space, Fig 3.6
shows these edges as single edges leading to a block of states. For example, the
transition from state 01 to state 00 on input 00 in the original state machine
is now represented by four non-deterministic transitions, namely (0100, 0000),
(0100, 0001), (0100, 0010) and (0100, 0011). We show these four transitions in
Fig 3.6 by a single edge from the state 0100 to the block A, which consists
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of the four possible next states. The new state machine is non-deterministic,
simply because the next state inputs are not known a priori.

It is interesting to note that the complexity of both CTL and LTL model
checking is linear in the size of the state machine of the implementation.
Intuitively this means that once we are able to build the state machine model
of an implementation, the task of checking the properties on the state machine
is not too complex.

Synthesis tools have been synthesizing the RTL code of sequential circuits
into hardware for several decades. Sequential circuits are state machines. If
the synthesis tool did not have any problem in creating the state machine from
the RTL, why do FPV tools run into capacity problems while extracting a state
machine model?

The answer lies in concurrency and compositionality. When we have two or
more sequential components in the RTL, we can synthesize each component
as a separate state machine. In hardware, these state machines will run in
parallel (possibly with the same clock). On the other hand, if we are given a
formal property over the signals of one or more sequential components, then
FPV requires the global state machine obtained by computing the product of
the state machines of the components. This product leads to state explosion.

1 2 a

b

c

1a 2b 1c

2a1b2c

M1 M2 M1 X M2

Fig. 3.7. Product of state machines

Fig 3.7 shows the product of two state machines, M1 and M2. In general
if a module M has k component modules, M1, . . . ,Mk, having respectively
n1, . . . , nk states, then M has at least n1 × n2 × . . . × nk states. This figure
grows alarmingly with increase in design complexity, and is popularly known
as state explosion.

How do we contain state explosion in FPV? This is the most burning ques-
tion within the FPV community. Not surprisingly there are many competitive
answers. These include:

1. Compact representations of state machines. Over the last decade, several
interesting ways of representing state machines have been proposed. Two
representations stand out among these in terms of popularity and actual
use in practice. These are Binary Decision Diagrams (BDD) and Boolean
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SAT formulas. The FPV approach with these representations has been
outlined in Section 3.5 and Section 3.6 respectively.

2. Compositional verification. Compositional verification actually refers to
the task of performing FPV without computing the composition of the
component modules! One of the most popular approaches in this area is
that of assume-guarantee verification, where each component module is
verified in isolation under specific assumptions about the behavior of its
environment. The assumptions made while verifying a component must
be guaranteed by the rest of the components.

3. Approximate verification. In approximate verification, we simply remove
some of the components. If these components drive some of the remaining
components, we treat those signals as primary inputs into the remain-
ing components. If the property passes under this restriction, we are able
to guarantee that it holds on the original design. On the other hand, if
the property fails then it may not actually be a bug, since the counter-
example scenario may not be driven by the removed components. However
since FPV tools always produce a counter-example on failure, the valida-
tion engineer can easily verify whether the bug is real by simulating the
counterexample trace. Therefore, this is a safe approach.

4. Design intent coverage. This is a new paradigm for FPV recently proposed
by our research group. In this approach, the verification task is manually
decomposed, but the soundness and completeness of the decomposition
is automatically verified. We believe that this is a very practical way to
handle designs where existing FPV tools run into capacity problems. We
present the details of this approach in Chapter 6.

Doing justice to each of the above approaches is beyond the scope of
this book. The focus of this book is inclined towards the validation engineer
who intends to use a given FPV tool – hence we will only outline those core
approaches that are part of most existing industry FPV tools.

3.4.3 Computing the Product

The final step of our verification strategy is to compute the product of state
machine of the implementation with the tableau of the negation, ϕ, of the
original formal property, and check whether the product contains a fair run
starting from a ϕ-satisfying state of the tableau.

Fig 3.8 shows a fair run that is common between the state machine model
of the implementation shown in Fig 3.6 with the tableau shown in Fig 3.5.
This is one of many runs that may appear in the product of the two machines –
each such run serves as a counter-example for the property P2 of Example 3.1.

3 How Does the Property Checker Work?
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Fig. 3.8. Tableau vs implementation
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FFr1

clk

g1

COI

Fig. 3.9. Cone of influence reduction with G[ r1 ⇒ Xg1 ∧ XXg1 ]

In reality the product computation does not necessarily begin after the first
two steps. Keeping in mind that the product computation is our end-goal, FPV
tools use the properties to perform several standard optimizations upfront, in
order to contain the size of the state machine of the implementation. We will
discuss three of the most widely adopted optimizations here:
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start state state: g1

input: r1
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start state
state: (g1,r1)

Fig. 3.10. Reduced state machine, after COI

1. Cone-of-influence reductions. The idea here is to prune the circuit to re-
move all components that do not (directly or indirectly) influence the
truth of the given property. For example, in order to verify the property:

P1: G[ r1 ⇒ Xg1 ∧ XXg1 ]

on the implementation of Fig 3.1, we observe that the logic for the output
g2 does not influence the truth of this property. We can therefore prune
the circuit as shown in Fig 3.9. The reduced state machine is much smaller,
as shown in Fig 3.10, which contains only those paths that are relevant to
the final product. In order to check P1, we create its negation:

ψ = F [ r1 ∧ (X¬g1 ∨ XX¬g1)]

The bold edges in the closed system representation shown in Fig 3.10
demonstrates a run that satisfies this property and thereby serves as a
counter-example for P1 in the implementation.

Cone-of-influence reductions typically add a lot of value to an FPV tool,
and these are an integral part of most FPV tools. Therefore if the designer
can express the formal specification in terms of small properties over a
few variables, then typically cone-of-influence reductions are able to effect
sufficient pruning to avoid state explosion.

2. Pruning using “assume” constraints. Most property specification lan-
guages will allow the engineer to specify assert statements to describe
the correctness requirements and assume constraints to indicate the as-
sumptions about the inputs, under which the assertions are expected to
hold.

Intuitively, assume constraints can be used to prune the state machine of
the implementation, since we need not consider those runs of the imple-
mentation that violate the assume constraints. In many cases, this can
lead to significant reduction in the size of the reduced state machine.
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Practioners of FPV have also reported an exactly opposite experience at
times with their FPV tools. They have observed that in some cases adding
assume constraints into the specification have aggravated the capacity
problem!

This is not surprising. The state machine of the implementation may have
to grow in size in order to incorporate a restriction which is temporal
in nature. For example, consider the simple closed system state machine
shown in Fig 3.10. Suppose we add the assumption:

G[ ¬r1 ∨ ¬Xr1 ∨ ¬XXr1]

which says that r1 never comes in three consecutive cycles. In order to
incorporate this information into the state machine of Fig 3.10, each state
must remember the status of the request line in the previous cycle. This
will lead to an increase in the number of state bits, and thereby the number
of states of the state machine.

3. Simulation equivalence relations. The state machine of an implementation
may have more details than are required for verifying a given property.
For example, consider the property P2 of Example 3.1:

P2 : G[ ¬g1 ⇒ g2 ]

In order to verify this property we look for a path satisfying its negation:

ϕ = F [ ¬g1 ∧ ¬g2 ]

In order to check this property, we need to check whether any state satis-
fying ψ = ¬g1 ∧ ¬g2, is reachable from the start state of the implemen-
tation. In other words, we may partition the states into two parts, those
that satisfy ψ, and the rest. We want to determine whether it is possible
to reach the first partition from the start state.

We can minimize the state machine based on such partitions. For example,
the reduced state machine after partitioning the state machine of Fig 3.6
around ψ is shown in Fig 3.11. The reduced state machine has only two
states as compared to sixteen states of the original state machine.

There are standard algorithms for minimizing a state machine based on
a well defined equivalence relation. In the context of model checking, two
of the most popular forms of equivalence are bisimulation equivalence and
stuttering equivalence. Stuttering equivalence preserves the truth of un-
timed properties, such as Fq, where the number of states on a path lead-
ing to a q-labeled state is not important – these states may therefore be
condensed into one state. On the other hand, in order to check a timed
temporal property, such as, F[3,9] q, we need to count the number of states
on the path leading to a q-labelled state, and check whether this number
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Fig. 3.11. Equivalence with respect to ψ = ¬g1 ∧ ¬g2

is between 3 and 9. Therefore we cannot merge these states. However, two
paths reaching the same q-labelled state in the same number of steps can
be condensed into one path. Bisimulation equivalence is timing preserving.

3.5 BDD-based Formal Property Verification

Binary Decision Diagrams (BDDs) are compact canonical representations of
Boolean functions. Decision trees based on Shannon’s expansion have been
used for propositional reasoning in Artificial Intelligence for many years. BDDs
utilize self-similarity in such structures to give a more compact representation
than decision trees.

The use of BDDs in FPV was instrumental in bringing the technology into
practice. Initial results show that the BDD-based FPV techniques were able
to handle as much as 1020 states – which was unthinkable with explicit state
space search. BDD-based FPV tools have several characteristic features, and
several tunable parameters. Our goal will be to understand the meaning of
these features so that the behavior of BDD-based FPV tools, and particularly
their limitations become apparent to us.

In this section we will study the structure of BDDs and attempt to un-
derstand their benefits and limitations in the context of formal property ver-
ification. Formally, any model checking technique that works on a symbolic
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representation of the implementation can be called symbolic model checking.
However the term symbolic model checking is sometimes popularly interpreted
as BDD-based model checking.

3.5.1 What is a BDD?

Given a Boolean function f(x1, . . . , xk) over variables, x1, . . . , xk, we can
rewrite f as:

f(x1, . . . , xk) = (x1 ∧ fx1←1) ∨ (¬x1 ∧ fx1←0)

where fx1←1 denotes f with x1 substituted by 1, and fx1←0 denotes f with
x1 substituted by 0. This is known as Shannon’s decomposition of f on the
variable x1.

0 0 0 1 0 1 0 1

c c cc

b b

a

f = (a+b).c

0−edge 1−edge

0−child
f(a=0) = b.c

1−child
f(a=1) = c

Fig. 3.12. Decision tree for f = c ∧ (a ∨ b)

Fig 3.12 shows a decision tree for the Boolean function:

f(a, b, c) = c ∧ (a ∨ b)

Each node of the tree represents a Boolean function realized by the subtree
rooted at that node, and is labeled by a variable which is used for Shannon’s
decomposition to determine the functions represented by its children. For
example if a node represents the function f(x1, . . . , xk), and if the node is
labeled by xi, then the node has two children – the 0-child, representing
fx1←0, and the 1-child representing fx1←1. The edge leading to the 0-child is
called the 0-edge, while the edge leading to the 1-child is called the 1-edge.
We show the 0-edges with dashed lines in Fig 3.12.

In order to compute the function value for a given valuation of the vari-
ables, we can traverse the tree as follows. We start from the root, and follow
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either the 0-edge or the 1-edge depending on the value of the variable at the
root. We continue this process until we reach a leaf node. The value of the leaf
node gives us the value of the function for the given valuation of the variables.

The sequence in which we choose the variables for Shannon’s decompo-
sition is referred to as the variable order. In Fig 3.12, the variable order is
a ≺ b ≺ c. The decision tree is ordered if the variable order is the same on all
paths of the tree.
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Fig. 3.13. BDD for f = c ∧ (a ∨ b)

Several nodes of the decision tree may represent the same Boolean func-
tion. BDDs make good use of this fact by sharing such nodes. The existence
of a variable order guarantees that the resulting digraph is acyclic. Fig 3.13
shows the steps in reducing the decision tree of Fig 3.12 to a BDD using
self-similarity. This has been done using the following two rules:

1. If two nodes represent the same function, then we merge them. Fig 3.13
shows the merging of three c-labeled nodes.

2. If a node has the same 0-child and 1-child, then that node represents a
“don’t care” variable, and is removed. Formally, it follows from Shannon’s
decomposition that f is independent of xi whenever fxi←0 = fxi←1. This
explains the elimination of the node indicated in Fig 3.13.

Reduced ordered Binary Decision Diagrams (ROBDD) are canonical in
nature. This means that if f and g are two representations of the same Boolean
function, then they will have the same ROBDD. Henceforth we will loosely
use the term, BDD, to mean a ROBDD.

Canonicity is a very useful property for formal equivalence checking. If we
wish to verify whether a given RTL module is an adder, we can extract its
logic and create a BDD. We can also create the BDD for the addition function
(which is a Boolean function). If the two BDDs are identical, then the RTL
correctly implements an adder. Otherwise, the RTL has a bug.
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Fig. 3.14. Effect of variable ordering on BDD size

Not surprisingly, BDDs are widely used for formal equivalence checking.
The main limitation here is that the size of a BDD can grow rapidly with the
number of variables. One of the parameters that determine the size of a BDD
is the variable ordering. Fig 3.14 shows two BDDs for the function:

f = (a ∧ b) ∨ (m ∧ n) ∨ (p ∧ q)

The first BDD uses the ordering, a ≺ b ≺ m ≺ n ≺ p ≺ q, while the second
BDD uses the ordering, a ≺ m ≺ p ≺ b ≺ n ≺ q. The first ordering is clearly
better than the second.

Theoretical lowerbounds show that the task of finding the optimal variable
ordering for a function is a hard problem. Worse still, it has been shown that
the task of improving the variable ordering is also hard in general. However,
BDD packages support a wide variety of heuristics for finding a good variable
ordering. Though familiarity with these heuristics can enable a validation
engineer to tune the performance of the FPV tool to a large extent, it is a
formidable challenge to master and interpret the benefits of these heuristics in
a given context. Most existing tools therefore handle such choices internally.
There are two notable issues here:

1. Dynamic Variable Ordering. When we build the BDD for a complex cir-
cuit, we start with the BDDs for the smaller sub-circuits and then use
logical operations on pairs of BDDs to develop the BDDs for the circuits
which contain the smaller sub-circuits. For example, Fig 3.15 shows a cir-
cuit and the sequence in which we build the BDD for the circuit. BDD
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Fig. 3.15. Incremental construction of BDDs for a circuit

packages support this approach by providing functions for performing all
Boolean operations (NOT, AND, OR, etc) over BDD representations of
Boolean functions.

The main problem here is that the best variable ordering for the sub-
circuits may not be the best one for the whole circuit. Therefore, as we
begin to build the BDD of the circuit from the BDDs of its components,
the ordering has to be dynamically changed to keep the BDD sizes small.

Dynamic variable ordering is a nice variable re-ordering heuristic which
strives to reduce the BDD size by making local changes in the ordering.
For circuits of small size this is an overhead. While building BDDs for
large circuits incrementally, this heuristic works remarkably well, and of-
ten makes the difference between feasibility and infeasibility. Unlike the
static ordering heuristics, dynamic variable ordering works in the back-
ground and works all the time.

Many BDD-based FPV tools have a parameter that allows the validation
engineer to set dynamic variable reordering ON/OFF. It is an interesting
exercise for the new practioner of FPV to experiment with this parameter.
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2. There are circuits having no good ordering. The most commonly cited
case is that of a multiplier. The multiplication function always tends to
grow in the number of terms with Shannon’s decomposition. It has been
shown that no variable ordering can contain the growth of the BDD of a
multiplier with the number of bits of its operands.

To get around this problem several alternative representations have been
proposed for arithmetic circuits. These include Binary Moment Diagrams
(BMD), Arithmetic Decision Diagrams (ADD) and Mutli-Terminal BDDs
(MTBDD). Most of the public domain decision diagram packages support
all of these representations. Some of the internal FPV tools used in specific
companies allow the validation engineer to choose the type of represen-
tation. This choice is likely to become visible in future generation FPV
tools as well.

BDDs have been used in a wide range of CAD problems, including equiv-
alence checking, symbolic simulation, symbolic model checking, state mini-
mization, and false path identification. Several public domain BDD packages
are available. These include, CUDD, TUDD, BUDDY and CMUBDD. Infor-
mation about BDD packages can be found in the website: http://www.bdd-
portal.org.

3.5.2 BDDs for State Machines

Sequential circuits may typically be viewed as a collection of sequential el-
ements (such as flip-flops) and combinational logic. In Fig 3.15 we demon-
strated the methodology for creating a BDD from a given combinational cir-
cuit. Intuitively, we may use the following steps to create a BDD representation
for a sequential circuit.

1. Drop the sequential elements (say flip-flops) from the circuit to extract
the combinational logic.

2. For each flip-flop do the following:

a) Treat its output, y, as a primary input to the combinational logic.
y represents a present state bit of the state transition relation of the
sequential circuit.

b) Treat its input as a primary output of the combinational logic. Call
this output y′. y′ represents the next state variable for y in the state
transition relation of the sequential circuit.

3. Build the BDD for the modified combinational logic.

The BDD for the combinational logic actually represents the state transition
relation of the circuit. Fig 3.16 shows the construction for the circuit of Ex-
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ample 3.1. We have one BDD for each next state bit – each BDD expresses
the value of a next state bit as a function of the present state bits and input
bits.

FF

FF g1

g2

r1

r2

clk

r2

r1

g1

g1’

g2’

r1

0 1

g1’

r1

10

r2

g1

g2’

Original circuit

Extraction of combinational part BDD for g1’ BDD for g2’

Fig. 3.16. BDDs for transition functions

The BDD for each next state bit represents a component of the state
machine of the circuit. In order to find the next state for a given state under
a given input, we can traverse each BDD individually to determine the value
of each next state bit. However, for FPV we need to consider the global state
machine created by taking the product of the components. This is the main
source of state explosion. We will present an outline of the methodology in
the next section.

3.5.3 Symbolic Reachability

Given the BDDs for each component state machine, how can we determine
whether a given state is reachable from the start state? This is the core task
for every BDD-based FPV tool.

Let us consider the property, P3, of Example 3.1:

P3 : G[ ¬g1 ∨ ¬g2 ]

In order to check this property, we need to determine whether any state sat-
isfying g1 ∧ g2 is reachable from the start state.

It is not possible to answer this question by examining each component of
Fig 3.16 in isolation. For example, the BDD for g′1 shows that whenever r1

3 How Does the Property Checker Work?
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is high, g1 will be high in the next cycle. The BDD for g′2 shows that g2 will
be high in the next cycle when r1 and g1 are low and r2 is high. Therefore
individually g1 can be high in future, and so can g2. Can they be high together?
We need to look at the global state machine to answer this question.

BDD for the Global State Machine

We will use the notion of characteristic functions to build a BDD for the
global state machine. The idea is simple. Suppose we have k state bits. We
therefore have n = 2k states. A total of n2 transitions are possible between
these n states. The state transition relation specifies the set of transitions
that actually belong to the state machine of the circuit. The characteristic
function, f , of the state transition relation is a Boolean function over the
present state bits, input bits, and next state bits, which returns true for valid
transitions (those which belong to the state machine) and false for the rest.

The characteristic function, f , for the state machine of Example 3.1 is
shown in Fig 3.17. We use the symbol, x, to denote a don’t care. The first
four rows cover all the valid state transitions. The value of f is true on these
vectors. For the rest of the vectors, f is false.

g1g2 r1r2 g′
1g

′
2 f

xx 00 00 1

0x 01 01 1

1x 01 00 1

xx 1x 10 1

All other 6-bit vectors 0

Fig. 3.17. Characteristic function for the arbiter state machine

We can build the BDD for the characteristic function of the state machine
directly from the BDDs for the individual next state bits. By definition, the
characteristic function for a given state bit has the same inputs as the logic
cone driving that state bit, plus the next value of the state bit itself. Thus it is
equivalent to the expression: logic cone = next value, which can be computed
by taking the EXNOR (which represents the equality function) of the BDD
for the logic cone and the BDD for the next value.

Fig 3.18 shows the steps. We first build the characteristic function BDDs
(CF-BDDs) for each component by taking the exclusive-NOR (EXNOR) of
the component BDD with the next state variable. For example to build the
CF-BDD for the next state bit g′1, we take the EXNOR of the component
BDD with the variable, g′1.
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Fig. 3.18. BDD for state transition relation

To build the BDD for the global transition relation, we simply take the
conjunction (AND) of the component CF-BDDs as shown in Fig 3.18. It may
be noted that every path to the 1-node (true node) in the final BDD represents
a valid transition of the state machine of Example 3.1.

Taking the conjunction of the CF-BDDs is an expensive step in practice.
This typically leads to a blow-up in the size of the BDD. Therefore symbolic
reachability algorithms often use partitioned transition relations, where the
objective is to avoid taking the conjunction of BDDs with large number of
variables. More details of this approach are given in [38].

Symbolic State Traversal

In order to verify the property, P3, of Example 3.1 we need to determine
whether any run from the start state leads us to a state satisfying g1 ∧ g2. Let
us see how this search may be performed using the BDD of Fig 3.18.

Suppose the start state for the arbiter of Example 3.1 is the state, g1 =
0, g2 = 1. Fig 3.6 shows that this represents a set S0 of four states over
(g1, g2, r1, r2), namely:

S0 = { 0100, 0101, 0110, 0111 }
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Our approach will intuitively be as follows. We will begin from the start states,
S0, and check whether it contains any state satisfying g1 ∧ g2. If not, we will
find the set, S1, of states reachable from the states in S0 in at most one cycle.
If S1 also does not contain any state satisfying g1 ∧ g2, then we will find the
set, S2 of states reachable from the states in S0 in at most two cycles, and
look for a state satisfying g1 ∧ g2 in S2. How long will we continue in this
manner?

Off course, if some state satisfying g1 ∧ g2 is reachable in k-cycles, then
we will terminate after at most k-iterations by finding one such state. What
happens if there is no reachable state satisfying g1 ∧ g2?

Since our state machine has a finite number of states, each reachable state
can be reached in a finite number of cycles. Therefore, if we continue the
generation of the state sets, S0, S1, . . ., we will find that after a finite number
of iterations, Si = Si+1. In other words, some Si will contain all reachable
states, and thereafter, the state sets, Si+1, Si+2, . . ., will all be equal to Si.
Therefore we can terminate whenever we find Si = Si+1. If Si does not contain
any state satisfying g1 ∧ g2 at that point, then we can conclude that no state
satisfying g1 ∧ g2 is reachable from a start state. The set Si is called the fixed
point for the reachability function.

0 1

g1

g2

Fig. 3.19. BDD for start state S0

We will use BDDs for representing the state sets, S0, S1, . . ., succinctly.
Fig 3.19 shows the BDD for S0. Fig 3.20 shows the first iteration – computing
S1 from S0 using the BDD for the transition relation (Fig 3.18). The steps
are as follows:

1. A transition is a tuple 〈g1, g2, r1, r2, g
′
1, g

′
2〉, where g1g2 is the present state,

r1r2 is the input and g′1g
′
2 is the next state. Recall that the BDD, R, for

the transition relation is a collection of valid transitions – every valid tran-
sition is a path to the 1-labelled node in this BDD. The AND operation
on the BDDs, S0 and R, gives us the subset of valid transitions for which
the present state, g1g2, belongs to S0.
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2. If we look at the next state bits, g′1g
′
2, in those transitions where the

present state, g1g2, belongs to S0, then we will get exactly the set of next
states for the states in S0. Therefore we existentially eliminate1 all other
variables except the next state bits, g′1 and g′2 to obtain the BDD called
NS0-Temp in Fig 3.20.

3. We rename g′1 to g1 and g′2 to g2 in NSO-Temp. This gives us the BDD,
NS0, which represents the set of next states for the set of states in S0. In
other words these are the states that can be reached in one cycle from the
set of states in S0.

4. The desired set of states, S1, is computed by taking the union (logical
OR) of the BDDs, NS0 and S0. The BDD, S1, represents the set of states
reachable in 0 or 1 cycles.

Is there any state satisfying g1 ∧ g2 in S1? The answer is no, since substi-
tuting g1 = g2 = 1 in the BDD, S1, leads us to 0. Therefore we conclude that
no state satisfying g1 ∧ g2 can be reached in 0 or 1 cycles. We do not know
yet whether any state satisfying g1 ∧ g2 can at all be reached.

Therefore, we apply the same steps again to compute S2 from S1. The
BDD for S2 will represent all states that can be reached by 0, 1, or 2 cycles.
In this case we will find that S2 = S1. Therefore S1 contains all states that
are reachable. Since this set does not contain any state satisfying g1 ∧ g2, we
can safely conclude that no such state is reachable. This is turn proves that
the mutual exclusion property:

G[ ¬g1 ∨ ¬g2 ]

is satisfied by our arbiter implementation.

As another example, suppose we intend to verify the property:

P2 : G[ ¬g1 ⇒ g2 ]

In this case, we will look for the reachability of a state satisfying ¬g1 ∧ ¬g2.
This is not satisfied by S0, hence we compute S1 from S0. We find that S1

contains states satisfying ¬g1 ∧ ¬g2, since setting g1 = g2 = 0 leads us to
1 in the BDD, S1. Therefore, without looking any further, we may conclude
that the property P2 fails in our arbiter implementation.

What is the advantage of using BDDs for reachability analysis? The main
advatantage is that BDD operations allow us to work on sets of states at
a time. For example, in order to find the set of states, Sk (that is, states
reachable by k cycles) from the set of states, Sk−1, we need to perform only
a handful of BDD operations – as shown in Fig 3.20. Explicit traversal of
1 Existential elimination of variable x from function f yields the function fx←0 ∨

fx←1
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Fig. 3.20. One step of forward reachability

all k-length paths in the state machine would clearly be infeasible when the
number of states is vast.

The reachability analysis shown here is known as forward reachability. In
order to check whether a state y can be reached from a state x, forward
reachability methods start from x and work forward till we reach y or the
fixed point. On the other hand, there are backward reachability methods that
start from y and work backwards till we reach x or the fixed point.

The steps for backward reachability are very similar to those for forward
reachability. S0 denotes the set of target states. Si denotes the set of states
from which one or more states of S0 can be reached in i steps. We compute
Si from Si−1 by taking the union of Si−1 with the set of parents of the states
in Si−1. In order to compute the parents of the states in Si−1, we do the
following:

1. We rename the state variables in Si−1 with the corresponding next-state
variables. For example, g1 will be renamed as g′1.
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2. We take the product (logical AND) of Si−1 with the transition relation,
R. This gives us all transitions where the child belongs to Si−1. We exis-
tentially eliminate all variables except the present state bits (say, g1, g2)
to get the parents of the states in Si−1.

Backward reachability will also reach a fixed point since every run, when
traced backwards, will revisit some state in a finite state machine.

BDDs can be used for reachability analysis only when the BDDs can fit in
memory. Unfortunately, the size of the BDD for the transition relation tends
to grow very fast with the number of state and input variables. As a result
BDD-based tools have serious capacity limitations. In spite of this limitation,
BDD-based FPV tools add considerable value to the design validation flow
for verifying small but complex modules.

BDD-based FPV tools automatically create these BDDs from the design
implementation, and automatically apply these symbolic reachability meth-
ods to verify properties. In the next section we demonstrate how symbolic
reachability can be used to verify CTL properties.

3.5.4 CTL Model Checking

Verification of CTL properties works with simple symbolic reachability meth-
ods. Let us start with simple properties.

• The BDD for any Boolean function over the state and input variables
actually represents the set of states satisfying that function. In order to
test whether a given state satisfies that function, we may substitute the
state bits into the BDD and check whether it returns true or false.

• ¬f . We first compute the BDD for f and then take its complement (using
the BDD-NOT operation).

• EX f . We first compute the BDD for f – let us call it Z. We then use one
step of backward reachability to get the set of states satisfying EX f .

• E[ f U g ]. We can characterize the states that satisfy E[ f U g ], as
follows:

1. States that satisfy g, and

2. States that satisfy f and have a next state satisfying E[ f U g ].

We start with the states that satisfy g and work backwards along f -
satisfying states until we can add no more new states. In other words,
we use the recursive formulation:

E[ f U g ] = g ∨ ( f ∧ EX(E[ f U g ]) )

3 How Does the Property Checker Work?
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For example, let us call the BDD for the set of states satisfying g as Z0. We
then use one step of backward reachability to compute, EX(Z0), which
is the BDD for the set of parents of the states in Z0. The intersection of
EX(Z0) with the BDD for states satisfying f gives us the BDD for the
set of states that satisfy f and have a next state satisfying g. The union
of this BDD with Z0 gives us the set, Z1, of states that satisfy E[ f U g ]
in one or two steps.

In the same way, to compute Zi we use one step of backward reachability
from the BDD, Zi−1, intersect the resulting BDD with the BDD for f ,
and take the union with Zi−1. We repeat these steps until we reach the
fixed point, Zk = Zk−1. At this point Zk contains all states that satisfy
E[ f U g ].

The functions for the above basic formulas can be used to find states satisfy-
ing other formulas as well. We use the following reductions to express other
formulas in terms of these basic formulas:

AX f ≡ ¬EX ¬f
EF f ≡ E[ true U f ]
AF f ≡ ¬EG ¬f
AG f ≡ ¬EF ¬f
A[ f U g ] ≡ ¬[ (EG¬g) ∨ (E[ ¬g U (¬g ∧ ¬f) ]) ]

The last reduction follows from the fact that A[ f U g ] is not true at a state,
s, if and only if at least one of the following applies:

1. g is never satisfied on some run from s. In this case, s satisfies EG¬g.

2. There exists a run starting from s, where f becomes false before g becomes
true. In this case, s satisfies E[ ¬g U (¬g ∧ ¬f) ].

In all of the above, if f , g, are also temporal properties, then we recursively
compute the sets of states satisfying f , g, and then use the BDDs for those
sets while treating formulas containing f , g.

BDD-based LTL model checking is performed by transforming LTL model
checking into CTL model checking as follows:

1. The tableau is represented as a BDD, Z. Thus, Z contains all valid tran-
sitions present in the tableau.

2. We take the product of Z with the BDD for the transition relation of the
implementation. Let the BDD for the product be T .

3. Recall that the last step of the LTL model checking strategy is to check
whether the product of the tableau and the implementation is empty,
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that is, whether the product has any fair path. This check is performed
by verifying the CTL formula EG[ true ] on T under fairness constraints.

Details on CTL model checking under fairness constraints can be found in
Clarke, Grumberg and Peled [38].

3.6 SAT-based Formal Property Verification

BDD-based FPV tools typically run into capacity problems because the BDDs
tend to grow very fast with the number of state variables. Various tricks have
been attempted to keep the BDD sizes within feasible limits, but beyond a
point none of these tricks are adequate to control the growth and the FPV
tool becomes ineffective.

BDDs are canonical representations of Boolean functions, and they are
more compact than the truth table representations, but they are typically
much larger than the size of the circuit representation (say in Verilog). A
high level description of the circuit is a collection of Boolean equations. A
sequential circuit description is also a collection of Boolean equations which
describes the transition relation of the sequential circuit.

For example, our arbiter circuit of Fig 1.1 can be succinctly described by
the Boolean functions:

(r2 ∧ ¬r1 ∧ ¬g1) ⇒ g′2
r1 ⇒ g′1

These Boolean functions are smaller than the BDD for the transition relation
shown in Fig 3.18. In general the difference between the sizes of these two
representations is significant.

Why then did we use BDDs? Because it enabled us to perform symbolic
reachability analysis without explicitly traversing all paths of the implemen-
tation state machine. Symbolic reachability is the heart of FPV approaches,
since explicit state traversal is clearly unfeasible in practice.

Can we perform symbolic reachability without using BDDs? The answer is
yes, and the alternative methodology is called SAT-based reachability.

3.6.1 What is SAT?

SAT is the traditional short form for the Boolean satisfiability problem. Given
a Boolean formula, f , we are required to determine whether f is satisfiable,

3 How Does the Property Checker Work?
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that is, whether there exists any valuation of the variables in f , under which
f evaluates to TRUE. Boolean satisfiability is known to be a hard problem in
general – nonetheless, we use SAT because it works well enough in practice.

For example, the following formula is satisfiable for all valuations of a and
b where a 
= b.

f = (a ∨ b) ∧ (¬a ∨ ¬b)

The following formula is unsatisfiable:

h = (a ∨ b) ∧ (a ∨ ¬b) ∧ ¬a

A huge number of real world problems reduce to SAT, making it possibly
the single most important computational problem. As a result, in spite of
the hardness of SAT, many decades of research has been devoted to finding
efficient algorithms for solving instances of SAT – algorithms that work very
fast for most instances of SAT. One of the outcomes of this research has been
the availability of highly efficient SAT solvers – ones that can handle SAT
instances having millions of clauses in less than a second! SAT-based FPV
tools harness this efficiency by translating the symbolic reachability problem
into an instance of SAT.

3.6.2 SAT-based Reachability

Our strategy for property verification remains the same when we use SAT-
based techniques. Given a temporal property, ϕ, we will search for a counter-
example run in the state machine of the implementation, that is, we will look
for a run that satisfies ¬ϕ.

Let S = {s0, . . . , sk} denote the set of state bits of the implementation
state machine. These state bits can take different values in different cycles.
Let si

j be a Boolean variable representing the value of state bit sj at the
ith cycle. For example, s0

3 represents the initial value of state bit s3, and s2
3

represents the value of the same bit after two cycles. Let Si = {si
0, . . . , s

i
k}.

We will translate the FPV problem of checking the property, ϕ, on the
given implementation, M, into an instance of SAT over the variables in

⋃
i Si.

Let us start with an example, namely our priority arbiter of Example 3.1.
We shall demonstrate the checking of the property, P1:

P1 : G[ r1 ⇒ Xg1 ∧ XXg1 ]

As before, we will look for a run satisfying ¬P1 in the implementation. Let
ϕ = ¬P1, that is:

ϕ = F [ r1 ∧ ( ¬Xg1 ∨ ¬XXg1 ) ]
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Our goal is to check whether we are able to reach a state where r1 is true and
g1 is false in at least one of the next two states. Therefore the shortest witness
to this property has two cycles.

We are also given the Boolean functions for the state transition relation
of the arbiter implementation:

C1: (r2 ∧ ¬r1 ∧ ¬g1) ⇒ g′2
C2: r1 ⇒ g′1

The state bits are r1, r2, g1, g2. Let Si = {ri
1, r

i
2, g

i
1, g

i
2}.

Finally, we are given that initially g1 = 0 and g2 = 1. Therefore the initial
set of states is given by the clause:

I: g0
2 ∧ ¬g0

1

We can use the definition of the transition relation to characterize the set of
next states for the initial set of states as follows:

C1
1 : (r0

2 ∧ ¬r0
1 ∧ ¬g0

1) ⇒ g1
2

C1
2 : r0

1 ⇒ g1
1

The clause, C1
1 , says that g2 is true in cycle-1 if r2 is true and both r1 and g1

are false in cycle-0. The clause, C1
2 , says that g1 is true in cycle-1 if r1 is true

in cycle-0.

Is there any witness of length two for the property ϕ in the arbiter imple-
mentation? To answer this question we need to test whether ϕ can be satisfied
within two cycles under the constraints imposed by I ∧C1

1 ∧C1
2 . Witnesses of

length two for ϕ can be characterized by the following clause:

Z1: r0
1 ∧ ¬g1

1

The clause, Z1, says that r1 is true in cycle-0 and g1 is false in cycle-1. To test
whether such a witness exists in the implementation, we check the satisfiability
of the Boolean formula:

I ∧ C1
1 ∧ C1

2 ∧ Z1

In this case the formula is unsatisfiable, since Z1 conflicts with C1
2 .

In the next step we ask – Is there any witness of length three for ϕ in the
arbiter implementation? Again we use the transition relation to generate the
following clauses:

3 How Does the Property Checker Work?
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C2
1 : (r1

2 ∧ ¬r1
1 ∧ ¬g1

1) ⇒ g2
2

C2
2 : r1

1 ⇒ g2
1

Witnesses of length at most three for ϕ can be characterized by the following
formula:

Z2: ( r0
1 ∧ ( ¬g1

1 ∨ ¬g2
1 ) ) ∨ ( r1

1 ∧ ¬g2
1 )

Z2 describes all ways in which ϕ can be satisfied in three cycles. The first
term specifies all ways in which ϕ can be satisfied when r1 is true in cycle-0.
The second term is similar to Z1 for request r1 arriving in cycle-1. If any of
these witnesses are present in the implementation, then the following formula
will be satisfiable:

I ∧ C1
1 ∧ C1

2 ∧ C2
1 ∧ C2

2 ∧ Z2

The above formula is indeed satisfiable! The SAT solver will return the fol-
lowing witness (x denotes “don’t care”):

r0
1 = 1, r0

2 = x, g0
1 = x, g0

2 = x,
r1
1 = 0, r1

2 = x, g1
1 = 1, g1

2 = x,
r2
1 = x, r2

2 = x, g2
1 = 0, g2

2 = x

The witness is actually a set of counter-example traces, where r1 is high in
cycle-0 and low in cycle-1, and g1 is low in cycle-2. This is indeed a bug in our
arbiter implementation, since the property P1 requires that g1 is asserted for
two cycles following the arrival of the request, r1.

3.6.3 Detecting Loops

For some types of properties, counter-examples are given by loops in the state
machine of the implementation. For example, suppose we wish to verify the
property, f = Fg1, which says that g1 will be eventually asserted. In order to
verify the property we need to check whether the implementation has a run
that satisfies ¬f = G ¬g1, that is, g1 is low in every state of the run.

A run of a finite state machine can satisfy G ¬g1 only if there is a cycle in
the state machine where every state satisfies ¬g1. Therefore in order to find
such a run, we need to detect loops in the state machine.

A run has a loop if the valuation of the state variables, Si, at some cycle,
i, matches with the valuation of the state variables, Sj , at some cycle j < i.
Therefore we detect a loop within the ith iteration if the following clause is
true:

loopi :
∨

j=0...i−1

(
si
0 = sj

0 ∧ . . . ∧ si
k = sj

k

)
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3.6.4 Unfolding Properties

The formal rules for generating the clauses that characterize the bounded
length witnesses of a property are presented in this section. Suppose the bound
on the length of the witness is m. Let [f ]j,m denote the set of clauses that
must be considered in order to determine whether the property f is true at
the jth cycle where j ≤ m. The following rules recursively define the clauses
required for LTL properties.

• [X f ]j,m = (j < m) ∧ [f ]j+1,m

• [F g]j,m =
∨

i=j...m [g]i,m
• [G f ]j,m = loopm ∧

∧
i=j...m [f ]i,m

• [f U g]j,m =
∨

i=j...m

(
[g]i,m ∧

∧
x=j...i−1[f ]x,m

)

The use of the loop constraint, loopm (as defined in the last subsection), for
[G f ]j,m may be noted.

3.6.5 Bounded Model Checking

The SAT-based FPV methodology is iterative in nature – in the ith iteration
we look for witnesses of length i, and we reach the ith iteration only if all
previous iterations failed to provide a witness (of smaller length). The main
steps are:

1. Creating a clause, I, to characterize the set of initial states.

2. Unfolding the state machine of the implementation over time and gener-
ating a new set of clauses in each iteration. At the jth iteration, the set
of clauses from the implementation are:

Cj =
∧

i=0...j−1

R(Si, Si+1)

where R(Si, Si+1) denotes the clauses relating the variables in Si with
those in Si+1 through the transition relation.

3. Unfolding the property to generate clauses that characterize all witnesses
of a given length. At the jth iteration, we generate a set of clauses, Zj ,
that characterize all witnesses of length less than or equal to j.

4. Use a SAT solver to test whether the clauses generated from the prop-
erty are satisfiable with the clauses generated from the implementation.
At the jth iteration, we test the satisfiability of I ∧ Cj ∧ Zj . If the
SAT solver returns success, then we report the witness as the bug in the
implementation, otherwise we proceed to the next iteration.

3 How Does the Property Checker Work?
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If there are indeed no counter-examples (that is, our implementation is cor-
rect) then when do we stop?

The SAT-based approach is iterative in nature – we progressively increase
the upper-bound on the length of the witness that we seek in the implemen-
tation. In practice, more often than not, the properties are bounded temporal
properties, that is, the designer expects the property to be satisfied within
a known number of cycles. Therefore it suffices to check whether there are
counter-examples of the specified length in the implementation. We can ter-
minate with success if we do not find any counter-example within the given
number of iterations.

Most modern FPV tools support a SAT-based bounded model checker. In
these tools, the user can choose an upper-bound on the number of iterations
for the SAT-based checker.

What is the implication of choosing a large bound? The number of clauses
given to the SAT solver grows with each iteration – new clauses are added,
both by unfolding the implementation and by unfolding the property. The
number of clauses added in each iteration can be quite large depending on
the size of the RTL. As a result, even the best SAT solver runs into capacity
problems when the number of iterations are large for a large RTL.

How does this compare with the BDD-based tools? There are two very
notable arguments behind the popularity of SAT-based tools. These are:

1. The majority of the formal properties that arise in practice have a small
depth, that is, in most cases we expect the property to be satisfied or
refuted within a small number of cycles from the point where we start the
match.

2. SAT-based approaches can handle designs that are orders of magnitude
larger than those that can be handled by BDD-based tools, provided that
the bound on the number of iterations is small.

Not surprisingly most commercial FPV tools have a bounded SAT-based tool,
and also a generic BDD-based tool.

3.7 Concluding Remarks

In this chapter we have studied the basic methodologies for formal property
verification – the way in which an FPV tool works. A commercial FPV tool
will have many additional features, and many more algorithms for optimizing
the effort of the model checker.



98

A very important component of any FPV tool is the front-end which reads
the implementation in a high-level language (such as Verilog) and extracts the
state machine from it. In some of our in-house model checking tools we used
a commercial Verilog Design Analyzer which parses the Verilog and creates
an object model. Translating the object model into the state machine repre-
sentation (either BDD or SAT) was one of the most challenging aspects in
building the tools. In-house tools used in some industries use a front-end for
translating Verilog to state machine formats such as BLIF, and then use the
state machine representation in both the BDD-based and SAT-based flows.

There are several other notable methods for FPV, which are beyond the
scope of this Chapter. These include:

1. On-the-fly model checking. In this approach we compute the product of
the state machine with the alternating automata in a depth-first manner.
The space requirement of this approach is relatively low, since the depth-
first approach ensures that the memory requirement is proportional to
the depth of the search. The main problem here is that for large state
machines the time required for exhaustive depth-first search is very large.
Some recent FPV tools use a combination of on-the-fly model checking
and BDD or SAT-based model checking.

2. ATPG-based FPV. Automatic Test Pattern Generation (ATPG) tech-
niques have been developed for decades now, and some of the ATPG
algorithms are able to handle circuits of large size. ATPG-based FPV
techniques attempt to use ATPG to create a set of tests that are relevant
for a given property.

Intuitively the approach is as follows. We translate the checker automaton
into an RTL state machine. We then add a circuit which compares the
output of the checker automaton with the output of the design-under-test.
This comparator produces a 1 whenever the output of the design-under-
test matches with the (golden) output from the checker automaton. ATPG
finds out all tests corresponding to a stuck-at-0 fault at the output of the
comparator.

We have also left out techniques for word level model checking. These tech-
niques are useful for verifying properties that contain bit-vectors. There are
broadly two schools of research on this topic. One approach is to scale down
the bit-vectors to single vectors. For example, most properties of a 64-bit Bus
can be scaled down to similar properties for a 4-bit Bus – and it suffices to
verify the scaled down version to guarantee that the implementation satisfies
the 64-bit version as well. However, bit-scaling must be used with caution and
should ideally be supported by an inductive proof.

3 How Does the Property Checker Work?
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The other approach is to convert bit-vectors to infinite precision words
and then use integer arithmetic to prove the properties. Techniques such as
Integer Linear Programming (ILP) has also been used to verify word level
data-path properties.

The goal of this chapter was to provide a general awareness of the issues
governing formal property verification and the main techniques used in ex-
isting FPV tools. While this awareness is expected to equip the validation
engineer with a better understanding of the working and the limitations of
an FPV tool, it is not sufficient to develop a work plan to get around these
limitations. For this purpose new validation aids are needed – tools that will
enable the validation engineer to evaluate the correctness and completeness of
the specification, tools that will enable her to decompose large properties into
smaller ones, tools that will enable her to analyze the feasibility of a formal
verification test plan. These issues are in the main focus of this book.

3.8 Bibliographic Notes

In [98], Sistla and Clarke analyzed the complexity of model checking sev-
eral temporal logics. In this work, they showed that LTL model checking
is PSPACE-complete. However, Lichtenstein and Pnueli presented a model
checking algorithm for LTL that was exponential in the length of the prop-
erty, but linear in size of the state machine model [79]. This showed that for
LTL properties of limited length, LTL model checking is of linear complex-
ity – which means that model checking is feasible whenever we are able to
accommodate the state machine model.

Algorithms for CTL model checking on an explicit state machine model
were first presented in [35]. In this work it was shown that CTL model checking
works in time linear in the length of the property and the size of the state
machine model. It was also shown that for the logic CTL∗, which subsumes
CTL and LTL, the model checking problem is PSPACE-complete.

The notion of representing temporal logic properties by alternating au-
tomata and the automata theoretic style of model checking were introduced
by Vardi et al. [105, 74]. On-the-fly automata theoretic model checking tech-
niques have been presented in [43, 55]. Kurshan’s book [77] explores the au-
tomata theoretic approach in details.

The use of BDDs for Boolean function manipulation was introduced by
Bryant [21]. The use of BDDs in symbolic model checking [80] was first pro-
posed in [25] and then improved by the use of partitioned transition rela-
tions [26, 28]. It was shown [27] that this approach could handle significantly
large state spaces as compared to previous model checking methods.
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BDD-based symbolic model checking was first proposed for CTL. In [37],
Clarke, Grumberg and Hamaguchi presented a symbolic method for trans-
lating LTL model checking into CTL model checking, thereby enabling LTL
model checking on BDD-based symbolic representations of sequential circuits.

SAT-based bounded model checking (BMC) was first proposed by Biere
et al. in [17, 18]. The detailed version of this approach appeared in [41]. Re-
cently the problem of SAT-based unbounded model checking has also been
studied [71, 81].

Several different FPV techniques based on abstractions have been studied.
These include cone-of-influence abstractions [38], counter-example guided ab-
straction refinement [40, 63], and SAT-based abstraction refinement [42, 107].

Many different techniques for minimizing the state space are used in prac-
tice. These include partial order reductions [62, 87], bisimulation equivalent
reductions [56], and symmetry reductions [36, 54]

Verification of open systems and compositional verification of collections
of open systems have been well studied. The problem of model checking in the
presence of an adversarial environment is also known as module checking [73].
In general, we do not assume a purely adversarial environment – we restrict
the behaviors of the environment by making assumptions. There has been a
significant volume of work on assume-guarantee reasoning for open systems [1,
30, 64, 66]. This includes some of our own research on syntactic styles for
writing properties for open systems [12].

Boppana et al. [20] were the first to propose a model checking technique
based on sequential ATPG. Further research on this topic can be found in [2,
68, 96].

3 How Does the Property Checker Work?
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We make mistakes while writing the RTL. What is the guarantee that we will
not make mistakes while writing assertions?

This is one of the main challenges faced by every chip design company
that uses static or dynamic assertion verification in its validation flow. In
these early stages of adoption of property verification, the problem is more
glaring. This is because a chip design company will have tons of designers
who understand Verilog RTL, but relatively few who understand an assertion
language. Debugging Verilog RTL has been cultivated for decades. Debugging
a set of assertions is new and not fully understood by most.

Practitioners of FPV and dynamic assertion-based verification will admit
that errors in coding a formal specification are quite common. Expressing
the design intent correctly and accurately in terms of formal properties is a
real challenge. Incomplete specifications allow bugs to escape detection, while
inconsistent specifications lead to the loss of validation productivity, since the
error lies in the specification itself.

There is a common misconception that the main cause of errors in a specifi-
cation is the syntactic terseness of an assertion specification language – simply
put, we make mistakes because the language is complicated. This is not really
the case. Most of the errors appear because the English language specification
itself has conflicting statements, and these conflicts get carried into the formal
specification as well.

For example, let us consider the original specification of the priority arbiter
of Example 1.1 of Chapter 1. The arbiter has two request lines, r1 and r2, and
two grant lines, g1 and g2. The English language specification of the arbiter
was:

1. Request line r1 has higher priority than request line r2. Whenever r1 goes
high, the grant line g1 must be asserted for the next two cycles.

Is My Specification Consistent?
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2. When none of the request lines are high, the arbiter parks the grant on
g2 in the next cycle.

3. The grant lines, g1 and g2, are mutually exclusive.

These statements are conflicting. The first statement requires g1 to be high
at t + 1 and t + 2 when r1 is high at t. Suppose both r1 and r2 are low at
t + 1. Then the second statement requires g2 to be high at t + 2. The third
statement prevents both g1 and g2 to be high at t + 2. We have a conflict.

If we translate each of these statements correctly (as is) into an assertion
specification language, we will have an inconsistent specification. The com-
plexity of the assertion language is not an issue here – the problem lies in the
logic of the English specification itself.

As the complexity of the design grows, the number of properties required
to express the design intent grows, and with it grows the possibility of such in-
consistencies. Beyond a point, human debugging of the specification becomes
infeasible because many properties may together create a conflict. We need
formal methods to check whether the specification is inconsistent, and if so,
to find the set of conflicting properties. In this chapter we will present (a)
the types of inconsistencies that are common in specifications, and (b) formal
methods for checking whether such inconsistencies are present in a given for-
mal specification. The intent of (a) is to caution the validation engineer about
the possible forms of inconsistencies that must be guarded against while writ-
ing a formal specification, while (b) should be of interest to the EDA engineer
engaged in solving such problems.

Before we proceed any further let us clarify the exact intent of this chapter.
The causes behind inconsistent specifications may be broadly divided into two
categories, namely:

1. Logical errors. These are the errors caused by conflicting or ambiguous
statements in the original specification. We may classify them as errors in
the design intent, and must be addressed by the design architect.

2. Coding errors. These are mistakes made by the validation engineer while
coding a property in an assertion specification language. This typically
happens due to the validation engineer’s oversight, or due to an incorrect
understanding of the semantics of the assertion specification language.

Our main focus in this chapter is on the first type. Today, errors of the first
type can cause a huge problem in the design of large circuits. Inconsisten-
cies in the architectural specification of the design may not be detected until
the RTL for the whole design is written. Detection of an architectural incon-
sistency at that stage may require rewriting major portions of the RTL with
catastrophic consequences. If the architectural properties are written formally

Is My Specification Consistent?
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and the consistency checks performed a priori, then such situations can be
avoided more often than not.

Common coding errors in specifications will diminish as the validation en-
gineer becomes more familiar with assertion specification languages. If we take
a leaf out of software practices, it will be natural to expect that experienced
validation engineers will also make mistakes – only these mistakes will be
more complex and harder to debug. This is imminent because assertion spec-
ification languages have very powerful constructs that widen the expressive
power of the language, but also allow the experienced engineer to write com-
pletely unreadable (and un-debuggable) properties. The only way to contain
such errors is to impose strict coding guidelines for property specifications.
We may be reasonable certain that such coding standards will evolve in the
near future.

4.1 Satisfiability and Vacuity

It is known that Boolean satisfiability is NP-Complete – we do not have any
known polynomial time solution for testing whether a given Boolean formula
is satisfiable. In spite of this hardness, there are excellent Boolean SAT solvers
that can solve many large problem instances very fast.

Satisfiability of temporal assertions is not the same as Boolean satisfia-
bility. Temporal assertions are satisfied by runs that are valuations of the
variables over time. A witness for the satisfiability of a Boolean formula at
a given cycle is a valuation of the variables in the formula at that cycle. On
the other hand, a witness for the satisfiability of a temporal formula may be
a sequence of valuations of the variables over multiple cycles.

For example, the following Boolean expression (in SVA) is unsatisfiable:

(a || b) && (a || !b) && !a

because no valuations of a and b can satisfy this formula at a given cycle. On
the other hand, the SVA temporal expression:

(a || b) ##1 (a || !b) ##1 !a

is satisfiable – any run where a is true in the first two cycles and false in the
third cycle acts as a witness.

4.1.1 Writing Unsatisfiable Specifications

If we are not careful while interpreting the English language specification, we
may produce an unsatisfiable specification. Let us consider an example. Sup-
pose we have the following properties for the MyBus master of Section 2.4.2.
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1. When the master is not in the IDLE or WAIT states, the request line,
req, should be kept high.

2. The master does not assert the request line, req, all the time.

Suppose we code these properties as shown in Fig 4.1. The specification is
unsatisfiable. Why?

‘define IDLE 3’b000

‘define WAIT 3’b001

property ReqHighDuringTransfer;

@ (posedge clk)

(state != ‘IDLE || state != ‘WAIT) |− > req ;

endproperty

property ReqIsSometimesLow;

@ (posedge clk)

##[0:$] ! req ;

endproperty

Fig. 4.1. An Unsatisfiable Specification

Let us consider the antecedent part of the implication in the first property:

(state != ‘IDLE || state != ‘WAIT)

This expression will always evaluate to true. The state cannot be IDLE and
WAIT at the same time – hence in every cycle, it will either be not equal to
IDLE, or it will not be equal to WAIT.

Since the antecedent part of the implication is always true, a master can
satsify the first property only if it asserts the request, req, all the time. This
conflicts with the second property which requires req to be low sometime.

Is the English specification incorrect? Not really. Our interpretation of the
clause – the master is not in the IDLE or WAIT states – was incorrect. The
correct interpretation would lead us to write the first property as:

property ReqHighDuringTransfer;
@ (posedge clk)
(state != ‘IDLE && state != ‘WAIT) |− > req ;

endproperty

This property is consistent with our second property, and they together
express the design intent.

4 Is My Specification Consistent?
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4.1.2 The Notion of Vacuity

A property is useful if it can distinguish between correct and incorrect runs.
An unsatisfiable specification is false on all runs and is therefore not use-
ful. Similarly a specification that is true on all runs is also not useful. Such
specifications are called vacuous.

For example, let us consider the following property for the MyBus master
device – When the grant signal, gnt, is high, the master must not be in the
IDLE or WAIT states. Suppose we make a similar mistake as before, and
write this property as:

property UseBusWhenGranted;
@ (posedge clk)
gnt |− > (state != ‘IDLE || state != ‘WAIT) ;

endproperty

We have made the same mistake, except that the erroneous sequence ex-
pression is now in the consequent part of the implication. Since the consequent
is always true, the property will always be true.

This is dangerous. The implementation may not actually satisfy the design
intent – an invalid MyBus master device may spend idle cycles in the IDLE
or WAIT states even after receiving the grant. Our property will be vacuously
true on all runs and therefore will not flag any error. The validation engineer
will believe that the implementation is correct.

Unsatisfiability in specifications is typically detected early because it fails
on every run of the system. Given an unsatisfiable specification, an FPV tool
will return a false counter-example trace. When the validation engineer finds
that the counter-example is false, she will know that the specification has a
problem.

This is not the case with vacuity. Given a vacuous specification, an FPV
tool will simply pass all implementations. The validation engineer will get a
false sense of confidence assuming that the properties have passed. Therefore
vacuity checks on specifications is an important task in FPV. Just as we need
to verify whether a property can at all be satisfied, we need to verify whether
it can at all be refuted.

4.2 Satisfiability is not Enough

The roots of the model checking techniques used in FPV tools lie in modeling
the design and its environment as a closed system and then verifying properties
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on the integrated system. In other words, we treat the input bits also as part of
the state, and use non-determinism to express the freedom of the environment
in setting the values of the input variables. All properties expressed in linear
temporal languages, such as LTL and SVA are said to be true if they are
true on all runs of the system. This automatically means that we check the
property under all possible inputs.

Property specification languages such as LTL, CTL, SVA, PSL, therefore
do not distinguish between the input signals and output signals of the mod-
ule under test. We can write properties freely using an unrestricted mix of
input and output signals. This freedom is also the source of several forms of
inconsistencies in specifications.

The main issue here is – a property that is consistent when interpreted over
a closed system can be inconsistent when interpreted over all open systems.
For example, suppose we have the following requirement for an arbiter:

• Whenever the high priority req, hreq, arrives, the grant line, hgnt, is given
for one cycle with highest priority.

Suppose we interpret the requirement as – whenever hreq arrives, assert hgnt
in the next cycle and lower it after one cycle. We will then code this property
as:

property HighPriorityGrant;
@ (posedge clk)
hreq |− > ##1 hgnt ##1 !hgnt ;

endproperty

This property is inconsistent! Suppose hreq arrives in two consecutive
cycles, t and t+1. We will have a conflict at time t+2, because the request at
t will require hgnt to be lowered at t + 2, and the request at t + 1 will require
hgnt to be asserted at t + 2.

What is the error in this specification? We interpreted the property in-
correctly. The phrase – hgnt is given for one cycle – does not mean that
hgnt needs to be lowered after one cycle. It only means that the arbitration
is performed again after one cycle. Such errors in interpretations are quite
common in practice, and the errors grow with the complexity of the design
intent. Our goal is to develop formal methods for automatically detecting such
inconsistencies in the specification.

Is the property satisfiable? Yes. This is because we have runs that can
satisfy the property – all runs in which hreq does not arrive in consecutive
cycles satisfy the property.

4 Is My Specification Consistent?



4.2 Satisfiability is not Enough 107

This example demonstrates an important requirement for the consistency
of specifications for open systems, that is, the specification must not only be
satisfiable, but it must be satisfiable under all possible input scenarios. This
is obviously a stricter restriction as compared to satisfiability.

Inconsistencies in open system specifications may also involve multiple
properties. For example, let us consider the following properties for a two-
input arbiter.

1. The high priority request, hreq, is serviced immediately by asserting hgnt
in the next cycle.

2. The low priority request, lreq, must be serviced within the next three
cycles.

3. The grant lines are mutually exclusive.

This specification is inconsistent. When the high priority request arrives in
three consecutive cycles, a low priority request that arrives in the first cy-
cle cannot be served within the next three cycles. Note that all properties
participate in the inconsistency.

It is also interesting to note that the inconsistency in the above specifica-
tion disappears if we assume that hreq never arrives consecutively in three
cycles. If the arbiter is actually to be used in an environment where this is
indeed the case, then the specification is correct in the presence of the formal
assumption that hreq never arrives consecutively in three cycles.

Specifying the right assumptions about the environment is a very signif-
icant requirement for performing meaningful formal property verification. In
the absense of formal assumptions, the FPV tool may produce false counter-
examples covering scenarios that will never occur in practice due to the con-
straints on the environment.

A consistency check on a specification can reveal inconsistencies in the
specification. It may also reveal the need to add assume constraints.

4.2.1 Realizability

The formal specification for a module is said to be realizable or synthesizable
if and only if, there exists some implementation of the module that satisfies
the specification.

Obviously if a specification is unsatisfiable then it is also unrealizable. In
the previous section we also noted that realizable specifications must neces-
sarily be satisfiable under every given input scenario. In other words, if we
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are given an input sequence, then we must be able to provide a valuation of
the non-input signals in each cycle, such that the resulting run satisfies the
specification.

There is one more intricate issue involved in the realizability of a formal
specification. We will explain this through the following example:

property Gnt;
@ (posedge clk)
req |− > ##[1:$] gnt ;

endproperty
property LowReqAfterGnt;

@ (posedge clk)
gnt |− > ##1 !req ;

endproperty

The first property says that the request, req, is eventually granted by
asserting the gnt signal. The second property says that the req line must be
lowered in the cycle following the receipt of the grant.

If we check the specification at the system level with the arbiter and the
requesting master device taken together, then we do not have any problem.

Suppose we check the specification only on the arbiter. The req signal is
an input to the arbiter and the gnt signal is an output of the arbiter. The
first property can be satisfied by any implementation of the arbiter which
guarantees that every req is eventually serviced.

The problem lies in the second property. This property should not be
a part of the arbiter specification – it actually represents a requirement of
the requesting device. What happens if the validation engineer inadvertently
makes it a part of the arbiter specification? Can we detect the inconsistency?

Can the arbiter satisfy the second property? The answer is yes, but in a pe-
culiar way. Since the arbiter cannot see its future inputs, the only way in which
it can still satisfy this property is by never asserting the gnt line. This will
satisfy the second property, but we will have a conflict with the first property
whenever the input line, req, goes high. Therefore if the validation engineer
makes the mistake of keeping both properties in the arbiter specification, then
the specification will be unrealizable.

This example shows that a perfectly realizable property for one module
may be unrealizable for another module where the input/output polarity of
the signals are different. A typical assertion IP for a complex protocol will
have many assertions – some of these assertions are properties of the whole
system, while the others relate to specific devices. For example, the PCI Bus
protocol has properties for the master, slave and arbiter devices. It also has

4 Is My Specification Consistent?
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system level properties. For example, a property such as – the bus is never idle
when there are one or more pending requests – is a property which requires
specific guarantees from the arbiter (which must not delay the grant), the
master (which must float the address on time), and the slave (which must
be ready for the transfer). To test a subsystem consisting of one or more
devices, we need to choose the correct combination of properties, otherwise
the specification may become unrealizable.

Unrealizability is hard to debug manually. In a complex unrealizable spec-
ification, it is hard to demonstrate all scenarios under which we get a false
counter-example.

We will present the formal definition of realizable specifications later in
this Chapter. At the moment let us summarize the necessary and sufficient
conditions for a specification to be realizable.

• A specification consisting of properties for an open system (module) having
inputs, I, and non-inputs, O is realizable iff there exists some implemen-
tation that satisfies the specification under the following restrictions:

1. The module is unable to foresee its future inputs.

2. The module satisfies the specification under all input scenarios.

If assume constraints are given, then we read the second line as – the mod-
ule satisfies the specification under all input scenarios that are consistent
with the given assume constraints.

We shall show later that the realizability problem can be interpreted as a
game between a hypothetical module and its environment, where the goal of
the module is to satisfy the properties and the goal of the environment is to
choose the inputs in a way that leads to possible refutation. A specification is
realizable if and only if we have a winning strategy for the module.

4.2.2 Receptiveness

In dynamic property verification, we sometimes find that an assertion failure
and the corresponding cause for failure do not happen in the same cycle.
Often on debugging the cause, we find that the actual fault took place several
cycles ago, but was not detected at that time because the specification had
no assertion covering that specific behavior.

For example, consider a packet-based real time data transfer protocol (such
as PCI XP) where for every send event, the sender expects an acknowledge-
ment event within some k cycles. Now, a packet may be dropped in any
intermediate node, it may be dropped for several reasons, and it may actually
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happen much before the deadline of k cycles. The assertion which says:

send |− > ##[1:k] acknowledge

will fail only after k cycles (when the deadline expires), and we will have
to trace the path followed by the packet from the source to destination to
determine where it was dropped and for what reason.

We could detect the fault immediately if we wrote assertions that cov-
ered all possible ways in which a packet can be dropped and checked these
assertions on all intermediate nodes from the source to the destination. In
a complex protocol this can be quite a challenging task because the number
of ways in which a packet can be dropped may be quite large. Therefore we
often choose to write specifications that do not fail immediately when a fault
occurs, but may eventually lead to a failure.

These kinds of gaps in the specification sometimes lead to the masking of a
fault before it is detected. We present a more detailed example to demonstrate
this point.

Example 4.1. Let us consider the following specification of an arbiter, A, hav-
ing two request lines, r1 and r2, and three grant lines, g1, g2 and gd. The
arbiter specification consists of the following properties:

1. P1: The request r1 is granted in the next cycle by asserting g1.

2. P2: The request r2 must be granted within the next 3 cycles by asserting
g2.

3. P3: The grant line gd goes to the default master (which is a bridge to the
low performance bus). gd must be asserted at least once in every 3 cycles.

4. P4: The grant lines are mutually exclusive.

We also have the following assumptions on the input lines:

1. A1: The request lines, r1 and r2 are mutually exclusive.

2. A2: The request r1 never arrives in consecutive cycles.

3. A3: When r2 arrives, it remains high until g2 is asserted.

The SVA code for this specification is shown in Fig 4.2.

Let us now consider the scenario shown in Fig 4.3. At time t, the request
line r1 went high while the grant was parked on gd. At t+1, the arbiter asserts
g1 as required by P1, and also, the request r2 arrives.
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property HighPriorityGrant;

@ (posedge clk) r1 |− > ##1 g1 ;

endproperty

AssertP1: assert property (HighPriorityGrant) ;

property DeadlineForR2;

@ (posedge clk) r2 |− > ( ##1 g2 ) or ( ##2 g2 ) or ( ##3 g2 ) ;

endproperty

AssertP2: assert property (DeadlineForR2) ;

property DefaultGrantPattern;

@ (posedge clk) ( gd ) or ( ##1 gd ) or ( ##2 gd ) ;

endproperty

AssertP3: assert property (DefaultGrantPattern) ;

property Mutex;

@ (posedge clk) (!g1 || !g2) && (!g2 || !gd) && (!g1 || !gd) ;

endproperty

AssertP4: assert property (Mutex) ;

property MutexOnR1R2;

@ (posedge clk) (!r1 || !r2) ;

endproperty

AssumeA1: assume property (MutexOnR1R2) ;

property NoConsecutiveR1 ;

@ (posedge clk) (!r1) or (##1 !r1) ;

endproperty

AssumeA2: assume property (NoConsecutiveR1) ;

property PersistsR2 ;

@ (posedge clk) r2 |− > r2 [*1:$] ##1 g2 ;

endproperty

AssumeA3: assume property (PersistsR2) ;

Fig. 4.2. An Unreceptive Specification

At t + 2, the arbiter appears to have two options – it may assert g2 to
satisfy P2, or it may assert gd to satisfy P3. None of these choices violate the
given properties – at least not at this moment.

The first option is actually incorrect!! If the arbiter asserts g2 at t + 2,
then at t + 3 it must assert gd to prevent P3 from being refuted (recall that
gd was low at t+1 and t+2). Now, if the request r1 arrives at t+2, then (by
P1) we will also need g1 at t + 3. This is not possible by virtue of the mutual
exclusion between the grant lines (P4).
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P3 fails here

Fig. 4.3. A Conflicting Scenario

On the other hand, if the arbiter asserts gd at t + 2, then r2 waits (by
assumption A3) and thereby r1 cannot also arrive at t + 2 (by assumption
A1). Therefore the arbiter will be able to assert g2 at t + 3 without any
conflict.

Let us analyze the problem with the first option more carefully. The first
interesting thing to note is that the faulty behavior of asserting g2 instead of
gd at time t + 2 will not be exposed by our specification unless r1 arrives at
time t+2. In other words, if r1 did not arrive at time t+2, the arbiter would
have got away with the incorrect response.

Therefore, though the specification does not become unsatisfiable in the
presence of the fault, it becomes unrealizable in the presence of the fault. �

Intuitively, a specification is said to be receptive if it becomes unsatisfi-
able in the presence of every fault for which it becomes unrealizable. In other
words, it is never the case that the presence of a fault makes it unrealizable
but not unsatisfiable. The specification of Example 4.1 is unreceptive because
the specification became unrealizable at t + 2 under the presence of the fault
(asserting g2 at t + 2), but does not become unsatisfiable (it becomes unsat-
isfiable only when r1 arrives at t + 2).

Can we make the specification of Example 4.1 receptive? The answer is
yes. We could add the following property to cover the fault:

property WhenToAssertGd;
@ (posedge clk)
r1 ##1 r2 |− > ##1 gd ;

endproperty

The intent of the above property is hard to fathom unless one is presented
with the scenario of Example 4.1. Typically it is quite unrealistic to expect
that the validation engineer will identify all such scenarios and add properties
to make the specification receptive. Hence we must accept the possibility of
dealing with unreceptive specifications.
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Unreceptive specifications do not pose any major problem for an FPV
tool. However formal methods for testing the receptiveness of specifications
are gaining in significance for at least the following two reasons:

1. A specification may become unreceptive if we attempt to verify a property
in the wrong context. For example, consider the following property over
a request line, req, and a grant line, gnt.

property LowReqAfterGnt;
@ (posedge clk)
gnt |− > ##1 !req ;

endproperty

The property says that the request line must be lowered in the cycle after
receving the grant. This property is not meant for the arbiter, but what
if we inadvertently treat this as a property for the arbiter? Interestingly
the property can still be realized, but in a rather peculiar way. Since the
arbiter cannot see its future inputs, it can satisfy this property by never
asserting the gnt signal.

Is the property receptive? No. If the arbiter asserts the gnt signal, the
consequent property, ##1 !req, is unrealizable but not unsatisfiable.

Inadvertent use of unreceptive properties such as this may not make the
specification inconsistent (say, unsatisfiable or unrealizable), but they may
not reflect the actual design intent. For example, an arbiter which never
asserts a given grant line was not our intent. A receptiveness check can
point out the possibility of such mistakes in the specification.

2. In dynamic property verification, a faulty behavior may get masked when
the test bench fails to drive the right sequence of inputs that propagates
the fault until the unreceptive assertion fails. If we use a realizability
checker in the test generation algorithm, then we can intelligently drive
the test bench to a refutation whenever the module produces a faulty
behavior. The details of this approach is presented in Chapter 7.

Satisfiability, vacuity, realizability and receptiveness are the main consistency
issues in formal property specifications. There are other forms of inconsisten-
cies that may be present in a specification, but those are beyond the scope of
this book.
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4.3 Games with the Environment

The first step towards developing methods for checking satisfiability, real-
izability and receptiveness of specifications is to formalize these problems.
There are many ways to formalize these problems, but we will choose a game
theoretic formulation because it demonstrates the differences between these
problems very lucidly.

In all of these problems, our target is to verify whether the specification
itself has a problem. If so, then there must be some scenario that exposes the
problem – our goal is to search for such scenarios. We will model this search
as a two player game, where Player-1 represents the module and Player-2
represents its environment. In each round of the game, Player-1 decides the
values of the non-input signals, following which Player-2 decides the values
of the input signals. In the first round, the values set by Player-1 are the
initial values of non-inputs, while the values set by Player-2 are the initial
inputs. The module (Player-1) reacts to the inputs received in a given round
by choosing its next state, which is manifested by the values of the non-input
signals in the next round. The objective of Player-1 is to trace a run that
satisfies the specification, while the objective of Player-2 is to guide the run
into a refutation.

It is important to note that in this analysis, the module implementation
is not given. If Player-1 has a way to win the game, then the synthesis of that
winning strategy will be a valid implementation of the module.

x y
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y0=0

x0=1

x1=0x1=0
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y1=1
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y3=1y3=1 y3=1 y3=1
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y3=1y3=1 y3=1 y3=1

Fig. 4.4. A full-x tree

The strategy of Player-1 can be defined over a full-x tree, which is a tree
of infinite depth that represents all input sequences. For example, a full-x
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tree for a module having an input, x, and an output, y, is shown in Fig 4.4.
The root node represents the initial state of the system. Every other node of
the tree represents a state reached by a distinct sequence of inputs from the
initial state. The moves of Player-1 can be shown by the values of the non-
input signals at each node of the full-x tree. These labels define the strategy of
Player-1. We use yk and xk to denote the value of the output y and the input
x respectively in the kth round of the game.

Each path of the full-x tree when annotated with the node labels, describe
a run. Player-1 attempts to set the node labels in such a way that the resulting
run satisfies the specification.

For example, consider the property: whenever x arrives, y must be asserted
in the next cycle. Fig 4.5 shows an incorrect strategy for Player-1 on a full-x
tree. In this strategy, Player-1 does not assert y in state s, causing a refutation.
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Fig. 4.5. An Incorrect Strategy

Our task of verifying the consistency of a specification is essentially a task
of finding out whether there exists a correct strategy for Player-1. If not then
there can be no valid implementation and hence the specification is itself
inconsistent.

In the next section we will use the full-x tree representation to formalize
and solve the problems of checking the satisfiability, realizability and recep-
tiveness of specifications.

4.4 Methods for Consistency Checking

In recent times, SAT-based FPV approaches are becoming increasingly pop-
ular because of their ability to scale to circuits of decent size. This ability is
largely due to recent advances in SAT algorithms and the engineering of the
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SAT solver tools. Similar advances are also taking place in checking the truth
of Quantified Boolean Formulas (QBF), alternatively called as QBF-SAT.

It has been established that the inherent complexity of realizability and re-
ceptiveness checks is harder than that of Boolean satisfiability (SAT). We will
show that these problems can be formulated as QBF-SAT problems through
some transformations1. There are at least two distinct advantages in following
this approach, namely:

1. The formulation is very simple and not hard to implement.

2. We automatically benefit from future advances in QBF-SAT solvers.

Our QBF-SAT formulation comes from the full-x tree representation of
the game between a hypothetical module and its environment. We will now
outline the solutions to each of the three consistency problems – satisfiabil-
ity, realizability, and receptiveness. We will present the solution methodology
around LTL – extensions to languages such as SVA and PSL are nontrivial,
but not technically challenging.

The methodology is as follows. In Chapter 3 we had shown that a LTL
property, ϕ, over a set of variables, AP = {x0, . . . , xn}, can be unfolded over k
time steps to create a Boolean formula, [ϕ]k, over {x0

0, . . . , x
0
n, . . . , xk

0 , . . . , xk
n},

where xi
j represents the value of xj at the ith time step. Each satisfying val-

uation of these variables represents a k-length witness of the property ϕ. In
other words, if the Boolean formula, [ϕ]k, is unsatisfiable, then it means that
ϕ can never be satisfied within k time cycles. We studied the use of this
kind of unfolding in SAT-based bounded model checking, where the goal was
to determine whether the unfolded property and the implementation had a
common witness.

On the other hand, for consistency checking, we will verify whether the
unfolded property is consistent. The important question here is – when and
how do we terminate? If we unfold a property up to k steps and find that the
resulting Boolean formula is unsatisfiable, we will only know that there are
no witnesses of length k or less. How can we determine whether the property
is at all satisfiable, that is whether there exists any k for which the unfolded
Boolean formula is satisfiable?

We will show that there exists an upper bound, k∗, on k. If we do not find
any witness within k∗ steps, then we will never find a witness. In order to
establish that such a bound exists for each of the three consistency problems,
we will introduce some formalisms.

1 These transformations were first presented in [94].
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4.4.1 Alternating Automata and LTL

In Chapter 3, we studied the notion of very weak alternating automata
(VWAA). VWAA represent exactly the class of languages that can be de-
fined using LTL formulas. The input to the automaton at each cycle is a
valuation of the signals over which the property has been written, and the
state of the automaton decides whether the run is accepted or rejected. We
used the notion of such a checker automaton while creating the tableau for
LTL model checking in Chapter 3. We also studied how this automaton can
be unfolded over time in SAT-based bounded LTL model checking.

Given an LTL formula L, we construct a VWAA, AL = (Σ,S, s0, ρ, F ).
The set of states, S, of the automaton consists of all subformulas of L and
their negation. The input set is Σ = 2AP where AP is the set of variables in
L (also called atomic propositions). The initial state s0 represents L itself.

q

q

p U (q U r) p

q U r

r

r

True

True

Fig. 4.6. VWAA for pU(qUr) (simplified)

Fig 4.6 presents a graphical representation of the VWAA for the LTL
property, L = p U (qUr). The nodes represent the subformulas of L. The
automata satisfies the following properties by construction:

1. The edges in the graphical representation go from states of higher to lower
or same order only, according to the partial order imposed on the states
by the relation “subformula of”, that is, ni ≥ nj if nj is a subformula of
ni . This restriction makes it a weak alternating automaton (WAA).

2. Any cycle in the WAA created from the LTL formula is a self-loop only.
This restriction makes it a very weak alternating automaton (VWAA).

The transition function, ρ, of the VWAA maps a state of the VWAA to a
subset of S. Consequently a state of the VWAA may be represented by a
Boolean formula over the subformulas of the property, L. In other words, the
state of the VWAA is represented by a subset of the nodes of its graphical
representation, and each transition takes it to a possibly different subset of
nodes.
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A run of an alternating automaton is a tree rather than a sequence. A finite
prefix of this run (say, upto n cycles) may be represented by a propositional
formula. This formula can be obtained directly by the following recursive
translations, where k is the temporal index (that is, the cycle number).

[p]k = pk, p ∈ Σ
[ψ1 ∧ ψ2]k = ψk

1 ∧ ψk
2

[¬ψ]k = ψk

[Xψ]k = ψk+1

[ψ1Uψ2]k = ψk
2 ∨ (ψk

1 ∧ [ψ1Uψ2]k+1)

p

p

q

q q

r

r

r

r

r

r

0

0

0

1

1

1

1

1

2 2

2

Fig. 4.7. Run tree for L = pU(qUr) (unfolded to 2 cycles)

Fig 4.7 shows the run tree of the VWAA of Fig 4.6 unfolded upto two
cycles. The points to be noted here are as follows:

1. The translations given above create a run tree, representing all possible
runs of the alternating automaton of a given LTL formula.

2. The leaves of the tree consist of propositional variables from AP . The
internal nodes are labeled by either ∧ (AND) or ∨ (OR). The AND-nodes
represent universal choices and OR-nodes represent existential choices in
the run of the alternating automata.

3. An accepting run is one in which each of the indexed propositional vari-
ables have been assigned values that make the propositional formula rep-
resenting the run tree evaluate to True.

The propositional formula representing the run tree of Fig 4.7 is:

F2
L = r0 ∨ (q0 ∧ (r1 ∨ (q1 ∧ r2)) ∨ (p0 ∧ (r1 ∨ (q1 ∧ r2) ∨ (p1 ∧ r2)))

Let us now consider an unsatisfiable formula:
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L = Gq ∧ F ¬q

The propositional formulas obtained by unfolding L up to zero, one, and two
steps are as follows:

F0
L = q0 ∧ ¬q0

F1
L = (q0 ∧ q1) ∧ (¬q0 ∨ ¬q1)

F2
L = (q0 ∧ q1 ∧ q2) ∧ (¬q0 ∨ ¬q1 ∨ ¬q2)

None of these formulas are satisfiable, hence L has no witness of length less
than k = 3. Can we conclude that L is unsatisfiable? The answer is yes, and
the argument is as follows.

Each state si of the VWAA of a property L, can be represented by a
property Pi, which is a Boolean formula over the subformulas of L. A tran-
sition from a state si to a state sj of the VWAA is a stuttering transition if
Pi ≡ Pj . A non-stuttering path in the VWAA is a sequence of non-stuttering
state transitions.

The ”very weak” property of a VWAA guarantees that a non-stuttering
path is a loopless path. It also follows that the length of the longest loopless
path is upperbounded by the number of non-self-loop edges in its graphical
representation, since (a) each non-stuttering transition of the VWAA must
use at least one of these edges, and (b) no edge can be used more than once,
since there are no cycles (except the self-loop edges). Therefore the length of
the longest loopless path of the VWAA of a property ϕ is upperbounded by
|ϕ|, defined as follows:

|ϕ| = 1 if ϕ is true, false, p or ¬p where p ∈ Σ
= 1 + |ψ| if ϕ = Xψ
= 1 + |ψ1| + |ψ2| if ϕ = ψ1oψ2, o ∈ {∨,∧, U}

We shall show that unfolding the given property ϕ up to |ϕ| steps is sufficient
to check whether the property is satisfiable, realizable, and receptive.

4.4.2 Satisfiability Checks

An LTL property, L, is satisfiable if there is any run that satisfies the property.
The following theorem presents a necessary and sufficient condition for the
satisfiability of L in terms of the propositional formula obtained by unfolding
L to at least the length |L|.

Theorem 4.2. Let L be an LTL formula, and let FL be the propositional
formula representing the run tree of the VWAA of L that has been unfolded
to at least the length |L|. Then, L is satisfiable iff FL is satisfiable.
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Proof: We will prove the stronger result where FL represents the propo-
sitional formula for the run tree of the VWAA that has been unfolded to at
least the length of the longest loopless path in the VWAA.

Only if If FL is satisfiable, then there exists a possible assignment of values
for the variables at every level of the run tree that make the run tree evaluate
to true; – that is, an accepting run of the VWAA of L is possible, therefore
L is satisfiable.

If To prove this we have to show that if L is satisfiable, that is, if there
exists any input sequence a1, . . . , an to the VWAA that makes L true, then
FL is satisfiable.

Case1 : n ≤ |L| The sequence a1, . . . , an is an assignment for the variables
at level 1 . . . n of the run tree that gives an accepting run, because a1, . . . , an

make L true. This means that this assignment makes the run tree (that is,
FL) evaluate to true. Therefore, FL is satisfiable.

Case2 : n > |L| If the length of the accepting run a1, . . . , an is longer
than the length of the longest loopless path in the run tree, it implies that
during this run the VWAA stutters on certain states. If the sections of the
input sequence that represents such stutters are removed, we are left with
an accepting sequence that is of length no greater than the length of the
longest loopless path. So, by the same argument as in Case1, this sequence
now represents a satisfiable assignment for FL. Therefore, FL is satisfiable. �

To see how this procedure works, let us return to the unsatisfiable property:
L = Gq ∧ (F¬q). The run tree up to depth 3 is shown in Fig 4.8, and the
corresponding propositional formula is:

F2
L = (q0 ∧ q1 ∧ q2) ∧ (¬q0 ∨ ¬q1 ∨ ¬q2)

The above formula is unsatisfiable, and therefore we conclude that L is unsat-
isfiable. Theorem 4.2 guarantees that whenever we have an unsatisfiable prefix
of the run tree, whose length exceeds the length of L, then L is unsatisfiable,
and we need not unfold the property any further.

q1 2

q

q

0 q

q q1 2

0

Fig. 4.8. Run tree for Gq ∧ (F¬q) (unfolded to 3 cycles)
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Most FPV tools have the capability to verify whether the specification is
satisfiable, though this feature may not be advertised explicitly. Tools which
use an approach similar to the tableau based one, can easily determine whether
the deterministic checker automaton is itself empty.

The approach presented here is SAT based, which scales well to specifi-
cations of large size. Also, unlike in the case of the model checking problem
where we compare the specification with an implementation, the satisfiabil-
ity problem does not have to deal with any implementation and is therefore
largely free from the state explosion problem. Capacity issues may however
come up if we use large bit vectors in the specification, or if our properties have
large temporal depth (such as timed properties with large time bounds). We
tested the methodology on the ARM AMBA Bus protocol suite after scaling
down the Bus width, and did not face any capacity problems.

4.4.3 Realizability Checks

In order to verify whether a given specification is realizable we need to know
the direction (input / ouput) of the signals. In Section 4.3 we studied the
notion of a full-x tree in the context of viewing the task of consistency checking
as a game between a hypothetical module (Player-1) and its environment
(Player-2). In that model, Player-1 sets the values of non-inputs in every
round, while Player-2 sets the values of the inputs. Player-1 reacts to the move
of Player-2 by choosing its next state, which is manifested by the values of the
non-inputs in the next round. Intuitively, a round of the game corresponds to
a clock cycle of the module, where the present state (that is, present values of
state-bits) and present inputs decide the value of the next state of the module
as per its implementation strategy.

Let us first see how satisfiability checking fits into this picture. A specifica-
tion is satisfiable if there exists at least one run that satisfies the specification.
This is equivalent to saying that at least one path of the full-x tree is a valid
run.

Let us consider our earlier example of an unrealizable (but satisfiable)
property (now written in LTL) where r is a high priority request and g is the
corresponding grant:

L = G[ r ⇒ Xg ∧ XX ¬ g ]

Fig 4.9 shows one strategy of Player-1 on a full-x tree representation. With
this strategy, the leftmost path, π = 1, 2, 4, . . ., of the full-x tree is a witness
for L.

Therefore, when we want to test the satisfiability of the specification we
will assume that the module and its environment cooperate to find some
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Fig. 4.9. One strategy for G[ r ⇒ Xg ∧ XX ¬ g ]

valuation of the signals over time, such that the resulting run satisfies the
specification. In other words, at the kth iteration we verify the truth of the
property:

∃g0 ∃r0 . . . ∃gk−1 ∃rk−1 ∃gk Fk
L

where Fk
L is the propositional formula obtained by unfolding L up to k steps.

Since all the variables are existentially quantified, this is essentially a Boolean
satisfiability problem.

When we test the realizability of L, we must treat the module and its
environment as adversaries, since we need to verify whether there exists any
strategy that can always guarantee the satisfaction of L. In other words, with
the desired strategy, every path of the full-x tree must be a satisfying run.
Therefore at the kth iteration we verify the truth of the QBF:

∃g0 ∀r0 . . . ∃gk−1 ∀rk−1 ∃gk Fk
L

where Fk
L is as before. For example, if we unfold L twice, we obtain:

F2
L = (r0 ⇒ g1 ∧ ¬g2) ∧ (r1 ⇒ g2)

The property:
∃g0 ∀r0 ∃g1 ∀r1 ∃g2 F2

L

is not valid, since F2
L is unsatisfiable for r0 = r1 = 1. This corresponds to the

rightmost path, π = 1, 3, 7, . . ., of the full-x tree of Fig 4.9. Every valuation of
g at node 7 is invalid.

Our algorithm for realizability checking for a LTL property L works as
follows.

1. We first construct the propositional formula Fk
L equivalent to the run tree

up to depth k, where k is the length of the longest loopless path in the
VWAA of L.

4 Is My Specification Consistent?
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2. We then create the QBF:

QL = ∃o0 ∀i0 . . . ∃ok−1 ∀ik−1 ∃ok Fk
L

where ij denotes the input vector at step j, and oj denotes the valuation
of the non-inputs at step j. The universal quantification ∀ij represents
all possible valuations of the inputs by the environment in the jth cycle
(that is, over input variables indexed by j). The existential quantification
∃oj represents the existence of a legal valuation of the non-inputs by the
module in the jth cycle. Since a module cannot see its future inputs, the
quantifiers alternate over the different time cycles. We use a QBF solver
to solve QL.

The key result here is the following theorem, which shows that the property,
L is realizable if and only if the finite length QBF QL is true.

Theorem 4.3. Let L be an LTL formula, and let Fk
L be the propositional

formula representing the run tree of the VWAA of L that has been unfolded
to at least the length, k, of the longest loopless path in the VWAA. Then, L
is realizable if and only if the QBF QL = ∃o0 ∀i0 . . . ∃ok−1 ∀ik−1 ∃ok (Fk

L)
is true.

Proof: Only if. To prove this we need to show that if QL is not true, then
L is not realizable.

If QL is not true, then for each strategy of Player-1, there exists a valua-
tion of inputs set by Player-2 up to some depth j, j < k for which the formula
Fk

L becomes unsatisfiable. This input sequence represents a path in the full-x
tree to a node n at depth j where the strategy of Player-1 fails. Therefore, L
is not realizable.

If. If L is not realizable then for each strategy of Player-1, there exists
a node n in the full-x tree where Player-1 has no way of setting its outputs
to make L true. This follows from the definition of realizability. We need to
show that such a node always exists at a depth j, j ≤ k and that QL is false.
Let j denote the depth of n.

Case1 : j ≤ k The input valuation along the path to n will make QL false.

Case2 : j > k Since Fk
L is the unfolding of L up to the length of the longest

loopless path in the VWAA, any run of length greater than k will loop at one
or more states of the VWAA. In these stuttering states, if we consider only
the input valuation that leads towards the node n, then we have the sequence
of input valuations that makes QL false. �
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4.4.4 Receptiveness Checks

Intuitively, a module is receptive if it does not need to consider possible future
inputs while choosing the values of its outputs at a given instant. In other
words, it should be free to choose any valuation of its outputs as long as that
valuation does not refute the property at that time instant. We shall refer to
such valuations as legal valuations of the outputs. The notion of receptiveness
can be expressed using the full-x tree model as follows.

Definition 4.4. A property ϕ is receptive iff at each node of the full-x tree,
every legal valuation of the outputs represents a winning strategy for the mod-
ule. �

A valid strategy An invalid strategy

z
o0=0

i0=0 i0=0

o0=1

i0=1i0=1

o1=0 o1=0o1=0

i1=0i1=0 i1=0i1=0

o1=1

i1=1i1=1i1=1i1=1

Fig. 4.10. Full-x tree for G(o ⇒ Xi)

Example 4.5. Consider the following non-receptive property for a module with
input i and output o:

ψ = G( o ⇒ Xi )

Figure 4.10 shows two legal labellings of the node z on the full-x tree of ψ. In
the second tree, the module assigns o = 1 at z, which is perfectly legal at z,
but leads to a refutation if the input i is not asserted in the next cycle. On the
other hand, if the module assigns o = 0 at all nodes (as in the first tree), then
there is no such problem. Therefore the module cannot choose its outputs
from the entire set of legal outputs, and we conclude that the specification is
not receptive. �

To check for the receptiveness of a property L, we first construct the
propositional formula Fk

L equivalent to the run tree up to depth k, which is
the length of the longest loopless path in the VWAA of L. For each j, j ≤ k,
we create a QBF as follows:

4 Is My Specification Consistent?
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Rj
L = ∀o0 ∀i0 . . . ∀oj−1 ∀ij−1 ∀oj

(
Pj
L ⇒ Qj

L

)

where:

Pj
L = ∃ij ∃oj+1 . . . ∃ik−1 ∃ok

(
Fk

L
)

Qj
L = ∀ij ∃oj+1 . . . ∀ik−1 ∃ok

(
Fk

L
)

The following theorem shows that a property is receptive iff Rj
L is true for

all j ≤ k.

Theorem 4.6. A satisfiable property, L is receptive if and only if for every
j, j ≤ k, Rj

L is true, where k is the length of the longest loopless path in the
VWAA of L.

Proof: Only if To prove this we need to show that if for some instantiation,
θj , of o0, i0, . . . , ij−1, oj , Pj

L is true and Qj
L is false, then L is not receptive.

Since Pj
L is true, the valuation of oj in θj is a legal valuation. On the

other hand, since Qj
L is false, it shows that a module does not have a winning

strategy at the node of the full-x tree that is reached by applying θj . Therefore,
L is not receptive.

If To prove this we need to show that if L is not receptive, then there
exists a substitution, θj , of o0, i0, . . . , ij−1, oj such that Pj

L is true, but Qj
L is

false.

Since L is not receptive, there exists a node n in the full-x tree at some
depth j, where for some legal valuation of oj , there is no winning strategy of
the module. We will construct the desired θj as follows.

Case1 : j ≤ k In this case, θj is simply the valuation of o0, i0, . . . , ij−1, oj

that takes us from the root of the full-x tree to node n. This valuation is a
witness for Pj

L. Since there is no winning strategy for the module at node n

it follows that Qj
L is false.

Case2 : j > k Since Fk
L is the unfolding of L up to the length of the longest

loopless path, any run of length greater than k will loop at one or more states
of the VWAA. In these stuttering states, if we consider only the valuations of
the inputs that takes us towards node n, we get the desired substitution. The
rest of the argument is similar to that of Case1. �

4.5 The SpecChecker Tool

We have implemented the methods outlined in this chapter in a tool that
checks the satisfiability, realizability and receptiveness of LTL specifications.
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We use zchaff [83] as the backend SAT solver and QuBE [61] as the backend
QBF checker.

The propositional formula representing the longest loopless path in the
VWAA for the given LTL specification is first checked for satisfiability us-
ing zchaff. It is then converted to CNF using the blocking clauses technique
described in [81], which is then further tested for realizability using QuBE.

If a property is unrealizable it is not receptive (by definition). Otherwise,
we test for receptiveness by checking the truth of at most |L| QBF formulas.

We also developed a rudimentary prototype tool for checking the realiz-
ability of SVA properties. This tool supports only a fragment of SVA – for
example, multiple clocks, local variables, etc are not supported. We used a
SystemVerilog Design Analyzer to read the SVA properties and the direction
of the signals from a SV design, and pass it to the SpecChecker tool.

4.6 Concluding Remarks

We believe that consistency problems in formal specifications will soon become
one of the dominating issues in FPV. The task of debugging specifications will
require an arsenal of new formal methods.

In this chapter we studied some of the most common forms of logical incon-
sistencies in formal specifications. Current tools support satisfiability checks
(either implicitly or explicitly), but realizability and receptiveness checks are
not supported, though these problems are quite common in large specifica-
tions. For example, we were pleasantly surprised to find several consistency
problems in an industry standard assertion IP for the ARM AMBA AHB pro-
tocol – after the assertion IP had passed several rounds of testing, both by its
vendor as well as other customers. The problems had remained because the
scenarios triggering the realizability and receptiveness problems never came up
during (simulation-based) testing. The formal analysis immediately detected
the problems.

There is one more important issue that we somewhat glossed over. How
do we demonstrate the inconsistency in the specification? If the consistency
checker simply reports that the specification is inconsistent, and provides no
other feedback, then the validation engineer will have to do the debugging
manually. Can the tool also assist the debugging process?

Let us examine each case separately:

1. Demonstrating un-satisfiability. If the specification is unsatisfiable, then
we have the advantage that the specification will be refuted on all runs –

4 Is My Specification Consistent?
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including those valid runs which the validation engineer expects the spec-
ification to accept. In the debugging process, we may ask the validation
engineer to present any run (trace) which she expects the specification to
accept. We may then list the properties that fail in that trace and also
indicate the specific points (on the trace) at which they fail.

Could we have produced a false counter-example trace directly from the
unsatisfiable specification? The answer is no, because we have no way to
determine the design intent from the unsatisfiable specification – that is,
we cannot distinguish between the valid and invalid runs with respect to
the actual design intent. Therefore the sample valid run must come from
the validation engineer.

2. Demonstrating un-realizablity. This is a much harder problem because an
unrealizable specification is not refuted on all runs. For example, consider
the unrealizable property, o ⇔ i, for a module with input i and output
o. If we assert o = 1 in the first cycle, then the specification becomes
unsatisfiable only when we have i = 0 in the next cycle.

Can we produce an input seqeunce under which the specification becomes
unsatisfiable? Not always. For example, if we produce an input sequence
where i = 1 in the second cycle, then the strategy which asserts o = 1
in the first cycle will satisfy the specification. On the other hand, if we
produce an input sequence where i = 0 in the second cycle, then the
strategy which asserts o = 0 in the first cycle will satisfy the specification.
Therefore, the witness for unrealizability is not a run or an input sequence
– it is a strategy of the environment for refuting the specification – a
strategy that always wins, regardless of the implementation strategy.

How can we then demonstrate unrealizability? We can produce an intel-
ligent test bench that plays the winning strategy of the environment.
Simulating any implementation with this intelligent test bench will then
demonstrate the refutation immediately. We shall study this approach in
more details in Chapter 7.

3. Demonstrating un-receptiveness. An unreceptive specification is not an in-
consistent one – it is merely not tight enough to be refuted in the same
cycle as the fault during dynamic verification. Therefore we can demon-
strate un-receptiveness when the presence of a fault renders the speci-
fication unrealizable, but not unsatisfiable. When this happens, we can
use intelligent test generation to drive the simulation towards eventual
refutation. This approach serves two purposes – (a) it shows that the
specification is unreceptive, and (b) it overcomes the main limitation of
unreceptive specifications by not allowing a fault to get masked. We shall
elaborate on this approach in Chapter 7.
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Early detection of inconsistencies in formal specifications will largely benefit
any design validation flow. Appropriate ways of demonstrating the problem
in the specification will be an equally important problem. In this Chapter we
have outlined only some of the major issues – the subject as a whole is loaded
with opportunities for EDA and CAD companies.

4.7 Bibliographic Notes

The problem of determining the realizability of a specification for a sequential
circuit was formulated by Church in 1965. In [93], Rabin provided a first solu-
tion to Church’s problem based on automata over infinite trees. At the same
time, Buchi and Landweber provided another solution [23] based on infinite
games. Most of the techniques for verifying synthesizability of specifications
are built around these two approaches.

In 1989, Pnueli and Rosner [91] formalized the problem of verifying the
realizability of specifications for reactive modules, that is, open systems that
must satisfy given properties under all possible inputs from the environment,
without being able to foresee the future inputs.

The receptiveness problem was first formulated by Dill in his thesis [48].
Similar consistency issues in temporal specifications has also been studied by
Gawlick et. al. [60], and Abadi and Lamport [1].

In 2002, Alur, Henzinger and Kupferman showed that consistency prob-
lems for reactive module specifications such as realizability can be expressed
in their new logic called Alternating-time Temporal Logic (ATL) [7].

In 2005, we showed [94] that the problems of satisfiability, realizability and
receptiveness of temporal specifications can be reduced to quantified Boolean
formulas (QBF) and solved using efficient QBF solvers.

The notion of vacuity in temporal logic model checking has been studied
in [75, 76, 11] and is a subject of considerable recent interest.
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Logical bugs like to hide in the gap between the design intent specification
and the implementation. The RTL designer typically receives the specification
as an English document and develops the implementation on the basis of her
understanding of this document. Using a natural language such as English
creates the possibility of a gap between the design architect’s actual intent
and the RTL designers’ perception of this intent. Some of the hardest logical
bugs love to hide in this gap.

The goal of formal property verification is to present the specification in a
formal language so that (a) there is no gap between the architect’s specification
of the design intent and the RTL designer’s understanding of that intent, and
(b) automatic verification techniques can check whether the implementation
meets the specification.

Unfortunately the limitations of existing FPV techniques allow us to
achieve this objective only partially. Specifically:

1. It is not practical to express the entire contents of a design specification
document in terms of formal properties. One of the major challenges in
developing an assertion suite is to identify the right kind of properties
from the specification document.

2. We cannot formally verify every property that we write because of capacity
limitations of existing FPV tools. Therefore, we must attempt to express
the design intent through small properties. If this is not possible (as is
often the case) then we either resort to dynamic verification (which is non-
exhaustive in practice) or we live with an incomplete formal specification.

It is natural to expect that practical considerations will force us to work with
formal specifications that cover the design intent partially.

Have I Written Enough Properties?



130 5

Therefore it is hard to define the meaning of the question – Have I written
enough properties? Any engineer engaged in developing an assertion suite
looks for a suitable answer to this question, and the related question – What
fraction of the design functionality have I covered through my properties?

In order to answer these questions we need to define the “whole” that is at
the denominator of this fraction. What is the “whole” that we aim to cover?
This is the first challenge in formalizing a FPV coverage metric – defining the
coverage goal.

There is a popular misconception about FPV coverage. Since a formal
property specification models the design intent, many practitioners of FPV
expect FPV coverage metrics to indicate functional coverage. This expectation
creates the following paradox. Our objective is to write a set of properties
that expresses the design intent completely. In order to formally ascertain the
functional coverage of this property suite, we need the complete design intent
(the coverage goal) to be given formally, which in turn is the same as our
objective!!

In other words, since the property suite represents the first formal func-
tional specification of a design intent, we do not have any other golden func-
tional model that could act as the reference for functional coverage analysis.
It is therefore not surprising that all existing FPV coverage metrics are struc-
tural in nature.

A structural coverage metric is not meaningful unless we can relate it to the
functional behaviors in some way. Typically, our expectations from structural
FPV coverage metrics are as follows:

1. A low structural coverage should always indicate low functional coverage.
Therefore a low value of coverage should prompt the designer to write
more properties.

2. The coverage report should indicate the coverage gaps in such a way that
the validation engineer can easily relate it with the gaps in functional
coverage. A coverage result that cannot be related to the functional gaps
in the specification is not of much value.

3. A high structural coverage does not guarantee high functional coverage.

There are a couple of notable issues here. Experience from simulation coverage
metrics suggest that using more than one coverage metric usually provides
a better coverage feedback than using only one. This is natural, since each
structural coverage metric approximates the functional coverage goal in a
different way. Early experience from practitioners of FPV coverage also seems
to indicate that there is value in using multiple FPV coverage metrics to

Have I Written Enough Properties?
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analyze the completeness of a specification. This seems to be the best available
option for getting around the limitation indicated in the third point above.

There is also the issue of computational complexity. Many of the existing
FPV coverage metrics have the same complexity as model checking. If we have
to spend 8 hours in checking a property, and another 8 hours for assessing
the completeness of the specification, then the overhead becomes annoying.
Moreover, property suites are not developed solely for FPV – assertion IPs for
large protocols, such as PCI XP, ARM AMBA Bus, etc, are also developed for
dynamic assertion-based verification at the system level. Large system level
specifications cannot be used in model checking (due to capacity limitations),
but it is very important to assess the completeness of these specifications for
the success of dynamic ABV. Therefore we need coverage metrics that can be
evaluated quickly, and we need coverage analysis methods that do not depend
on a model checking tool.

This chapter outlines a cross section of recent approaches towards formal
verification coverage, including some of our recent research on this subject.

5.1 Simulation Coverage Metrics

Simulation coverage metrics have been used for ages. However, the significance
of these metrics have grown significantly in recent times due to the adoption
of coverage driven randomized test generation. The new approach alleviates
the effort of writing directed tests to a large extent and is quite effective
in practice, provided that the coverage monitors help in directing the test
generation process towards the less covered areas.

Simulation coverage metrics and FPV metrics have a common goal – both
aim to cover the interesting behaviors of the design under test. However the
method in which these metrics are evaluated are grossly different, and the
interpretation of the coverage results are also handled in a different way. It
is quite informative to compare the simulation coverage metrics with FPV
coverage metrics in terms of their semantics. We summarize some of the most
popular simulation coverage metrics in this section.

1. Code coverage. The most widely used code coverage metrics are statement
and branch coverage. A statement or a branch of the HDL code is said
to be covered if these are executed during the simulation. In constraint-
driven randomized test generation we use the feedback to ensure that the
enabling condition of each branch of the program is satsified one or more
times.

2. Circuit coverage. These metrics check the coverage of the parts of the cir-
cuit structure during simulation. The most popular forms of circuit cover-
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age metrics are latch and toggle coverage. A latch is covered if it changes
value at least once during simulation. Similarly an output is covered if it
changes value at least once during simulation.

The advent of hardware verification languages has led to the evolution of some
new types of simulation coverage metrics. These metrics are becoming popular
in the context of coverage-driven randomized test generation and dynamic
assertion-based verification.

1. FSM coverage. Recent advances in the test bench language enables the
validation engineer to specify abstract state machine models of the system
and then automatically direct the test generation towards covering all
the states and transitions of the FSM. For example, we may create a
transaction level state machine model for a Bus protocol where each path
represents a distinct type of transfer, and then verify whether all branches
of the state machine are covered during simulation.

2. Assertion coverage. During dynamic assertion-based verification, we also
need to check whether every property has been matched non-vacuously in
the simulation run. If not, then some interesting behavior, for which the
property was written, did not come up during simulation. Recent prop-
erty specification languages support automatic evaluation of such coverage
metrics – recall the notion of “cover” properties in SVA.

3. Mutation coverage. This is also a structural coverage metrics, where the
validation engineer introduces a fault into the design implementation
(HDL code or circuit), and then checks whether this leads to an erro-
neous behavior. In mutation coverage, the goal is to find a set of tests
such that for each mutant design, there exists at least one test that fails
in it.

In the next section we will present FPV coverage metrics and show how they
compare with the above simulation coverage metrics.

5.2 Mutation-based FPV Coverage

The notion of mutation coverage unifies simulation coverage metrics and FPV
coverage metrics. The idea is simple. If some part of the design can be mu-
tated without any side effects on the validity of the design, then either that
part of the design is redundant, or our specification (that is, our definition of
“validity”) is incomplete. Let us begin with an example.

Let us consider a two-way round-robin arbiter, where no requesting device
is granted twice in consecutive cycles. Fig 5.1 shows an abstract state machine
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state = (g1, g2)
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s1 s2

Fig. 5.1. Abstract FSM of round-robin arbiter

extracted from the arbiter implementation. Suppose the specification has the
following properties:

1. P1: g1 is never asserted in two consecutive cycles. This may be written in
SVA as:

property NoConsecutiveG1;
@ (posedge clk) g1 |− > ##1 ! g1 ;

endproperty

2. P2: g2 is never asserted in two consecutive cycles. This may also be simi-
larly expressed in SVA.

Both properties hold on the state machine of Fig 5.1. In order to verify
these properties, our search for a counter-example takes us through each state.
For example, to verify the first property, P1, we visit each state to check
whether it satisfies g1, and if so, whether it has any next state that satisfies
g1. Since we explore every state, does this mean that we have achieved 100%
state coverage?

The answer is obviously negative. Otherwise, every universal property (or
invariant) will achieve 100% coverage. The real question should be – What
part of the design contributed to the success of the property?

If some part of the design contributed to the success of a property, then
we may expect that the truth of the property will change if we mutate that
part of the design. This is the main idea behind mutation-based FPV coverage
metrics.
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Mutant−1 Mutant−2 Mutant−3

Fig. 5.2. Three mutants of the arbiter FSM
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Let us return to our example. Fig 5.2 shows three mutations of the state
machine of Fig 5.1. We explain the notion of mutation coverage through these
examples.

• In the first mutation, we have toggled the value of g2 from 0 to 1 in state s1.
As a result, the mutated FSM does not satisfy P2. We therefore conclude
that the value of g2 at s1 is covered by P2.

• In the second mutation, we have toggled the value of g1 from 0 to 1 in
state s0. The mutated FSM does not satisfy P1, and we conclude that the
value of g1 at s0 is covered by P1.

• In the third mutation, we have toggled the value of g1 from 1 to 0 in state
s1. This time, all properties remain satisfied! Therefore, we conclude that
the value of g1 is not covered at state s1.

The coverage gap discovered through the third mutation can be interpreted
as follows – there is no property that requires g1 to be asserted. We can therefore
attempt to close the gap by adding a new property that specifies the cases
where g1 needs to be asserted.

How complex is it to evaluate the coverage? It may be noted that the
coverage estimation algorithm needs to use FPV techniques to determine the
truth of the property in the original FSM and in the mutant FSM. Therefore,
if the FPV tool runs into capacity issues, then we cannot assess the coverage
of the specification.

This is a serious limitation. Our requirement for analyzing the complete-
ness of a formal specification goes beyond FPV. Dynamic assertion-based
verification techniques also use formal property specifications – in fact, this
approach is more popular today than FPV. Assessing the completeness of as-
sertion IPs for dynamic and semi-formal property verification techniques is an
important requirement which needs to be solved without being hindered by
the limitations of existing FPV tools. We will address this requirement later
in this chapter.

5.2.1 Falsity and Vacuity Coverage

Once we have a mutant FSM, we can perform two types of coverage checks
on it. These are:

1. Falsity coverage. In this approach, we check whether the mutant FSM
satisfies the specification. If not, then the mutation is covered by the
specification. Our earlier examples are instances of falsity coverage checks.

2. Vacuity coverage. In this approach, we check whether the mutant FSM
satisfies the specification vacuously, if at all.
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To study the notion of vacuity coverage, let us return to the third mutation
of Fig 5.2. Does this mutation satisfy P1 vacuously? The answer is, yes. The
antecedent part of the implication in P1, namely g1, does not match any of
the states of the mutant FSM. As a result, the property is vacuously satisfied
everywhere. In the original FSM, this was not the case since the antecedent,
g1, matched at state s1. Therefore we conclude that the value of g1 at s1 is
vacuity covered by P1.

If a property matches vacuously at all states, then there are two possibil-
ities, namely:

1. The property itself is vacuous (or valid), and therefore useless for verifi-
cation.

2. The implementation is incomplete, since it models none of those behaviors
for which the property was written.

Vacuity coverage is based on the notion that any mutation that removes the
behavior for which a property was written is covered by the property. Obvi-
ously if a mutation is falsity covered, then we need not check vacuity coverage
on that mutant. On the other hand, if a mutation is not falsity covered, then
we may use vacuity coverage to provide more useful feedback.

5.2.2 FSM Coverage

Since FPV works on the state machine model of the implementation, the
natural origin of FPV coverage lies in analyzing mutation coverage on the
states and transitions of the FSM extracted from the implementation. All the
examples presented so far in this chapter are forms of FSM coverage.

Broadly, three different types of FSM coverage metrics are used in practice.
These are:

1. State bit coverage. This is computed by toggling state bits at different
states and checking whether the mutant FSM satisfies the specification.
We may use both falsity coverage and vacuity coverage.

2. Transition coverage. We remove a transition from the FSM and check
whether the mutant FSM satisfies the specification. Universal properties
(such as all LTL properties, or all SVA properties) are not affected by
the removal of transitions from the FSM, hence falsity coverage is useless
here. We use vacuity coverage to determine the coverage of transitions.

3. Path coverage. In path coverage we verify the effect of removing or mu-
tating a finite path on the satisfaction of a property.
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It is possible to imagine several variants of these metrics, but we leave it to
the imagination of the reader!

5.2.3 Code and Circuit Coverage

Recent research has also led to FPV coverage metrics that are semantically
similar to the simulation coverage metrics, such as code and circuit coverage.
In these approaches, mutations are performed on the HDL code or the circuit
structure, and we check whether the truth of the specification changes in the
mutant implementation. We briefly explain these methods:

1. Code coverage. We extract the control flow graph (CFG) from the HDL
code of the implementation. We say that a statement of the CFG is covered
if the truth of the specification in the mutant changes when we omit
the statement. Removing a branch of the CFG does not affect universal
properties (such as LTL or SVA properties), hence we use vacuity coverage
for checking the coverage of branches of the CFG.

2. Circuit coverage. In simulation-based circuit coverage metrics we verify
whether every signal and latch toggles during the execution of the HDL.
In the corresponding FPV coverage metrics, we fix the value of a signal
(or a latch) and verify whether the truth of the specification changes in
the mutant where we do not allow that signal (or latch) to change value.

These metrics have evolved mainly because validation engineers who are famil-
iar with code and circuit coverage metrics, sometimes find it hard to relate to
FSM coverage metrics and interpret the result in terms of functional coverage.

It should always be kept in mind that the goal of FPV coverage metrics is
to verify whether the specification, and not the implementation, is complete.
Verifying whether the specification covers the implementation is only a means
for finding out whether more properties need to be written. Therefore the
gaps identified by the coverage metrics should reflect the types of behaviors
for which properties should be written. This goal is often not easy if we provide
coverage feedback in terms of code or circuit coverage. Our attempt to develop
coverage metrics that are close to simulation coverage metrics should not take
us far from our main objective of providing useful feedback to the architect
of an assertion IP.

5.3 Structural Versus Functional Coverage

The functional coverage of a specification is the fraction of the interesting
behaviors that are covered by the specification. The goal of all coverage metrics
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is to approximate this value. A structural coverage metric is defined over some
structural feature of the implementation – it is the fraction of the structural
features that are covered by the specification.

All the coverage metrics studied by us so far are structural in nature. They
evaluate the coverage of the structure of the implementation by performing
mutations on the structure and verifying whether this mutation has any effect
on the satisfaction of the specification. We had noted earlier that it is natural
to expect that FPV coverage metrics will be structural, since any formal
functional specification of the coverage goal can itself serve as the specification.

We had also noted that a structural coverage metric is meaningful if a low
value of coverage implies low functional coverage. The reverse is not true –
a structural FPV coverage metric may report a high value of coverage when
the functional coverage of the specification is low. We shall demonstrate this
fact in this section. It helps us to understand the limitations of these coverage
metrics.
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module GrayCounter( x1, x2 )
reg x1, x2;

begin
always @( posedge clk )

x1 <= x2;
x2 <= ~x1;

end
endmodule

module GrayCounter( x1, x2 )
reg x1, x2;

begin
always @( posedge clk )

x1 <= x1;
x2 <= ~x2;

end
endmodule

Valid implementation Invalid implementation

Fig. 5.3. Two-bit gray encoded counter

Let us consider a two-bit gray encoded counter. A gray encoded counter
has the following property:

The next value of the counter differs from the present value of the
counter in exactly one bit.
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Fig 5.3 shows two implementations of the counter and the corresponding
FSMs. The first one is a correct implementation. The second one is an incorrect
implementation since it does not reach all states, but it also satisfies the above
property.

The property yields 100% state coverage in the first (correct) implemen-
tation. If we toggle any of the state bits, then the state differs from the next
state in two bits or none, thereby refuting the above property.

Does this mean that the property covers the functionality of gray encoded
counters? To see that this is not the case we observe that with this property,
we also get 100% state coverage in the second (incorrect) implementation!

Do we need to write more properties? Yes, indeed. We need to add a prop-
erty that makes sure that the counter actually counts, that is, it visits all
other states before revisiting a state.

This establishes that 100% structural coverage does not necessarily mean
that we have written enough properties. We get useful feedback from FPV
coverage metrics mostly when the coverage is low – it is a definite indicator
that more properties need to be written.

5.4 Fault-based FPV Coverage

There are two major limitations of the mutation-based approach to FPV
coverage. These are:

1. An implementation is required for coverage analysis. We perform muta-
tions on the given implementation and compare the truth of the property
in the original implementation with the truth of the property in the mu-
tant implementation.

2. Coverage analysis relies on the existence of a FPV tool. If the FPV tool
runs into capacity issues, then we cannot check the truth of the specifica-
tion in the implementation, and thereby cannot perform coverage analysis.

In recent times there has been a growing need for developing coverage metrics
that can be used to evaluate the completeness of a specification without any
implementation as the reference. It is increasingly being realized that property
verification is very useful at the higher levels of the design flow, where one
attempts to model the design intent in terms of formal properties. This is
a challenging task, since at the highest level the validation engineer has to
identify the essential properties from the design’s architectural specification,
which is usually an English document. These properties are then coded in
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some formal assertion language such as PSL or SVA, and is popularly called
an assertion IP for the design.

During the development phase of an assertion IP, often the specification
document (in English) is the only guideline. For example, while developing an
assertion IP for a standard protocol, such as PCI XP, ARM AMBA, or IBM
Coreconnect, our only reference is the protocol specification. Moreover, the
assertion IP for a protocol such as ARM AMBA Bus targets not just a single
implementation that uses the AMBA Bus for communication, but all systems
that use the AMBA Bus.

What do we have at this level? We do have the design architecture that
defines the interfaces of the main architectural blocks. The interfaces signals
(and their directions) for each block is known at this level, but we do not have
the implementation of the blocks. The protocol specification consists of prop-
erties over the interface signals of individual blocks (component properties) as
well as properties over interface signals of multiple blocks (system properties).
We have to develop the assertion suite based on these properties and verify
whether we have written enough properties.

How can we assess the completeness of the specification at this level? Ex-
isting mutation based coverage estimation methods cannot be applied here
because (a) these metrics require an existing implementation, and (b) these
metrics require FPV techniques which have capacity limitations. Assertion
IPs are also used in dynamic property verification (in fact, there are more
users of dynamic assertion-based verification than static formal property ver-
ification), and it is just as important to verify whether the assertion IP has
enough properties for dynamic verification as for static FPV. Assertion IPs
for dynamic verification can be quite large, since these are not constrained by
the capacity of an FPV tool. Existing coverage metrics will typically fail to
analyze these specifications because of their dependence on FPV tools.

We now present a new style of assessing the coverage of a formal spec-
ification in the absence of any implementation1. Instead of using an imple-
mentation as a reference we use a fault model as a reference. The coverage
analysis verifies whether the specification remains consistent in the presence
of the fault – if not, then the fault is covered by the specification, other-
wise the specification cannot detect the fault. We show that we need to look
beyond satisfiability to determine whether the fault-injected specification is
consistent.

What can be our fault model? Our methodology can work with any fault
that can be modeled in the language used for coding the assertions. We shall
choose the single stuck-at fault model over the interface signals to demonstrate

1 This style of coverage analysis was first presented in [45].
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the new approach – the same style and the same methodology can be used
for other fault models as well.

Let us recall that all existing FPV coverage metrics are structural in nature
– low structural coverage is usually associated with low functional coverage,
but high structural coverage does not necessarily indicate high functional cov-
erage. Expecting an FPV coverage metric to be a functional coverage metric
leads us to the paradox where the formal coverage goal is itself the desired
formal specification.

Our choice of the fault model also comes within the same paradox. If we
attempt to cover all behavioral faults in our fault model, then the task of
building the fault model will become as difficult as the task of building the
assertion IP – in fact one task is really the dual of the other. The advantage lies
in using a simple fault model that shows low coverage when the specification
has gross inadequacies. Our interactions with practioners of FPV reveals that
the feedback obtained from such simple metrics (that have low overheads) are
very valuable during the development of an assertion IP.

We first define our structural coverage goal, and then show the use of the
single stuck-at fault model to achieve this goal. We distinguish between the
input signals and non-input signals while analyzing the specification, which is
quite natural since input signals are controlled by the environment, and the
specifications can at best specify some assumptions on the input behavior.
Our coverage goal is as follows:

• Non-input signals. A specification is complete with respect to a non-input
signal, s, if it covers at least some behaviors where s is required to be high,
and some behaviors where s is required to be low.

• Input signals. A specification is complete with respect to an input signal,
z, if it covers at least some behaviors that are triggered by raising z, and
at least some behaviors that are triggered by lowering z.

After designing and analyzing several verification IPs, and also through in-
teractions with validation engineers who are attempting to use FPV, we have
reasons to believe that this is a reasonable and meaningful first-cut coverage
goal.

In order to formally analyze a given specification against this coverage
goal, we use the single stuck-at fault model. For example, to test whether the
specification is complete with respect to a non-input signal, s, we first check
whether the specification remains consistent in the presence of the fault, s
stuck-at-0. If not, then there is some behavior covered by the specifications
that conflicts with the fault – these are the behaviors where s is expected to be
high. On the other hand, if the specification remains consistent in the presence
of the fault, then the specification models none of the behaviors where s is

5 Have I Written Enough Properties?



5.4 Fault-based FPV Coverage 141

expected to be high. The test for consistency with respect to s stuck-at-1
is similar, except that it looks for behaviors where s is expected to be low.
Coverage with respect to input signals is treated in a slightly different way,
but the essence remains the same.

An obvious criticism of our approach is that one may write properties
targeting the fault model and thereby achieve a false sense of coverage. For
example, if the validation engineer adds properties to indicate that every
non-input must be high sometimes, and must also be low sometimes, then
the proposed metrics will indicate 100% coverage with respect to the non-
input signals. But it should be noted that other structural coverage metrics
are also subject to the same criticism. As shown in the last section, it is
possible to present an RTL, that gives 100% coverage with respect to a given
metric, but does not actually implement the desired functionality. The correct
approach is to write the specifications from the functional point of view (that
is, without having the coverage goal or fault model in mind), and then use the
structural coverage metrics to find out whether there are any gross coverage
gaps. Additionally, while interpreting the coverage results for any structural
coverage metric, one must keep in mind that a low coverage indicates that the
specification is incomplete, but a high coverage does not necessarily guarantee
functional completeness.

5.4.1 The Coverage Strategy

The key idea behind our formal coverage analysis is based on checking the
realizability of a specification in the presence of a fault. The following example
defines a simple toy specification which will be used to demonstrate both the
methodology as well as the semantics of the proposed style of coverage.

Example 5.1. We consider the specification of a 2-way priority arbiter having
the following interface:

mem-arbiter( input r1, r2, non-input g1, g2 )

Let us now consider an incomplete specification for the arbiter.

1. Request line r1 has higher priority than request line r2. Suppose the design
architect expresses this property as:

ϕ1 : G(r1 ∧ r2 ⇒ X g1)

which says that g1 is favored whenever we have contention between r1 and
r2.
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2. The grant lines are mutually exclusive. This may be expressed as:

ϕ2 : G(¬g1 ∨ ¬g2)

Let us assume for the time being that the specification consists of only the
above properties, that is, T = ϕ1 ∧ ϕ2. We purposefully consider the incom-
plete specification to demonstrate the coverage analysis in later examples.
�

The new style of coverage analysis is broadly as follows. We will model
faults on the input and non-input signals and then verify whether the specifi-
cation remains consistent in the presence of the fault. If not, then the specifi-
cation covers the fault, otherwise we have found a coverage gap between the
specification and the fault model. Faults on the non-input lines may affect
the behavior of the module, while faults on the input lines may affect the
triggering of one or more properties. Therefore we treat faults on inputs and
non-inputs separately.

The next couple of sections demonstrate the above notion of fault analysis
through examples, and present the formal method for coverage computation.
For checking the consistency of a specification in the presence of a fault, we
shall use the notion of realizability (see Chapter 4) of specifications.

Fault model

Assertion suite

Fault−injected

specification

Consistent?

Realizability
checker

Yes

No Covered!

Gap?

Coverage AnalyzerFault

Fig. 5.4. Fault-based Coverage Analysis

5.4.2 Coverage of Faults on Non-inputs

The formal definition of coverage of faults on non-inputs is as follows.

Definition 5.2. [Coverage of faults on non-inputs: ]
A stuck-at fault on a non-input signal is covered by a realizable specification,
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T (I,Z), iff it is impossible to create an implementation that has the fault and
yet realizes the specification. �

There are two notable issues here. Firstly, we assume that at the point of
coverage analysis, we have already verified that the specification is realizable.
If the specification is unrealizable, we indicate no coverage at all. Secondly,
if the specification is vacuous (that is, it is always true), then the injection
of any single fault will not affect its truth, and we will report zero coverage.
These are the two extremes. The following example shows the typical scenario
where some faults are covered, while others are not.

Example 5.3. We consider the specification presented in Example 5.1. Our
coverage goal is to check whether the specification covers behaviors where
each non-input is required to take each possible value.

Let us first examine whether the given specification covers any behavior
where g1 is required to be high. Indeed, the property

ϕ1 : G(r1 ∧ r2 ⇒ X g1)

covers some of the desired behaviors – g1 is required to be high whenever r1

and r2 are asserted together. Let us now see how the stuck-at-fault model
enables us to arrive at the same result.

While looking for the coverage of behaviors where g1 is required to be high,
we will test the realizability of the specification in the presence of a stuck-at-
zero (s-a-0) fault at g1. This is done by modeling the fault as the LTL property
G( ¬g1 ) and then testing the realizability of the conjunction of this property
with the specification. In this case, the property ϕ1 cannot be realized in the
presence of the fault, and hence we conclude that the specification covers some
of the behaviors where g1 is required to be high.

In many cases, the fault coverage may not be so obvious. For example,
while looking for the coverage of behaviors where g2 is required to be low, we
will test the realizability of the specification in the presence of a s-a-1 fault at
g2. In the presence of this fault, the property:

ϕ2 : G(¬g1 ∨ ¬g2)

can only be satisfied if g1 is always low. But this requirement is inadmissible in
conjunction with ϕ1. Therefore, the specification covers some behaviors where
g2 must be low.

Finally, let us examine the coverage of behaviors where g1 is required to
be low. The fault g1 s-a-1 is not covered by the specification, T . For example
consider an implementation of the arbiter which always asserts g1 and never
asserts g2. Such an implementation satisfies T . The coverage analysis discov-
ers the fact that there are no properties in the specification that (directly or
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indirectly) require g1 to be de-asserted. Likewise, the same counter-example
shows that the fault g2 s-a-0 is not covered by T .

A coverage feedback points out the gross absence of properties covering
specific types of behaviors. In this example, the coverage report will show that
the specification does not cover any behavior where g2 should be high, nor
any behavior where g1 should be low. Indications of such gross coverage gaps
are extremely valuable during the early phases of writing a formal specifica-
tion. The intuitionistic nature of human reasoning often causes an engineer
to overlook such gaps in a formal specification.

For example, in this case on studying the coverage report, the engineer
may add a new property, such as:

ϕ3 : G(r2 ∧ ¬r1 ⇒ X g2)

which requires g2 to be asserted when r2 is the sole request. The addition
of this property into the specification directly covers the fault g2 s-a-0, and
indirectly (with ϕ2) covers the fault g1 s-a-1. �

At this point we would like to point out two notable issues about our
coverage analysis methodology. Firstly, the coverage metric looks for the cov-
erage of some behaviors where a non-input is required to assert a specific
value. It does not indicate whether all behaviors of that type are covered.
For example, in the previous example, the coverage analysis shows that the
specification covers some of the behaviors where g1 is required to be high. It
does not indicate whether there can be other scenarios, not covered by the
specification, where g1 should also be high. In our example, the cases where
r1 is the sole request are such cases, where g1 must be asserted (in the next
cycle), but are not covered by the specification. This is a normal limitation
of any structural coverage metric – if we were to be able to ascertain the
coverage of all behaviors, then we would have to specify all valid behaviors –
which leads us to the paradox described in the introduction.

The second issue which warrants an explanation is: Why do we need a
realizability check in our coverage analysis? Properties of open systems (such
as RTL modules) typically specify the behavior of the module under given
input scenarios. The properties do not specify that these input scenarios will
actually occur. A property is vacuously satisfied in all runs where the inputs
do not match the scenarios for which the property is written. For example, the
property ϕ1 in the previous example is vacuously satisfied in all runs where
r1 and r2 never arrive together. These runs are not affected by faults on non-
inputs, and thereby the property remains satisfiable in the presence of faults
on non-inputs. For example, even though ϕ1 covers some behaviors where g1

is required to be high, it remains satisfiable (albeit vacuously) in the presence
of a s-a-0 fault on g1.
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On the other hand, realizability has the stronger requirement that the
property must be satisfied over all input scenarios. Therefore if a property
specifies some behavior under some specific input scenarios, then the realiz-
ability check verifies the satisfiability of the specified behaviors under each of
those input scenarios. For example, ϕ1 is not realizable in the presence of a
s-a-0 fault on g1, since ϕ1 cannot be satisfied in the presence of this fault for
those input scenarios where r1 and r2 arrive together.

Lemma 5.4. Let T be a given realizable LTL property and let z be a non-
input signal. Then T covers the fault z s-a-0 iff T ∧G¬z is unrealizable, and
T covers the fault z s-a-1 iff T ∧ G z is unrealizable.

Proof: If T ∧ G¬z is realizable, then there exists a possible implementation
that keeps z at zero forever (since it satisfies G¬z) and yet satisfies T . Then,
by the definition of the coverage, the fault z s-a-0 is not covered by T .

If T ∧ G¬z is unrealizable, then every implementation that realizes T
must assert z sometime in the future (otherwise, the implementation would
also realize T ∧ G¬z). Therefore the fault z s-a-0 is covered by T . We use a
similar reasoning for the fault z s-a-1. �

5.4.3 Coverage of Faults on Inputs

There is an important semantic difference between coverage of faults on inputs
and those on non-inputs. We use faults on a non-input to determine whether
the specification covers some behavior where the non-input must be high/low.
On the other hand, we use faults on an input line to check whether the input
value necessarily affects the module behavior. In other words, if a module
can satisfy the specification without actually reading the given input, then we
have a coverage gap, because the specification does not cover any behavior
where the input line is relevant. As in the case of non-inputs, we have two
types of behaviors – those that are triggered by a high value of the input, and
those that are triggered by a low value of the input.

Based on the opinion of several practitioners of FPV, we provide two types
of input fault coverage metrics, namely, strong and weak. The individual merits
and limitations of these metrics will become apparent through the following
discussion.

Definition 5.5. [Strong Input Fault Coverage: ]
A stuck-at fault on an input signal is strongly covered by a realizable specifi-
cation, T (I,Z), unless it is possible to implement a module that realizes the
specification without reading that input and assuming that it always takes the
same value as the fault. �
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Example 5.6. Let us again consider the enhanced specification described in
Example 5.3. The specification consists of the properties:

ϕ1 : G(r1 ∧ r2 ⇒ X g1)
ϕ2 : G(¬g1 ∨ ¬g2)
ϕ3 : G(r2 ∧ ¬r1 ⇒ X g2)

Our coverage goal for an input signal is to check whether the specification
covers any behavior that gets triggered when the input becomes high, and
whether it covers any behavior that gets triggered when the input signal be-
comes low. To check this, we inject an appropriate fault into the input line.

For example, let us first consider the input r1. Indeed it is necessary for the
module to read r1 to be able to satisfy the specification. To see this, consider
the case where r2 is high at time t. If r1 is high at time, t, the module is
required to assert g1 at t + 1 (by ϕ1), otherwise it must assert g2 (by ϕ3). It
cannot assert both g1 and g2 (by ϕ2). Therefore, it must read r1 to make the
correct decision.

To analyze this case formally, we inject the fault r1 s-a-1 into the specifi-
cation. If an implementation, J , satisfies ϕ1 without reading r1 and assumes
that r1 is always high, then that implementation must satisfy the following
restriction of ϕ1:

ϕ′
1 : G(r2 ⇒ X g1)

Now consider the case where r1 is actually low and r2 is high at time t. Now
J must assert both g1 (by ϕ′

1) and g2 (by ϕ3) at t + 1. This conflicts with
ϕ2. In other words, the fault injected specification consisting of ϕ′

1, ϕ2 and ϕ3

is unrealizable. We conclude that the input fault r1 s-a-1 is strongly covered
by the specification, and that the specification covers such behaviors that are
triggered when r1 goes high.

Does a module need to read r2 in order to satisfy the specification? Cu-
riously, the answer is negative! Consider an implementation that asserts g2

(by default) in all cycles, except in those where r1 had arrived in the previous
cycle, that is, it asserts g1 only in these remaining cycles. Such an implemen-
tation satisfies the specification without reading the input r2 – formally, it
assumes r2 to be stuck at 1.

Our coverage analysis will show that the specification does not cover the
fault r2 s-a-1. This will mean that the specification does not cover any behavior
where the module will necessarily have to consider the low value of r2. In this
example, it shows that the input r2 is redundant. �

Let T be a given realizable LTL specification and let v be an input signal.
Let T 0

v denote the modified specification with v instantiated to 0, and T 1
v

denote the modified specification with v instantiated to 1.
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Lemma 5.7. The specification T strongly covers the fault v s-a-0 iff T ∧ T 0
v

is unrealizable, and T covers the fault v s-a-1 iff T ∧ T 1
v is unrealizable.

Proof: Any implementation that satisfies T without reading the input v and
assuming it to be 0, must satisfy T 0

v . If T ∧T 0
v is unrealizable, then there can

be no such implementation. By definition of strong input coverage, the fault
is covered.

On the other hand, if T ∧ T 0
v is realizable, then there exists a realization

which satisfies T without reading the input v and assuming it to be 0. There-
fore the fault is not covered. We can use a similar reasoning for the fault v
s-a-1. �

Curiously, the above metrics for strong input fault coverage showed a low
degree of coverage for several specifications that validation engineers thought
were quite formidable. The following example explains the arguments that
came up.

Example 5.8. Let us again consider our specification for the arbiter:

ϕ1 : G(r1 ∧ r2 ⇒ X g1)
ϕ2 : G(¬g1 ∨ ¬g2)
ϕ3 : G(r2 ∧ ¬r1 ⇒ X g2)

Strong input fault coverage showed that the specification did not contain any
property for which the module needed to read the input r2. A module could
simply satisfy the specification by parking the grant on g2 whenever r1 was
low.

However, it also needs to be noted that the properties ϕ1 and ϕ3 are
satisfied non-vacuously only when r2 is high. Therefore, the specification does
address behaviors that require r2 to be high. In other words, this pointed out
to the need of an additional coverage metric that would show the types of
input scenarios covered, regardless of whether the corresponding behavior of
the module could be satisfied by default. �

The notion of weak input fault coverage is quite simple. Since the goal is
to check whether an input non-vacuously affects the specification, we simply
inject the appropriate fault into the specification and check whether it still
logically implies the original specification.

Definition 5.9. [Weak Input Fault Coverage: ]
A s-a-0 fault on an input signal v is weakly covered by a realizable specification,
T , unless T 0

v ⇒ T . Likewise, a s-a-1 fault on an input signal v is weakly
covered by a realizable specification, T , unless T 1

v ⇒ T . �
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Lemma 5.10. If a fault is strongly covered by a realizable specification, T ,
then it is also weakly covered by T .

Proof: Let the fault be v s-a-0. Then T strongly covers the fault iff T ∧T 0
v is

unrealizable. Now, if T is realizable, then so is T 0
v , because the input v s-a-0

is also one of the possible input scenarios.

Let us assume the contrary, namely that T does not weakly cover the fault.
Then the following must be valid (from definition):

T 0
v ⇒ T

This implies that the implementation that realizes T 0
v also realizes T and

hence realizes T ∧ T 0
v . This is a contradiction. �

5.4.4 LTL-Covanalyzer: The Tool

The main technology that is required for implementing the proposed style of
coverage analysis for formal specifications is the realizability checker. Real-
izability checking is a hard problem – it has been shown to be 2EXPTIME
complete for LTL specifications. However, we draw attention to the fact that
though existing LTL model checking algorithms have complexities that are
exponential in the length of the property, the main complexity of LTL model
checking lies, not in this exponential, but in handling the state explosion aris-
ing out of the product of the modules in the implementation. The fault based
coverage methodology is free from this state explosion problem, since we use
a fault model as the reference instead of using an implementation as the refer-
ence (as in mutation based approaches). Thereby this approach is much more
scalable in practice, in spite of being doubly exponential in the length of the
properties.

We used our in-house SpecChecker tool presented in Chapter 4 to per-
form the realizability checks. We developed two versions of the tool, namely
LTL-Covanalyzer, which works on LTL specifications using SpecChecker,
and Forspec-Covanalyzer, which works on specifications written in the In-
tel Forspec language. Forspec-Covanalyzer is semantically equivalent to LTL-
Covanalyzer, but uses a different computational approach as outlined in the
next section.

The tool has been successfully tested over several industrial specifications,
including the ARM AMBA AHB protocol suite. This property suite consists
of 36 properties, of which 22 properties are for the master interface, 9 are for
the slave interface and the remaining are for the arbiter interface.

Analysis of the coverage report for the AMBA AHB specification revealed
some interesting gaps in the specification. For example, the coverage report for

5 Have I Written Enough Properties?



5.4 Fault-based FPV Coverage 149

the arbiter specification indicated that the s-a-1 fault on the non-input signal,
HMASTLOCK, was not covered. This was a serious gap, since HMASTLOCK
must only be asserted when a transaction needs to be locked, and not oth-
erwise. Consider any arbiter design that incorrectly locks every transaction –
such an arbiter would pass all the properties in the existing specification. In
fact, the only property over the HMASTLOCK signal in the arbiter specifi-
cation was:

G ((HGRANT & HREADY & HLOCK) ⇒ X (HMASTLOCK))

The above property covers the s-a-0 fault on HMASTLOCK and therefore
covers some behaviors where HMASTLOCK must be asserted, but it covers
none of the behaviors where HMASTLOCK must be lowered.

We found similar gaps in most of the specifications that we analyzed. The
coverage reports assume significance when we consider the fact that most of
these specifications were developed by experts and had passed through several
rounds of reviews. This supports the general belief that:

1. It is always possible that we have not written some important properties,
and

2. It is hard for humans to find such coverage gaps without using formal
methods.

5.4.5 Building it Over FPV Tools

Though our coverage analysis methodology is simple, the main challenge in
building a tool for the fault based coverage approach lies in developing a
realizability checker. The SpecChecker tool demonstrates that this is feasible.

Can we use the same style of coverage analysis without using a realizability
checker? In this section we shall show that an approximate solution is certainly
possible – a solution that uses only a satisfiability checker.

There are distinct advantages in this approach. Satisfiability checkers for
most of the specification languages are built-in into existing FPV tools. Also
for practical purposes an approximate coverage result is acceptable provided
we consistently under-estimate the coverage by the specification.

Intuitively, the proposed approximation to a realizability check works by
adding input constraints to the specification that force non-vacuous interpre-
tations of the properties, and then by testing the satisfiability of the modified
specification.
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Example 5.11. Let us again consider the following LTL property for our arbiter
from the earlier examples:

ϕ1 : G(r1 ∧ r2 ⇒ X g1)

The property is vacuously satisfied if r1 and r2 are never asserted together.
In such cases the value of g1 may be treated as a don’t care. The property
is therefore satisfiable even in the presence of a s-a-0 fault in g1. To generate
the witness, the satisfiability checker finds input scenarios other than those
for which g1 is required to be asserted. Our aim is to add input constraints to
block such witnesses.

Suppose we add the following input constraint into the specification:

ψ1 : GF (r1 ∧ r2)

The input constraint specifies that those scenarios where r1 and r2 arrive
together, will occur infinitely often.

The modified specification consisting of ϕ1 and ψ1 is not satisfiable in the
presence of a s-a-0 fault in g1, because ψ1 prevents the satisfiability checker
from producing only vacuous interpretations of ϕ1. In other words ψ1 enforces
those scenarios where ϕ1 requires g1 to be asserted. �

Formally, a property is vacuously satisfied on a run if the instantiations of
the input signals along the run is sufficient to satisfy the property (regardless
of the values of the non-inputs). If we are able to find any input scenario for
which the fault-injected specification becomes unsatisfiable, then we can safely
conclude that the fault-injected specification is unrealizable as well, and that
the fault is covered. This follows from the fact that a realizable specification
must necessarily be satisfiable under all input scenarios. We add constraints
on the input space to restrict the search to non-vacuous runs only.

It is important to note that:

• Unsatisfiability under any input constraint is sufficient to establish the
un-realizability of a specification.

• If the specification remains satisfiable under our input constraints, we can-
not decide whether the specification is realizable. This is because of our
inability to cover all input scenarios in general.

Therefore, the coverage results are an approximation of the actual coverage.
However our estimate is conservative in the sense that:

• If a fault is found to be covered by our analysis, then it is truly covered,
since we have a proof for the un-realizability of the fault injected specifi-
cation.
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• If a fault cannot be covered by our analysis, then it may or may not be
covered in reality.

For the second case, false negatives will be rare in practice if we can automat-
ically identify the input scenarios for which the property has a non-vacuous
interpretation. This is a non-trivial task because existing property specifica-
tion languages do not have any syntactic separation between the specification
of the behavior and the input scenario under which that behavior is manda-
tory.

One possible option is to request the validation engineer to separately
provide the input restrictions under which the property is expected to be
satisfied non-vacuously. From a practical point of view this is both a good and
bad option, good – because validation engineers typically know the scenarios
for which a property has been written, and bad – because our goal is to
obtain a simple first-cut metric that requires no user intervention. The latter
motivated us to develop an approximate strategy for automatically identifying
the input scenarios that trigger non-vacuous interpretations of a temporal
property. We believe that this strategy will find use in other FPV applications
as well.

Example 5.12. Let us again consider the two-input arbiter of our previous
examples. Suppose the specification contains the following property:

Whenever r1 is asserted and r2 is low, the arbiter asserts the grant g1

sometime in future, unless r1 is lowered in between.

This requirement can be expressed by the following LTL properties:.

ϕ : G(r1 ∧ ¬r2 ⇒ X (r1U(g1 ∨ ¬r1)))

Note that ϕ is sufficient to cover the stuck-at-0 fault on the non-input line g1.
In order to enforce the case where the arbiter has to assert g1, the environment
must lower r2, and keep r1 asserted. This is the input scenario that we want
for coverage analysis. Our methodology will produce the following constraint
that has the desired effect:

Iϕ : F (r1 ∧ ¬r2 ∧ X (G(r1)))

�

Our approach is to eliminate non-inputs from the properties until we are
left with a constraint over the inputs only. The algorithm for eliminating
non-inputs uses the following partial order among properties.
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Definition 5.13. [Strong and weak properties: ]
A property F1 is stronger than a property F2 iff F1 ⇒ F2 and F2 
⇒ F1. We
also say that F2 is weaker than F1. �

Given a property, ϕ, defined over input variables I, and non-input variables
O, we generate a formula Sϕ that is stronger than ϕ and is defined only over
I. Since Sϕ is stronger than ϕ and is free from non-inputs, it follows that Sϕ

describes input scenarios that make ϕ vacuously true. Therefore, we restrict
the input space by ¬Sϕ, which covers all non-vacuous runs.

Example 5.14. Consider the property:

ϕ : G[ r1 ⇒ X g1 ]

Then Sϕ = G(¬r1) and the constraint that restricts the input space to non-
vacuous runs is ¬Sϕ = F r1. �

To find the substitution of the non-inputs that gives us the desired input
constraint for a property ϕ, we use the following function, S(ϕ). The function
returns a set of substitutions, of the non-inputs that generates a property
Sϕ over I which is stronger than ϕ. The function is recursively defined as
follows. We convert the property to negation normal form before applying
this function.

Function 1 S(ϕ)

case ϕ = o (non-input) return o ← 0.
case ϕ = i (input) return NULL.
case ϕ = (i ∨ o) return o ← 0.
case ϕ = (i ∧ o) return NULL.
case ϕ = (ψ U φ) return S(ψ) ∪ S(φ)
case ϕ = (ψ ∨ φ) return S(ψ) ∪ S(φ)
case ϕ = (ψ ∧ φ) return S(ψ) ∪ S(φ)
case ϕ = X(ψ) or ϕ = G(ψ) or ϕ = F(ψ) return S(ψ)

Example 5.15. Let us apply the above function on the property of Exam-
ple 5.12:

ϕ : G(r1 ∧ ¬r2 ⇒ X (r1U(g1 ∨ ¬r1)))

Converting to negation normal form, we have:

ϕ : G(¬r1 ∨ r2 ∨ X (r1U(g1 ∨ ¬r1)))

S(ϕ) will produce the substitution g1 ← 0. This substitution will generate the
property:

5 Have I Written Enough Properties?
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ϕ′ : G(¬r1 ∨ r2 ∨ X (r1U¬r1))

which is the same as:

ϕ′ : G(¬r1 ∨ r2 ∨ X F ¬r1)

Negating this property gives us the desired input constraint:

Iϕ : F (r1 ∧ ¬r2 ∧ X (G(r1)))

�

Since a property may have a non-input in a positive literal as well as a
negative literal, S(ϕ) may return conflicting substitutions for such non-inputs.
In such cases, we retain both substitutions and perform coverage analysis
using each conflicting constraint separately. Since a realizable property must
be satisfiable under all input restrictions, there is no harm in performing
coverage analysis under different input constraints.

Typically, conflicting substitutions (if they exist) are meaningful. For ex-
ample, consider the following LTL formula for our arbiter:

ϕ = G((r1 ⇒ Xg1) ∧ (r1 ⇐ Xg1))

S(ϕ) generates both g1 ← 0 and g1 ← 1. The restriction g1 ← 0 generates
the input constraint, F r1, which is required to cover the stuck-at-0 fault on
g1. The restriction g1 ← 1 generates the input constraint, F ¬r1, which is
required to cover the stuck-at-1 fault on g1.

We have integrated the constraint generation algorithm into the CovAn-
alyzer tool and used an in-house LTL satisfiability checker to approximate
the realizability checks. We also used a similar approach in our Forspec based
CovAnalyzer.

The time required for approximate coverage analysis was found to be signif-
icantly less than the time required by the exact analysis (using the realizability
checker of SpecChecker).

5.4.6 Other Fault Models

The fault based coverage approach can be used with other fault models as
well, provided that we can express the faults as properties in the specification
language and inject them into the specification. We outline three interesting
variants:

1. Multiple stuck-at faults. This is a straight-forward extension, but has some
interesting benefits. For example, consider the property which says – when-
ever there is a pending request, r1 or r2, the arbiter will not waste any
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cycle, that is, one of the grant lines g1 or g2 must be asserted in the next
cycle. We can write this property in LTL as:

G[ r1 ∨ r2 ⇒ X( g1 ∨ g2 ) ]

Single stuck-at faults at g1 or g2 are not covered by this property. However,
the property covers the multiple stuck-at fault where both g1 and g2 are
stuck at 0.

2. Counter-example faults. Validation engineers sometimes list a cross section
of the counter-example scenarios that are expected to be detected by the
specification. We can model such counter-examples as properties – which
then constitutes our fault model. The analysis methodology is similar. For
example, in order to verify whether the specification guarantees mutual
exclusion between three grant lines of an arbiter, we can add three counter-
example scenarios where two of the lines are high at the same time. Each
of these scenarios are covered if the specification becomes inconsistent in
the presence of each of these faults.

3. Short faults. Sometimes the specification may contain bit vectors. Large
bit vectors lead to serious capacity issues in FPV tools. A short fault
joins two or more bits into a single bit. If such a fault does not affect
the consistency of the specification, then it indicates that the specification
does not distinguish between these bits. This allows the validation engineer
to perform bit-scaling (that is, to cut down the bit vectors) before using
the FPV tool.

We believe that many other benefits of the new style will emerge as it gets
adopted in practice.

5.5 Concluding Remarks

FPV coverage is one of the most hot areas in formal verification today. As we
accept the fact that FPV is not a stand-alone validation technology (at least
not yet), we have to answer the question – What have I verified?

Currently our main interest in FPV coverage is to determine whether the
validation engineer has written enough properties to cover those behaviors
that she intended to cover. We do not intend to cover the entire functionality
of a design through formal properties. In the long run FPV coverage metrics
will have to gel with simulation coverage metrics, that is, we must be able to
read FPV coverage results and specify which behaviors should be specifically
targeted by simulation. Methodologies for developing an integrated test plan
involving both simulation and FPV will rely to a large extent on FPV coverage
metrics.

5 Have I Written Enough Properties?
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In the next chapter we present a new paradigm for formal property veri-
fication using the notion of FPV coverage. In this approach we compare two
specifications at two levels of the design hierarchy and find out whether the
lower level specification (having more details) covers those behaviors for which
the higher level specification was written. This facilitates the validation en-
gineer to decompose the formal specification into specifications of individual
components, and helps her to get around the state explosion problem.

5.6 Bibliographic Notes

There is a considerable volume of recent literature on simulation-based cover-
age metrics [86, 103]. This includes recent coverage metrics such as assertion
coverage [103] and mutation coverage [24, 109].

Coverage metrics for formal property verification were first proposed
in [67]. At the same time, a metric for comparing an FSM and a reduced
tableau for the formal specification was proposed in [72]. Since then, there
has been a considerable amount of research on mutation based approaches to
FPV coverage [31, 32, 33]. A comparison between simulation and FPV cover-
age metrics, an adaptation of simulation coverage metrics in an FPV setting,
and the notion of vacuity coverage are presented in [34].

The use of a fault model in mutation based coverage analysis was first
presented in [57].

The notion of evaluating the coverage of a formal specification by checking
its consistency in the presence of faults chosen from a high-level fault model
was presented in [45]. The main benefits of this new style of coverage analysis
is that the approach can be used even when the implementation is not yet
available, or when the implementation is available but beyond the capacity
limits of FPV tools.
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Design Intent Coverage

What is the most serious limitation of existing FPV technology? The answer
is undisputed today – capacity.

FPV technology is poised at a peculiar position. It is well understood that
there are several important advantages in using formal languages to specify
the design intent at the high level (say, at the architectural level), but it is
hard to verify whether the RTL satisfies these properties because most of
these properties involve multiple architectural blocks of non-trivial size, and
the FPV tool runs into capacity issues. We are able to use FPV technology
at the unit level, but at that level the benefits are also limited.

Today most of the innovations in design optimization are happening at
the architectural level – RTL synthesis has been largely standardized, leaving
little room for further optimizations. Making the right design decisions at the
architectural level dictates the overall performance of large digital designs,
such as processors, DSPs, and memories. It is very important to ascertain
that these architectural decisions are properly implemented in the RTL.

With the new languages for formal property specification, it is possible
to express the key architectural decisions formally. These properties define
the architectural intent of the design. There is a significant advantage in ex-
pressing the design intent formally. The existing practice of expressing the
architectural intent through a (English) specification document leaves room
for ambiguity. The gap between the architect’s specified intent and the de-
signer’s perception of that intent is one of the main sources of logical bugs in
the RTL.

Though microarchitects are notoriously resistant towards the use of formal
properties for expressing the design intent, this is not the main technical chal-
lenge in design intent verification. The more intriguing problem is – How can
we verify whether the RTL satisfies the formal architectural intent? Existing
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FPV technology is unable to solve this problem because the existing tools do
not have adequate capacity for verifying architectural properties over multiple
blocks of non-trivial size.

We believe that new formal methods are needed for addressing the problem
of design intent verification. Through recent collaborative research between
our group and Intel, we have come up with a new paradigm for formal property
verification, which attempts to solve the problem through FPV coverage. The
new paradigm is called design intent coverage1.

RTL

Formal RTL Specs

RTL FPV

New!

Design
Refinement

Architectural Model

Architectural Specs

Design intent
verification

Design Flow

Validation Flow

Specification
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M2
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Fig. 6.1. Design Intent Coverage

The notion of design intent coverage is intuitive and beautifully simple
(see Fig 6.1).

1. The key architectural properties are specified using a formal property
specification language. This forms the golden specification, A.

2. We identify the functional blocks in the design implementation. These are
black boxes showing the relevant interface signals.

3. We identify the properties that each functional block must satisfy to
achieve its role in the design. The important thing is to write these block
properties before writing the RTL for these blocks, and not after (as is the
common practice today). The properties of the RTL blocks taken together
is called the RTL specs, R.

1 The notion of design intent coverage was introduced in [14] and further developed
in [44] and [15].
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4. We use new formal methods to check whether the RTL specs, R, covers the
architectural specs, A. We refer to this question as the primary coverage
question.

All these steps take place before writing any RTL code. If we find that the
RTL specs cover the architectural specs, then we have achieved two important
objectives, namely:

1. Capacity. We have reduced the complexity of the task of verifying the
architectural properties. If we now verify each individual RTL block with
its own RTL properties, we will be able to guarantee that the architectural
properties are satisfied on the whole design. If the designer further refines
a possibly large RTL block into a set of RTL sub-blocks, we will adopt
the same approach recursively to refine the specs of that block into the
specs of its sub-blocks.

2. Completeness. We have proved that enough RTL properties are written to
cover the design intent specification. This is the true intent of functional
coverage, as opposed to the existing structural coverage metrics presented
in the last chapter.

On the other hand, if we find that an architectural property is not covered
by the RTL specs, then we have several ways of demonstrating the coverage
gap. One way is to produce a run that refutes the architectural property,
but satisfies all the RTL properties. A single run does not show the whole
of the coverage gap, and enumerating all runs that serve as counterexamples
is clearly impractical. We therefore present the coverage gap in terms of: (a)
RTL properties, and (b) architectural sub-properties derived out of the orig-
inal architectural property. In both cases, the properties must be presented
in a form that is syntactically close and visually comparable with the orig-
inal properties. The algorithms presented in this chapter use the syntactic
structure (grammar) of the property specification language to achieve this
objective. These algorithms are integrated into our tool, SpecMatcher, which
is also presented in this chapter.

We believe that the design intent coverage paradigm will significantly
change the way in which FPV is used within the pre-silicon design validation
flow. Since this methodology is used before RTL implementation, it enables
the design architect to formally refine the RTL specifications to the extent
that it formally guarantees conformance with respect to the architectural in-
tent even before a single line of RTL is written. In the past, the inability to
produce this kind of guarantee has led to the detection of architectural vio-
lations later in the design flow, thereby creating some expensive cycles in the
design flow. A second advantage of the proposed methodology is that it scales
to large designs, since we continue to recursively adopt this approach along
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the module hierarchy until the modules are small enough to be accepted by
existing FPV tools.

A third very important benefit of this approach is that it enables validation
reuse. Since validation accounts for more than 70% of the design cycle, design
reuse will have only marginal benefits unless we are able to reuse the validation
effort. In future, we expect reusable blocks to come with a set of properties that
are guaranteed (pre-verified) for that block. Design intent coverage enables a
designer to reuse one or more modules in a given context by checking that the
properties guaranteed by these (and other) modules cover the design intent.

6.1 An Introductory Example

In this section we will demonstrate the notion of design intent coverage
through a small example. We will show how we can verify the architectural
intent through specification coverage before writing the RTL of the design.
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Fig. 6.2. Priority Cache Access

6.1.1 Priority Cache Access: Architectural Specs

Our goal is to develop a cache memory access logic that allows storage and
retrieval by four different devices, M1, M2, M3 and M4. The architectural
interface of this block is shown in Fig 6.2. The description of the interface
signals are as follows.

1. Request lines. The block receives four request lines, namely r1, r2, r3 and
r4 respectively from M1, M2, M3 and M4.
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2. Grant lines. The block arbitrates between the two high-priority request
lines to assert g1 or g2, and between the low-priority request lines to assert
g3 or g4.

3. Cache ready lines. The line d1 indicates that the page requested by the
high-priority device is available in the cache. If there is a cache hit, then
d1 is asserted within two cycles. Otherwise, d1 is asserted after the page
has been fetched from memory. Similarly the line d2 is asserted when the
page requested by M3 or M4 becomes available in the cache.

4. Data and address lines. The data and address lines are used to float the
cache address and store / retrieve the data.

There are many architectural requirements of this block, but for simplicity
we will choose the following property, which defines the notion of priority.

M1 and M2 have higher priority over M3 and M4. A page requested
by M1 or M2 is either served two cycles after the request (when we
have a cache hit), or is served in some future cycle (when we have
a cache miss). In the later case, no page should be served to the low
priority devices in the intermediate cycles.

The above property can be expressed in Linear Temporal Logic (LTL) as:

A1 : G[ r1 ∨ r2 ⇒ XX[ d1 ∨ X( ¬d2 U d1 ) ] ]

At this point we do not yet have any implementation. Architectural proper-
ties such as these are written by interpreting the architectural specification
document.

We may also have assume properties at the architectural level. These prop-
erties specify the assumptions made about the environment behavior. For ex-
ample, we make the following assumption for our priority cache:

A request line is not lowered until it is served.

We may formally express this assumption using the following assume proper-
ties.

G[ r1 ⇒ X[ d1 ∨ r1 ]]
G[ r2 ⇒ X[ d1 ∨ r2 ]]
G[ r3 ⇒ X[ d2 ∨ r3 ]]
G[ r4 ⇒ X[ d2 ∨ r4 ]]
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The first step towards implementing our priority cache access logic is to iden-
tify the main design blocks and their functionality. The functionality of the
blocks and their interconnection defines the architecture of the design. Several
different architectures may be conceived for implementing the same design in-
tent, but we must verify whether the chosen architecture is correct, that is,
whether the functionalities of the architectural blocks and the way they are
connected actually realizes the design intent. The main challenge is in per-
forming this verification task before creating the RTL, so that we do not waste
design effort on a flawed architecture.
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Fig. 6.3. A flawed architecture

Fig 6.3 shows one possible architecture for the priority cache. The block
definitions are as follows:

1. Arbiters. Two arbiters are used – one for arbitrating between the high
priority devices (request lines, r1 and r2), and the other for arbitrating
between the low priority devices (request lines, r3 and r4). The arbiter
asserts the line, a (respectively b), one cycle after at least one among its
request lines goes high.

2. Mask. This is a combinational logic that masks out the low priority request
lines when w is high.

3. Cache. This is the cache block, including the page fetch logic. When there
is a cache miss on a high-priority request, then the signal w is raised to
mask the low priority request lines until the high-priority request is served.

6.1.2 Is My Implementation Plan Correct?
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There is a gap of at least two cycles between a high-priority request and
its service – one cycle is lost in arbitration, and one cycle is lost in searching
for the page in the cache. If there is a cache miss, then more cycles are needed
to load the page from memory. A low-priority request may wait for more than
two cycles, even when the page is available in the memory – this may happen if
a high-priority request is pending, and consequently the low priority requests
are masked.

What role should each architectural block (arbiters, mask, cache) play, so
that the design satisfies the architectural property, A1? Today there is neither
any formal way to answer this question, nor any formal way to verify whether
any explanation given by the design architect is correct.

How is this problem addressed today? Two of the most common approaches
are:

1. Write the RTL for the arbiters, the mask, and the cache, and then attempt
to verify the property A1 on the whole design. This is the common practice
today, and the problems are:

a) The FPV tool cannot handle such architectural properties due to ca-
pacity limitations. In our example, the cache block can be really large,
and beyond the scope of most FPV tools.

b) Dynamic property verification (during simulation) can miss out im-
portant corner case scenarios. We shall show that the architecture
shown in Fig 6.3 fails on one such corner case.

Even if we find the error, we will find it late into the design flow, when
the RTL has been written. At this stage, redesigning the architecture is a
disaster.

2. The design architect is asked – What properties do we need to prove on
the component blocks such that the whole design satisfies A1? The archi-
tect specifies some properties and explains (in English) why she expects
that these properties will guarantee that the overall design satisfies A1.
This approach is followed by many practitioners of FPV, when they have
to prove a property over a large design having many components. The
drawback of this approach is that the design architect’s argument may be
flawed, and the violations may be subtle. We need to formally ascertain
whether the argument is correct. And we need to do this before spending
time on developing the RTL.

There is a distinct advantage in the second approach. We, human beings,
are very clever in eliminating unnecessary details from what we perceive. For
example, if the design architect is asked – What role do you expect the cache
block to play in satisfying the architectural property, A1? – she will more often
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than not produce a property that eliminates most of the irrelevant parts of the
cache block specification. Truly enough, we do not need the full functionality
of the cache block to prove A1 on the design.

Suppose the architect comes up with the following properties over the
architectural blocks, which she thinks, will help in proving A1 on the whole
design.

Arbiter properties:
R1: G[ r1 ∨ r2 ⇔ Xa ]
R2: G[ z3 ∨ z4 ⇔ Xb ]

Cache block properties:
R3: G[ a ⇒ X[ w U d1 ] ]
R4: G[ ¬b ⇒ ¬X d2 ]

Mask properties:
R5: G[ r3 ∧ ¬w ⇔ z3 ]
R6: G[ r4 ∧ ¬w ⇔ z4 ]

The arbiter properties define that the signal a (or b) is asserted when there is
at least one pending request. The first cache block property, R3, specifies that
the masking signal w is asserted until the high priority request (indicated by
a) is served (indicated by raising d1). The second cache block property, R4,
specifies that d2 is not asserted when there are no unmasked pending low
priority requests (indicated by b). The mask properties express the masking
logic – when w is high, both z3 and z4 are low, otherwise they have the same
value as r3 and r4.

The architect believes that if (a) the mask satisfies R5 and R6, (b) the
cache satisfies R3 and R4 and (c) the arbiters satisfy R1 and R2 respectively,
then the whole design is guaranteed to satisfy A1.

How can we ascertain whether she is correct? We need to verify whether
any behavior is possible that satisfies R1, . . . , R6, but refutes A1. If so, then
there exists some implementation (containing such behaviors) where the re-
spective blocks satisfy R1, . . . , R6, but the whole design does not satisfy A1.

Is there such a problem in our architecture? Unfortunately, yes. Fig 6.4
shows a counter-example trace. The low priority request, r3, comes after the
high priority request, r1, but d2 is asserted before d1, violating the architec-
tural property A1. None of the properties, R1, . . . , R6, fail on this trace.

Where is the gap in the architect’s argument? The problem is that there
is a one cycle delay between the assertion of a and the assertion of w, when
there is a high-priority cache miss. In the corner case shown above, z3 goes
high in that gap (time t+1), thereby enabling the low priority request to pass
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Fig. 6.4. Counter-example trace

into the cache. If there is a cache hit for the low priority request, then the
page becomes available in the next cycle itself, which results in the violation
of the architectural property A1.

6.1.3 The Correct Architecture

Fig 6.5 shows another architecture for the priority access logic. The cache
block and the arbiter blocks have the same functionality, but the mask block
has been moved closer to the cache block – instead of masking the low priority
request, it now masks the output of the low-priority arbiter.

We now have a new set of properties over the architectural blocks. These
are:

Arbiter properties:
Q1: G[ r1 ∨ r2 ⇔ Xa ]
Q2: G[ r3 ∨ r4 ⇔ Xb ]

Cache block properties:
Q3: G[ a ⇒ X[ w U d1 ] ]
Q4: G[ ¬z ⇒ ¬X d2 ]

Mask properties:
Q5: G[ b ∧ ¬w ⇔ z ]

The properties for the arbiters and the cache block are exactly as before.
The mask property is new.
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The problem with the earlier architecture is not present in this architec-
ture. Since the mask now applies to the output of the low priority arbiter, z
will never go high when there is a cache miss for a high priority request. This
ensures that d2 is never asserted when there is a pending high priority request
at the cache block.

6.1.4 How Does Design Intent Coverage Help?

The architecture shown in Fig 6.3 has a flaw – our implementation plan was
incorrect. The architecture shown in Fig 6.5 is correct. How can we formally
verify these facts?

Design intent coverage is a formal method for comparing two specifications
and finding out whether one covers the other.

1. For the case shown in Fig 6.5, the design intent coverage methodology will
check whether the specification consisting of the properties, Q1, . . . , Q5,
covers the architectural property A1. It will report that this is indeed the
case. This will confirm the architect’s intuition that the architectural plan
is correct, and that it suffices to verify Q1, . . . , Q5 on the respective blocks
in order to guarantee the architectural property A1. For large blocks, this
approach of manual decomposition and automatic coverage analysis can
be used recursively, until the block sizes are small enough to be accepted
by FPV tools.

2. For the case shown in Fig 6.3, the design intent coverage methodology will
check whether the specification consisting of the properties, R1, . . . , R6,
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covers A1. In this case it will find that there is a gap between the specifi-
cations. On finding the gap it can do several things:

a) It can produce a counter-example trace (as shown in Fig 6.4).

b) It can produce an executable (automaton) that spins off counter-
example runs.

c) It can produce a counter-example property that covers the entire gap
between the two specifications.

The first two do not show the entire coverage gap, hence our focus will
be on the third approach, where the missing properties are automatically
detected.

The design intent coverage framework aids the validation engineer in devel-
oping a feasible formal verification plan by systematically decomposing the
specifications of large design blocks into the specifications of their compo-
nent modules. The formal methods used in this framework help in verifying
the soundness and completeness of the decomposition, and in finding out the
gaps in the decomposition. The methods are significantly scalable since we
work only over specifications. We believe that the future of FPV lies in the
appropriate adoption of this new paradigm.

6.2 The Formal Problem

Design intent coverage essentially compares a high level specification, A, with
a low level specification, R, and determines whether R covers A, that is,
whether every invalid scenario for A is also an invalid scenario for R, so that
no bug detected by A is missed by R. The converse is not true – some behaviors
may be invalid for R but valid for A. This is normal, since implementation
specific constraints get added into the design as we go down the design flow.
For example, the ARM AMBA Bus specification does not specify the exact
arbitration policy, but any implementation must necessarily decide on the
exact arbitration policy, thereby adding new design constraints.

To distinguish between the high level specification, A, and the low level
specification, R, we shall refer to A as the architectural intent, and R as the
RTL specification. This terminology is used only for the ease of presentation,
and should not be viewed as a restriction on the domain of application of this
technology.

We shall present the formal methods for design intent coverage using Lin-
ear Temporal Logic (LTL) as the specification language. Our in-house intent
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coverage tool, SpecMatcher, is also based on LTL. The main inputs to the
tool are:

1. The architectural intent A as a set of LTL properties over a set, APA, of
Boolean signals, and

2. The RTL specification R as another set of LTL properties over a set, APR,
of Boolean signals.

We shall also use A to denote the conjunction of the properties in the archi-
tectural intent, and R to denote the conjunction of the properties in the RTL
specification.

Assumption 1 A ⊆ APR.

The above assumption essentially means that the low level specification
has the same names for their signals as the corresponding ones in the high
level specification. The RTL specification can have other signals in addition
to these. Typically this is not a restrictive assumption within the design hier-
archy, since it is generally considered a good practice for designers at a lower
level of the design hierarchy to inherit the interface signal names from the
previous level of hierarchy.

Given a specification, we define a state as a valuation of the signals used
in the specification. A run is an infinite sequence of states.

Definition 6.1. [Coverage Definition: ]
The RTL specification covers the architectural intent iff there exists no run

that refutes one or more properties of the architectural intent but does not
refute any property of the RTL specification. �

Our coverage problem is as follows:

• To determine whether the RTL specification covers the architectural in-
tent, and

• If the answer to the previous question is no, then to determine a set of
additional temporal properties that represent the coverage gap (that is,
these properties together with the RTL specification succeed in covering
the architectural intent).

The following theorem shows us a way to answer the first question.

Theorem 6.2. The RTL specification, R, covers the architectural intent A,
iff the temporal property R ⇒ A is valid.

we assume that APThroughout this chapter
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Proof: If R ⇒ A, then we have ¬A ⇒ ¬R. Therefore any run that refutes
the architectural intent also refutes the RTL specification.

To prove the opposite direction, we will use contrapositive. Suppose that
R ⇒ A is not valid. That means, there exists a run that refutes the architec-
tural intent but satisfies the RTL specification. Hence, by definition, the RTL
specification does not cover the architectural intent. �

The theorem shows that the primary coverage question can be answered
by testing the validity of R ⇒ A. Most model checking tools for LTL and its
derivatives already have the capability of performing validity (or satisfiability)
checks on temporal specifications, and can therefore be used to answer our
primary coverage question. Note that the complexity of LTL model checking
coincides with that of checking the satisfiability of LTL formulas (both being
PSPACE-complete), but since our coverage question does not involve the RTL,
the proposed approach scales to much larger designs.

ca

b XAND

(a) The XAND module

r1

r2

z

g1

g2

XAND

XAND

(b) Arbiter using XAND

Fig. 6.6. A toy arbiter

We shall use a running example to demonstrate the formal methods for
design intent coverage. For ease of presentation we choose a simple toy exam-
ple.

Example 6.3. Let us consider the design of an arbiter that arbitrates between
two request lines r1 and r2 from two master devices. Let the corresponding
grant lines to the master devices be g1 and g2. The arbiter also receives an
input z from a slave device, that remains high as long as the slave device is
ready.

The arbiter specification requires us to treat r2 as a high-priority request.
Whenever r2 is asserted and the slave is ready (that is, z is high), the arbiter
must give the grant, g2 in the next cycle, and continue to assert g2 as long
as r2 remains asserted. When r2 is not high, the arbiter parks the grant on
g1 regardless of whether r1 is asserted. We are further given, that the request
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r2 is fair in the sense that it is de-asserted infinitely often (enabling g1 to be
asserted infinitely often).

The above architectural intent may be expressed in LTL as follows:

A1: G F ( ¬r2 )
A2: G( ( r2 ∧ z ) ⇒ X( g2 U ¬r2 ) )
A3: G( ( ¬r2 ) ⇒ X g1 )

Let us now consider an implementation of the arbiter using a component
called XAND, as shown in Fig 6.6. The specification of the module XAND is
as follows:

R1
′: G( ( a ∧ b ) ⇒ X c ) )

It may be noted that we do not require the internal implementation of the
RTL module XAND. Property R1

′ is part of the RTL specification for XAND.

Substituting the signal names of the instances of XAND in Fig 1(b) with
r1, r2, g1, g2 and z, and adding the fairness property on r2, we have the RTL
specification as:

R1: G F ( ¬r2 )
R2: G( ( r1 ∧ ¬r2 ) ⇒ X g1 )
R3: G( ( r2 ∧ z ) ⇒ X g2 )

The first property is the same fairness constraint as in the architectural intent.
The second property says if r1 is asserted and r2 is de-asserted then g1 is
asserted in the next cycle. The third property states that whenever r2 and z
are asserted together, then g2 is asserted in the next cycle.

Our primary coverage problem is to determine whether (R1 ∧R2 ∧R3) ⇒
(A1 ∧A2 ∧A3) is valid. In this case the answer is negative. It is clear that A1

is implied by the RTL specification, but we can see that neither A2 nor A3 is
covered by the properties in the RTL specification.

For example whenever we have a scenario where both r1 and r2 are low,
the architectural intent requires g1 to be asserted, but the RTL specification
does not have this requirement. This shows that A3 is not covered.

Also, consider those scenarios where r2 and z are asserted together, but z
de-asserts before r2 (that is, the slave becomes unavailable before the transfer
completes). In these scenarios, the architectural intent requires g2 to remain
high as long as r2 remains high (property A2), but the RTL specification does
not guarantee this. �
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6.2.1 Where is the Coverage Gap?

Theorem 6.2 shows that the primary coverage question, that is, whether the
RTL specification, R, covers the architectural intent, A, can be answered by
checking the validity of the implication R ⇒ A. If the implication is not
valid, then we know that there is a gap between the RTL specification and
the architectural intent, but how do we find out the gap?

As we shall show in this section, it is not hard to compute the coverage gap
between two temporal specifications and specify a property that theoretically
represents the coverage gap. The main challenge is in presenting the new
property in a form that is syntactically similar and visually comparable with
the original specification, so that the validation engineer is able to visually
examine the new property and realize the set of architectural behaviors that
have not been covered by the RTL specification. Let us first see how the
coverage gap can be computed.

Example 6.4. Let us consider the coverage of the property, A3 of Example 6.3
by the RTL specification. We have already established that A3 is not covered.
However this information does not accurately point out the coverage gap
between A3 and the RTL specification. Specifically the coverage gap lies only
for those scenarios where r1 and r2 are simultaneously low at some point of
time. In other words, the coverage gap can be accurately represented by the
following property that considers exactly the above scenarios:

U1: G( ( ¬r1 ∧ ¬r2 ) ⇒ X g1 )

We have R2 ∧ U1 ⇒ A3, and therefore U1 closes the coverage gap between
R2 and A3. In general, our aim is to determine the weakest set of temporal
properties that close the coverage gap between the RTL specification and the
architectural intent. This intent is formally expressed below. �

Definition 6.5. [Strong and weak properties: ]
A property F1 is stronger than a property F2 iff F1 ⇒ F2 and F2 
⇒ F1. We
also say that F2 is weaker than F1. �

Definition 6.6. [Coverage Hole in RTL Spec: ]
A coverage hole in the RTL specification is a property RH over APR, such

that (R ∧ RH) ⇒ A is valid, and there exists no property, R′
H , over APR

such that R′
H is weaker than RH and (R∧R′

H) ⇒ A is valid. In other words,
we find the weakest property that suffices to close the coverage hole. Adding
the weakest property strengthens the RTL specification in a minimal way. �

Since APA ⊆ APR, each property of the architectural intent is a valid
property over APR. The following theorem characterizes the coverage hole.
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Theorem 6.7. The coverage hole in the RTL specification is unique and is
given by A ∨ ¬R.

Proof: Let RH = A∨¬R. It is easy to see that (R∧RH) ⇒ A, and therefore
RH closes the coverage hole.

Let R′
H be a property such that R′

H is weaker than RH and (R∧R′
H) ⇒ A.

Since R′
H 
⇒ RH , there exists a run, π, that satisfies R′

H but not RH .

Suppose π satisfies R. Then by the definition of R′
H , π satisfies A. But

if π satisfies A, then π must satisfy RH (by the definition of RH). This is a
contradiction.

Otherwise, suppose π does not satisfy R. Therefore π satisfies ¬R, and
again π must satisfy RH (by the definition of RH). Again we have a contra-
diction. Therefore RH is the unique weakest property that closes the coverage
gap. �

There is an intuitive explanation of the coverage hole as defined by The-
orem 6.7. The goal of the design intent coverage analysis is to find those
behaviors that refute A but satisfy R, that is, those behaviors that satisfy:

ϕ = ¬A ∧ R

The property representing the coverage hole must reject exactly these be-
haviors, hence the property is A ∨ ¬R which is ¬ϕ. The following example
demonstrates the notion of a coverage hole in our formulation.

Example 6.8. Let us again consider the arbiter of Example 6.3. We had seen
that the coverage gap lies in A2 and A3. By Theorem 6.7 we have the coverage
hole in the RTL specification as:

RH : ( (A2 ∧ A3) ∨ ¬(R1 ∧ R2 ∧ R3) )

We can also write the same coverage hole as the conjunction of the following
two properties:

RH
′: ( A2 ∨ ¬(R1 ∧ R2 ∧ R3) )

RH
′′: ( A3 ∨ ¬(R1 ∧ R2 ∧ R3) )

In other words, we can examine the coverage of each architectural property
separately and produce a set of properties representing the coverage hole. �

Typically, the coverage hole, A ∨ ¬R, will contain signals belonging to
APR −APA. To demonstrate the part of the architectural intent that is not
covered by the RTL specification, we need a further level of abstraction. The
definition of the uncovered architectural intent is as follows.
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Definition 6.9. [Uncovered architectural intent: ]
The uncovered architectural intent is a property AH over APA, such that

(R∧AH) ⇒ A is valid, and there exists no property A′
H over APA such that

A′
H is weaker than AH and (R ∧A′

H) ⇒ A is valid. In other words, we find
the weakest property over APA that suffices to close the coverage hole. �

6.2.2 How Should We Present the Coverage Hole?

Theorem 6.7 gives us a formalism for computing the coverage hole, but does
not present the missing properties in a meaningful way. Our aim is to present
the coverage hole and the uncovered architectural intent before the designer
in a form that is syntactically close to the architectural intent and is thereby
amenable to visual comparison with the architectural intent.

The expressibility of the logic used for specification does not always per-
mit a succinct representation of the coverage hole. In such cases, we prefer
to present the coverage hole as a succinct set of properties that closes the
coverage gap, but may be marginally stronger than the actual coverage gap.
The following example highlights this intent.

Example 6.10. We consider the coverage of A3 by R2 in the specifications
given in Example 6.3. By Theorem 6.7, the coverage gap between A3 and R2

is given by the property:
ϕ = A3 ∨ ¬R2

The knowledge that the above property is satisfiable does not convey any
meaningful information to the designer. On the other hand, consider the prop-
erty U1 of Example 6.4:

U1: G( ( ¬r1 ∧ ¬r2 ) ⇒ X g1 )

U1 is stronger than ϕ, but is able to represent the coverage gap more effectively
than ϕ. This is because, the designer can visually compare U1 with A3 and
see what remains to be covered.

It is also important to be able to preserve structural similarity with the
architectural intent when we present the coverage hole. For example, the prop-
erty U1 can also be written as:

G( r1 ∨ r2 ∨ X g1 )

or as:
G( ( ¬X g1 ∧ ¬r1 ) ⇒ r2 )

These representations are logically equivalent to U1, but are not visually sim-
ilar to A3. Preserving structural similarity is a very important issue in pre-
senting the gaps between formal property specifications. �
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The SpecMatcher tool uses two key algorithms for structuring the uncov-
ered architectural intent. The first algorithm enables the computation of the
real time bounded terms in the coverage gap and then pushes these terms into
the syntactic structure of the architectural properties to obtain the uncovered
part. The second algorithm takes architectural properties having unbounded
temporal operators (such as G, F and U) and systematically weakens them
into structure preserving decompositions. It then checks the components that
remain to be covered. The following example illustrates this approach.

Example 6.11. Let us consider the coverage of the property:

A′
2 : G( ( r2 ∧ z ) ⇒ X( ( g2 ∧ ¬ g1 ) U ¬r2 ) )

by the RTL property:

R′
2 : G( ( r1 ∧ ¬r2 ) ⇔ X g1 )

and the fairness property R1 = GF ( ¬r2 ). We find that R1 ∧R′
2 ⇒ A′

2 is not
valid, which establishes that A′

2 is not covered. However, we can decompose
A′

2 into a conjunction of two properties, namely:

A′
2a : G( ( r2 ∧ z ) ⇒ X( g2 U ¬r2 ) )

A′
2b : G( ( r2 ∧ z ) ⇒ X( ¬ g1 U ¬r2 ) )

The property A′
2b is covered by R′

2 and R1. The coverage hole is therefore in
the property A′

2a which is a more accurate (weaker) representation than A′
2.

�

6.3 The Intent Coverage Algorithm

We are now in a position to present the algorithms for producing a structure
preserving form of the coverage gap. The SpecMatcher tool takes each formula
FA from the architectural intent A and finds the coverage gap, G, for FA, with
respect to the RTL specification R.

Algorithm 6.1 Find Coverage Gap(FA,R)

1. Compute U = FA ∨ ¬R

2. If U is not valid then

a) Unfold U to create a set of uncovered terms, UM , that approximates
the coverage gap;
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b) Use universal quantification to eliminate signals belonging to APR −
APA,

c) FU = Call Push Term(FA, UM , 1);

d) G = Call Relax ArchitecturalIntent(FU );

3. Return G;

The first step determines the coverage gap formula U in terms of RTL
variables. If U is valid then FA is covered. Otherwise we need to find an
abstraction of U over the architectural variables that is syntactically close
to FA. The second step of the algorithm performs this task. This step is
further divided into four steps. We shall now describe each of these steps with
examples and correctness proofs.

6.3.1 Unfolding the Coverage Gap

In Step 2(a), we recursively unfold U and generate a disjunction of terms, UM ,
that contain only Boolean subformulas and Boolean subformulas guarded by
a finite number of X (next) operators. We guarantee that UM is as strong
as the coverage gap, U . By this approximation we eliminate all unbounded
temporal operators from U , which helps us to push the terms in UM into the
syntactic structure of FA. Before we describe the unfolding step we present
the definitions of an X-pushed formula, X-guarded formula and X-depth of an
operator within a formula.

Definition 6.12. [X-pushed formula: ]
A formula is said to be X-pushed if all the X operators in the formula are

pushed as far as possible to the left. �

Definition 6.13. [X-guarded formula: ]
A formula is said to be X-guarded if the corresponding X-pushed formula

starts with an X operator whose scope covers the whole formula. �

Definition 6.14. [X-depth of an operator: ]
The X-depth of an operator within a formula is the number of X operators

whose scope covers the operator in the X-pushed form. �

Example 6.15. Let us consider the temporal property

P = ( ( X p ) U ( X X q ) ) ∧ ( X F r )

The X-pushed form of P is:
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PX = X ( ( p U ( X q ) ) ∧ ( F r ) )

Now P is an X-guarded formula because the corresponding X-pushed formula
PX starts with an X operator whose scope covers the whole formula. P con-
tains two unbounded temporal operators, U and F . The X-depth of both U
and F is 1. �

Our methodology for decomposing U into a disjunction UM of terms is as
follows. It is known that any LTL property can be recursively unfolded over
time steps to create an equivalent property over Boolean formulas and X-
guarded LTL formulas [47]. For example, the property p U q may be rewritten
as:

q ∨ [ p ∧ X( p U q ) ]

after one level of unfolding, and as:

q ∨ [ p ∧ X( q ∨ ( p ∧ X( p U q ) ) ) ]

after two levels of unfolding. After k-level unfolding, we can distribute the X
operators over the Boolean operators and the ∧ operator over the ∨ operator
to obtain a disjunction of terms, where each term consists of a conjunction
of Boolean literals, X-guarded Boolean literals, and X-guarded temporal for-
mulas. For example, p U q can be rewritten as follows after two levels of
unfolding:

( q ) ∨ ( p ∧ X q ) ∨ ( p ∧ X p ∧ X X( p U q ) )

Since a temporal formula has a finite number of members in its closure [38],
it follows that for every temporal property such a decomposition begins to
produce similar X-guarded subformulas after a well defined number of unfold-
ing steps. During the unfolding process we check whether such a fixpoint has
been reached.

Once we have the disjunction of the terms, we drop the terms that contain
any temporal operator other than X and call the remaining formula as UM .
Dropping terms from the disjunction ensures that UM is at least as strong as
U . UM contains only Booleans and X-guarded Booleans, which is appropriate
for Step 2(b) and Step 2(c).

Example 6.16. Consider the property U = (p U q) ∨ X F (¬p). After one step
of unfolding the property looks like:

U1 = q ∨ (p ∧ X( p U q ) ) ∨ X F (¬p)

Dropping the present state variables and removing an X from the remaining
sub formulas of U1 generates:
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U ′ = ( p U q ) ∨ F (¬p)

Since U ′ is not equivalent to U , we have not yet reached the fixpoint. After
the next step of unfolding of U ′ and then dropping the present state variables
and removing an X from the remaining sub formulas yields:

U ′′ = ( p U q ) ∨ F (¬p)

which is equivalent to U ′. Since any further decomposition will generate the
same formula, this is the fixpoint. After two steps of unfolding the property
U becomes:

U2 = q ∨ ( p ∧ X( q ∨ p ∧ X( p U q ) ) ) ∨
X( ¬p ∨ X F (¬p) )

It can be rewritten in the form of disjunction of the terms as follows:

( q ) ∨ ( p ∧ X q ) ∨ ( p ∧ X p ∧
X X( p U q ) ) ∨ ( X(¬p) ) ∨ ( X X F (¬p) )

Now dropping the terms containing any temporal operators other than X
yields the following set of terms as UM :

UM = { q, p ∧ X(q), X(¬p) }

It may be noted that UM may contain variables belonging to APR−APA. In
order to obtain the uncovered architectural intent, we need to eliminate these
variables. This is done in Step 2(b). �

Theorem 6.17. The property represented by the set of terms UM closes the
coverage hole for FA.

Proof: Since UM is generated from U by dropping some terms from the
disjunctive form, it follows that UM is at least as strong as U , and therefore
closes the coverage hole. �

6.3.2 Elimination of Non-architectural Signals

In Step 2(b) of the coverage algorithm, we universally eliminate the variables
in APR−APA from the property UM . The following theorem establishes that
after the abstraction, UM still closes the coverage hole.
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Theorem 6.18. The property represented by the set of terms UM after uni-
versal abstraction closes the coverage hole for FA.

Proof: Follows from the fact that universal abstraction results in a property
that is at least as strong as the original property. �

6.3.3 The Term Distribution Algorithm

We showed in Section 6.3.1 that UM is a disjunction of terms that together
close the coverage gap for FA. Our target is to represent this coverage gap as
a set of properties that are structurally similar to FA. We achieve this objec-
tive by distributing the terms in UM into the structure of FA. The following
theorem shows that this approach is theoretically sound.

Theorem 6.19. The property UM ∨FA is at least as weak as UM and closes
the coverage gap for FA.

Proof: Since UM ⇒ UM ∨ FA is valid, it follows that UM ∨ FA is at least as
weak as UM . To show that UM ∨ FA closes the coverage gap, we present the
following argument.

Since UM is as strong as U (by Theorem 6.18), it follows that UM ∨ FA
is as strong as U ∨ FA. Since U = FA ∨ ¬R, it follows that U ∨ FA = U .
Therefore UM ∨ FA is as strong as U and closes the coverage gap. �

The remainder of this section presents the methodology for distributing
the terms in UM into the structure of FA. The intuitive idea is to push the
terms to the sub formulas having similar variables. However, UM may also
contain some terms that contain variables from APA other than those in FA.
Let us denote these variables by EV (for entering variables).

The Function Push Term(F , UM , θ) pushes the terms in UM into the
syntactic structure of property, F . To intuitively explain the working of this
function, consider a case where F is of the form f ⇒ g. Let V ar(f) and
V ar(g) denote the set of variables in f and g respectively. We compute the
universal abstraction of UM with respect to V ar(g) and recursively push the
restricted terms (containing only variables in V ar(g)) to g. We then compute
the universal abstraction of UM with respect to V ar(f) ∪ EV and recursively
push the restricted terms to f . The decision to push terms containing entering
variables to the left of the implication is heuristic (but correct, since we could
push them either way). Pushing the entering variables in the other side may
give us another form of the uncovered architectural intent (and we may like
to present both forms).

In case F is of the form f ∧ g, we push each term of UM to both f and g.
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In case F is of the form f U g or F f or G f , we maintain the list of
variables of UM with F for later use by the variable weakening algorithm
(Step 2(d)).

The third argument, θ of the function Push Term specifies whether UM

should be considered in disjunction with F (in which case θ = 1) or in con-
junction with F (denoted by θ = 0). At the root level, we always have θ = 1
(since we compute FA ∨ UM ). However the semantics of negation sometimes
require us to recursively call Push Term() with θ = 0.

Algorithm 6.2 Push Term(F , UM , θ)

case(F ≡ (f ⇒ g)) :

if (θ = 1) { Push Term(f , ¬UABS(UM , V ar(f) ∪ EV), 0);
Push Term(g, UABS(UM , V ar(g)), 1); }

if (θ = 0) { Push Term(f , ¬UM , 1);
Push Term(g, UM , 0) ; }

case(F ≡ (f ∨ g)) :

if(θ = 1) { Push Term(f , UABS(UM , V ar(f) ∪ EV), 1);
Push Term(g, UABS(UM , V ar(g)), 1); }

if(θ = 0) { Push Term(f , UM , 0);
Push Term(g, UM , 0); }

case(F ≡ (f ∧ g)) : { Push Term(f , UM , θ);
Push Term(g, UM , θ); }

case(F ≡ (¬f)) : Push Term(f , ¬UM , ¬θ);

case(F ≡ (X f)) : { UM−X
= XABS(UM );

Push Term(f , UM−X
, θ); }

case(F ≡ (G f) or (F f) or (f U g)) :
Maintain the list of variables of UM with F for later
use by variable weakening algorithm (Step 2(d));

case(F ≡ p ∈ APT ) :
if(θ = 1) Replace p by p ∨ UM ;
if(θ = 0) Replace p by p ∧ UM ;
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The functions UABS() and XABS() are as follows:

UABS(ϕ, SV): This function takes a set of terms, ϕ, and a set of variables SV
as input and universally eliminates the set of variables given by APA−SV
from ϕ. It returns the property given by the union of the abstracted set
of terms.

XABS(ϕ): This function takes a set of terms, ϕ, extracts those terms that
are within the scope of one or more X operators, and returns these terms
after dropping the most significant X operator.

Lemma 6.20. The property FU produced by Push Term(F , M, θ) is as
strong as F ∨M when θ = 1 and as weak as F ∧M when θ = 0.

Proof: We construct the proof by induction on the subformulas of F . In the
base case we have an atomic proposition (say p). In this case, we return p∨M
when θ = 1 and p ∧M when θ = 0, and thereby satisfy the lemma.

Suppose F is of the form f ⇒ g. When θ = 1, we replace f by the
property Push Term(f, ¬UABS(M,V ar(f) ∪ EV), 0) and we replace g by
Push Term(g, UABS(M,V ar(g)), 1).

By induction hypothesis, Push Term(f, ¬UABS(M,V ar(f)∪EV), 0) is as
weak as f ∧ ¬UABS(M,V ar(f) ∪ EV).

Likewise, we have that Push Term(g, UABS(M,V ar(g)), 1) is as strong
as g ∨ UABS(M,V ar(g)).

Hence it follows that Push Term(f ⇒ g, M , 1) is as strong as:

(f ∧ ¬UABS(M,V ar(f) ∪ EV) ⇒ g ∨ UABS(M,V ar(g)))

which is the same as:

(¬f ∨ UABS(M,V ar(f) ∪ EV) ∨ g ∨ UABS(M,V ar(g)))

Now by the definition of UABS, we have:

UABS(M,V ar(f) ∪ EV) ∨ UABS(M,V ar(g))

is as strong as M . Hence Push Term(f ⇒ g, M , 1) is as strong as (f ⇒ g)∨M
as required by the lemma.

Let us now consider the case when F is of the same form, and θ = 0. Now,
Push Term(f ⇒ g,M, 0) is recursively computed as:

Push Term(f,¬M, 1) ⇒ Push Term(g,M, 0)

By induction hypothesis, Push Term(f,¬M, 1) is as strong as f ∨ ¬M and
Push Term(g,M, 0) is as weak as g∧M . Hence Push Term(f ⇒ g,M, 0) is as
weak as (f ∨¬M) ⇒ (g∧M), that is (f ⇒ g)∧M , as required by the lemma.



6.3 The Intent Coverage Algorithm 181

The proof follows a similar style when F is of the forms f ∨ g, f ∧ g or ¬f .
When F is of the form X f , the proof directly follows from the definition of
XABS function and the distribution rule in Push Term.

For the remaining cases, namely when F is of the forms G f , F f or f U g,
the algorithm simply returns F . Since F is as strong as F ∨ UM and as weak
as F ∧ UM , the lemma (vacuously) holds for these cases as well. �

Theorem 6.21. Push Term(FA,UM , 1) returns a property FU that closes the
coverage hole.

Proof: From Lemma 6.20, we have that Push Term(FA,UM , 1) is as strong
as FA ∨ UM . Along with Theorem 6.19, we have that FU closes the coverage
hole. �

Example 6.22. Let us consider the architectural property A and the RTL prop-
erty R as given below, where r1, r2, g1, g2 ∈ APA.

A : r1 ⇒ X( g1 U g2 )
R : ( r1 ∧ r2 ) ⇒ X( g1 U g2 )

After step 2(b) of algorithm 6.1 we have the following set of terms for UM :

UM = {¬r1, X(g2), r1 ∧ r2 ∧ ¬X(g2)}

The distribution of the above terms into the parse tree of A by Algorithm 6.2
is shown in the Figure 6.7.

{¬r1, X(g2), r1 ∧ r2 ∧ ¬ X(g2)}

r1 ∧ ¬r2

Xg2

U

⇒

r1

g1

g2

g2

X

θ = 1

θ = 1

θ = 0

Fig. 6.7. Working of Algorithm Push Term

After the execution of the Push Term algorithm FU is represented in the
following form:

FU : ( r1 ∧ ¬r2 ) ⇒ X( g1 U g2 )

We also have the sole element g2 in the variable list corresponding to the node
U . This list is to be used in Step 2(d) of the intent coverage algorithm. �
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It is interesting to note that pushing the terms abstracted from FA ∨ ¬R
into the structure of FA yields a better representation of the coverage gap as
compared to pushing the terms abstracted from ¬R into the structure of FA,
though both approximate FA ∨ ¬R.

Example 6.23. Let us revisit the previous example. Suppose we take ¬R in-
stead of A ∨ ¬R to generate the terms. We get the following as UM :

UM : {r1 ∧ r2 ∧ ¬X(g2)}

Here, after the Push Term algorithm we have the property A as FU and an
empty variable list at the U node because UABS fails to abstract out terms
from UM due to absence of the extra terms generated from A, in UM . �

6.3.4 Weakening Unbounded Temporal Properties

Algorithm Push Term affects only those portions of the architectural intent
that are time bounded. Since the bounded until operator of real time LTL
can be expressed using the X and Boolean operators, the fragment of LTL
that consists of Boolean operators and all bounded temporal operators can
be appropriately handled by Push Term.

For properties having the unbounded temporal operators, namely G (al-
ways), F (eventually), and U (until), we use heuristics to decompose the
property into weaker fragments and then return those fragments that are not
covered by the RTL specification. Within the weaker fragments, we may again
use Algorithm Push Term to compute the uncovered architectural intent more
accurately.

Our intuitive idea in this step is to systematically weaken the intermedi-
ate uncovered architectural intent, FU , while ensuring that it still closes the
coverage hole. We use two kinds of structure preserving weakening methods
in our tool. Both the methods are based on the observation that a property
can be weakened by appropriately weakening or strengthening a variable oc-
currence. The task of determining whether a weakening or strengthening is
required that results in weakening of the property can be performed by a sim-
ple examination of the parse tree of the property2. We provide some details
of the two methods used in our tool for weakening.

Weakening by substitution: A variable instance in its native form can be
weakened by substituting it with true and strengthened by substituting

2 Note that we weaken/strengthen only one instance of a variable at a time, and
not for all instances of that variable in the property. In case the instance of the
variable being weakened/strengthened is vacuous, the resulting property will be
as weak as the original.



6.3 The Intent Coverage Algorithm 183

it with false. The effect of such a substitution on the property which
contains the instance depends on the polarity of the variable instance in
that property.

We can systematically weaken or strengthen a property by substituting
variable instances with true/false appropriately. The approach is as fol-
lows. After choosing a variable (that is under unbounded temporal opera-
tors) and performing the weakening substitution, we examine whether the
weakened property still closes the coverage hole. If so, then we recursively
attempt to weaken it further.

Substitution does not disturb the syntactic structure of the remaining
property, and hence the uncovered architectural intent produced in the end
is visually comparable to the original architectural intent. For example,
consider the following property:

ϕ: G( a ⇒ X( c U d ) )

Suppose we want to weaken the property ϕ, by substituting the variable
instance c with true/false. Here, in order to weaken ϕ, we need to weaken
the variable instance c and since the variable instance is in positive polarity
in ϕ, hence it should be substituted by true. After the substitution we get
the following weakened property ϕ′:

ϕ′: G( a ⇒ X F d )

Variable Weakening: In addition to substitutions, a property can also be
weakened by augmenting it with new literals, that is, by replacing a vari-
able instance with the conjunction or disjunction of the variable with other
literals.

The choice of new literals to be introduced into a property can be given by
the user, or may be chosen by examining the terms originating from the
unbounded temporal subformulas. In the latter, we use the variable list
corresponding to each variable occurrence (obtained during Push Term)
for weakening of that variable occurrence. We disjunct or conjunct a literal
with a variable occurrence depending on whether weakening or strength-
ening of the variable occurrence weakens the formula.

We demonstrate the idea with the following property:

ϕ: G( ( a U b ) ⇒ ( c U d ) )

Suppose we want to weaken the property by augmenting a new literal
¬e with the variable instance a. Here we have to strengthen the variable
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instance a for weakening of ϕ since the polarity of the variable is negative
in ϕ. So we need to replace the variable instance with the conjunction of
the variable and the new literal. The resulting weakened property will be
as follows:

ϕ′: G( ( ( a ∧ ¬e ) U b ) ⇒ ( c U d ) )

Properties of the form FA = G(ϕ) (also called invariants) are very common in
formal property specifications, hence we treat the coverage of such formulas
separately. The following algorithm sketch outlines our approach.

Algorithm 6.3 Coverage of Invariants

1. Let ψ denote the property formed by conjuncting the collection of in-
variant properties in R. ψ is computed by syntactic parsing of the RTL
specification.

2. We let U = G( ϕ ) ∨ ¬G( ψ ) and compute UM as in Step 2(a) of
Algorithm 6.1.

3. These terms are then pushed into ϕ using Push Term to obtain the weak-
ened property, ϕ′.

4. We return G(ϕ′) as the intermediate uncovered architectural intent and
apply Step 2(d) of Algorithm 6.1 on the subformulas of G(ϕ′) to further
refine the uncovered architectural intent.

The following theorem shows that the uncovered architectural intent ob-
tained in this way closes the coverage hole.

Theorem 6.24. The property, G FU , returned by Algorithm 6.3 closes the
coverage gap of G(ϕ) with respect to R.

Proof: From Lemma 6.20, FU is as strong as ϕ∨UM . Also by Theorem 6.18,
UM is as strong as U and hence G FU is as strong as F1 = G( ϕ ∨ U ). Now
from Theorem 6.7, we have:

U = G ϕ ∨ ¬G ψ = G ϕ ∨ F ¬ψ

Since G ψ is as weak as R (because we considered only the invariant terms),
it follows that U is as strong as the coverage hole, and thereby closes the
coverage hole. To prove the result, we shall show that the property returned

6.3.5 Special Treatment of Invariant Properties
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by Algorithm 6.3 is as strong as U and is able to close the coverage hole as
well. Substituting this property for U in F1 we get:

F1 = G( ϕ ∨ G ϕ ∨ F ¬ψ ) = G( ϕ ∨ F ¬ψ )

Now in every run π that satisfies F1, either ϕ is true at all states, or there
exists some state that satisfies ¬ψ. In the first case π satisfies G ϕ, and in
the second case π satisfies F ¬ψ. In both cases, π satisfies U . Hence F1 is as
strong as U and therefore is able to close the coverage hole. �

{ r2, X(g1), r1 ∧ ¬ r2 ∧ ¬ X(g1) }

¬r2∧¬r1

Xg1

r1 ∨ r2

⇒

r2
¬

g1

g1

X

G
θ = 1

θ = 1
θ = 1

θ = 1

θ = 0

Fig. 6.8. Term distribution

Example 6.25. Let us return to the specifications shown in Example 6.3 and
let us consider the coverage of A3 by R2:

A3 : G( ( ¬r2 ) ⇒ X g1 )
R2 : G( ( r1 ∧ ¬r2 ) ⇒ X g1 )

Since both properties are invariants, we use Algorithm 6.3. In the first step,
we compute ψ as ( r1 ∧ ¬r2 ) ⇒ X g1 The set of terms, UM obtained by
unfolding A3 ∨ ¬Gψ are as follows:

UM = {r2, X(g1), r1 ∧ ¬r2 ∧ ¬X(g1) }

We now call Push Term to distribute the terms in UM into the parse tree of
A3 past the G operator (as shown in Fig 6.8). The figure shows how the terms
in UM distribute across the different operators in A3. The value of θ shown
besides the nodes indicate whether the incoming terms are in conjunction or
disjunction with the property rooted at that node. The uncovered part of A3

after applying Push Term is given by:

G( ( ¬(r1 ∨ r2) ) ⇒ X g1 )

Let us now revisit the coverage problem of Example 5, where we examine the
coverage of A′

2 by R′
2 and the fairness property R1 = GF ( ¬r2 ):

A′
2 : G( ( r2 ∧ z ) ⇒ X( ( g2 ∧ ¬ g1 ) U ¬r2 ) )

R′
2 : G( ( r1 ∧ ¬r2 ) ⇔ X g1 )
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In this case also, all properties are invariants, hence we apply Algorithm 6.3.
However, in this case Algorithm 6.3 fails to weaken A′

2 and returns A′
2. There-

fore, we systematically weaken A′
2 and search for weaker properties that still

close the coverage gap. In this case, we find that substituting 0 for g1 in A′
2

gives us the property:

A′
2a : G( ( r2 ∧ z ) ⇒ X( g2 U ¬r2 ) )

which is weaker than A′
2, but still closes the coverage gap. By our approach,

no further structure preserving weakening of A′
2a can close the coverage gap,

hence we report A′
2a as the uncovered part of A′

2. �

6.4 Soundness of the Intent Coverage Algorithm

Theorem 6.26. The coverage gap G returned by Find Coverage gap( FA,R)
closes the coverage hole.

Proof: There are two steps in Algorithm 6.1. Step 1 generates the exact
coverage hole U that closes the coverage hole by Theorem 6.7.

From Theorem 6.17 and Theorem 6.18, we have that after Step 2(b), the set
of terms in UM closes the coverage hole. By Theorem 6.21, the intermediate
uncovered architectural intent property after step 2(c), FU , still closes the
coverage hole. In step 2(d), we perform weakening of FU but maintaining the
property that it remains at least as strong as the coverage hole in R with
respect to FA. This concludes the proof. �

6.5 Multi-property Representation of the Coverage Gap

We have observed that in some cases it is possible to represent the coverage
gap as a collection of two or more properties that are individually similar
to the architectural property, and are able to close the coverage gap taken
together. The following example demonstrates one such case.

Example 6.27. Let us consider the architectural property FA and the RTL
specification R, as given below:

FA: r1 ⇒ X( g1 ∧ g2 )
R: ( r1 ∧ r2 ) ⇒ X g1

By Algorithm 6.2, the terms of the coverage gap, FA ∨ ¬R, to be pushed
to the left of the implication in FA is ¬r1 and the terms to be pushed to the
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right of the implication in FA is X g1 ∧ X g2. This does not change FA.
Relaxing FA using our heuristics also does not give any better result.

Now, consider the following two properties:

A′
1: ( r1 ∧ ¬r2 ) ⇒ X g1

A′
2: r1 ⇒ X g2

The conjunction of these two properties closes the coverage gap and also both
are weaker than the architectural property FA. Clearly, these two properties
taken together is a better representation of the coverage gap. �

We now present a heuristic methodology for decomposing the coverage
gap as a set of properties. For this purpose we compute U = ¬R in Step
2(a) of the coverage algorithm (instead of U = FA ∨ ¬R). In Step 2(c)
we use a modified version of Push Term which uses a different approach only
for the cases where F is of the form f ⇒ g or f ∨ g. Recall that in the
original version we used universal abstraction to determine the set of terms to
be pushed towards the subformula f and set of terms to be pushed towards
g respectively. Universal abstraction guarantees that no new terms are added
and therefore the modified property is guaranteed to be as strong as FA ∨ ¬R
and closes the coverage gap.

In the modified version of Push Term we treat the cases f ⇒ g or f ∨ g
as follows. We perform an existential abstraction on UM to eliminate the
variables not belonging to V ar(f) ∪ EV and push the resulting terms towards
f to obtain a property FUL

. Likewise, we perform an existential abstraction on
UM to eliminate the variables not belonging to V ar(g) and push the resulting
terms towards g to obtain a property FUR

. We found that in many cases, in
spite of the fact that FUL

and FUR
are individually weaker than FA ∨ ¬R,

the property FUL
∧ FUR

is as strong as FA ∨ ¬R and therefore closes the
coverage gap. However, since this is not always true, we attempt this heuristic
approach when the original methodology fails to represent the coverage gap
with a property that is weaker than FA and apply the result after checking
that FUL

∧ FUR
⇒ FA ∨ ¬R is valid, that is, FUL

∧ FUR
is as strong as

the coverage gap.

Example 6.28. Let us return to the previous example. The term resulting from
U ′ = ¬R is r1 ∧ r2 ∧ ¬X(g1). Now applying the modified version of
Push Term, we get r1 ∧ r2 to be pushed in the left hand side of the implication,
resulting in a formula:

FUL
: ( r1 ∧ ¬r2 ) ⇒ X( g1 ∧ g2 )

Similarly, ¬X(g1) is pushed to the right side of the implication, resulting in:
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FUR
: r1 ⇒ X(g2)

We can see that both FUL
and FUR

are individually weaker than FA but their
conjunction is stronger than U and hence closes the coverage gap between FA
and R. �

6.6 SpecMatcher – The Intent Coverage Tool

SpecMatcher is our in-house tool for design intent coverage over LTL specifi-
cations. The architecture of the tool is shown in Fig 6.9.

Architectural
Intent

Coverage

Gap Analyzer

Parse trees
(for each

arch prop)

checker

LTL
SAT

RTL
Specification

Weakening
Algorithm

PushTerm

BDD package
CUDD

SpecMatcher

Fig. 6.9. The Architecture of SpecMatcher

The tool accepts two specifications, namely the architectural intent and
the RTL specification. Both specifications should be in LTL. It produces the
uncovered architectural intent (in LTL) as the output.

SpecMatcher uses an in-house LTL satisfiability checker for checking the
primary coverage question. It treats the LTL SAT checker as an oracle –
therefore we can easily integrate it with more advanced SAT tools. Our in-
house LTL SAT checker is BDD-based and uses the CUDD BDD package to
maintain the BDDs.

The terms of the coverage gap are symbolically maintained as BDDs. The
PushTerm algorithm uses the BDD representation of the terms.

The weakening heuristics also use the LTL SAT checker to determine
whether the weakened specification still closes the coverage gap.
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SpecMatcher does not provide a push-button solution to the intent cover-
age problem. The user is provided with options for choosing the heuristics for
weakening and substitution, or for using the multi-property coverage heuris-
tics. These heuristics present the same coverage gap in different forms. We
believe that in practice validation engineers should study the different rep-
resentations and use the one that seems most readable in the context of the
specific design.

We used SpecMatcher on several test cases from Intel. The results are
presented in our papers (see the bibliographic notes).

6.7 Priority Cache Access – A Closer Look

We will now consider a more detailed version of our introductory example,
namely that of the priority cache access block. Fig 6.10 shows the architecture
of the cache access logic. The specification is as follows:

• There are four request inputs, r1, . . . , r4, for four independent requesting
modules.

• Each of these four modules also assert write-enable signals w1, . . . , w4
respectively.

• The signals h1, . . . , h4 are inputs from the cache that indicate whether the
page requested by r1, . . . , r4 respectively are present in the cache.

• When the output signal hold is asserted the arbitration logic stops accept-
ing any request.

• The signals d1, . . . , d4 indicate whether the page requested by r1, . . . , r4
respectively is ready.

The architectural intent requires that r1 and r2 have higher priority than
r3 and r4. This may be translated into the following architectural property:

If two devices with different priorities make requests for the cache
control unit with the higher priority device making the request before
the lower priority one, the device with higher priority will always have
its page ready at the output, before the device with lower priority.

This architectural level requirement can be expressed by four properties
for the four different ways in which a high priority request can come with a
low priority one. For example, when we consider r1 (high priority) with r3
(low priority) we have the following property:

A1: G(((r1 ∧ ¬r2 ∧ ¬r3) ∧ X(r1 U r3)) ⇒ (¬d3 U d1))
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We have the following fairness conditions on the inputs and outputs, which
require the requesting device to hold the request line high until the page
becomes ready:

Q1: G( r1 ⇒ ( r1 U d1 ) )
Q2: G( r3 ⇒ ( r3 U d3 ) )

We are also given the following two fairness restrictions:

Q3: G( ¬r1 ⇒ ( ¬d1 ∧ X( ¬d1 ) ) )
Q4: G( ¬r3 ⇒ ( ¬d3 ∧ X( ¬d3 ) ) )

These restrictions state that whenever a device is idle (that is, not requesting),
its page ready signal will be low in that cycle and its next cycle.

r1

r2

r3

r4

G1

G2

nextreq1

nextreq2

nextreq3

nextreq4

Priority

Arbiter

(A)

hold

finalreq1

finalreq2

finalreq3

finalreq4

L1 Cache
Access
Logic

w1    ...   w4

h1    ...    h4

d1

d2

d3

d4

(C)

Fig. 6.10. Memory arbitration with L1 cache

Figure 6.10 shows the architecture of this logic in terms of four modules.
G1 and G2 are round-robin arbiters. The arbiters process requests in a round
robin fashion provided that the hold signal is not asserted. Whenever hold is
asserted they ignore their request lines. The variable lastreq represents the
state of G1 indicating which device was granted in the last round. Below we
present the RTL properties for G1. The properties for G2 are similar.

RG11 : G((r1 ∧ ¬r2 ∧ ¬hold) ⇒ (nextreq1 ∧ X(¬lastreq)))
RG12 : G((¬r1 ∧ r2 ∧ ¬hold) ⇒ (nextreq2 ∧ X(lastreq)))
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RG13 : G((r1 ∧ r2 ∧ ¬hold ∧ lastreq)
⇒ (nextreq1 ∧ X(¬lastreq)))

RG14 : G((r1 ∧ r2 ∧ ¬hold ∧ ¬lastreq)
⇒ (nextreq2 ∧ X(lastreq)))

RG15 : G(hold ⇒ (¬nextreq1 ∧ ¬nextreq2))
RG16 : mutex( nextreq1, nextreq2 )

The priority arbiter in Figure 6.10 selects requests in the priority order,
namely G1-highest and G2-lowest. The specification for this module is given
below:

RA1 : G( nextreq1 ⇒ X finalreq1 )
RA2 : G( nextreq2 ⇒ X finalreq2 )
RA3 : G((¬nextreq1 ∧ ¬nextreq2 ∧ nextreq3) ⇒ X finalreq3)
RA4 : G((¬nextreq1 ∧ ¬nextreq2 ∧ nextreq4) ⇒ X finalreq4)
RA5 : mutex( finalreq1, . . . , finalreq4 )

The cache access logic in Figure 6.10 directly interacts with the cache and
works as follows. Whenever a cache miss occurrs in a read transfer, the cache
logic keeps the corresponding request pending in a wait buffer. bfull is an
internal signal which notifies the wait buffer full condition. It sends the hold
signal to the G1 and G2 arbiters whenever buffer full condition is high.

The following three properties are required in the RTL specification of the
cache access logic to repond correctly to device 1. We have similar properties
of the cache access logic to specify the reponses to the other requesting devices.

RC1 : G((finalreq1 ∧ h1) ⇒ X d1)
RC2 : G((finalreq1 ∧ w1 ∧ ¬h1) ⇒ X d1)
RC3 : G((finalreq1 ∧ ¬w1 ∧ ¬h1 ∧ ¬bfull) ⇒ X F d1)

For the buffer full condition, the following two properties are required.

RC4 : G( bfull ⇔ hold )
RC5 : G( bfull ⇒ X F ( ¬bfull ) )

Finally we have the mutual exclusion property for the ready signals.

RC6 : mutex( d1, d2, d3, d4 )

If we enumerate all the RTL properties noted above, then we have a collection
of 36 RTL properties that constitute the RTL specification. It may be noted
that we do not yet have the RTL implementation for the modules G1, G2,
A and C. The objectives of the intent coverage problem are (a) to check
whether these properties cover the architectural properties such as A1, and
(b) to determine the coverage gap if it exists.
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The answer to the primary coverage question for the architectural property
A1 is negative, that is, A1 is not implied by the RTL specification. In the
scenario when the higher priority request is a read operation that results in a
cache miss, A1 is not guaranteed by the RTL properties. A counter example
scenario that demonstrates this gap is as follows:

Device 1 has requested for a page read at time t, while device 2 and
device 3 are idle. At time t + 1, device 3 makes a request and device
1’s request results in a cache miss. Note that the hold signal is low in
both the cycles.

Therefore at time t + 2, device 1 does not get the corresponding page
ready signal but device 3’s request results in a cache hit and hence at
time t + 4 device 3 has its page ready signal available at the output.

We analyzed the specs with SpecMatcher. The tool enables us to find the
following coverage gap property (that is, the uncovered architectural intent):

AH : G( ( ( r1 ∧ ¬r2 ∧ ¬r3 )
∧ ( ( X( ¬w1 ) ∧ X( ¬h1 ) ) ∨ hold )

∧ X( r1 U r3 ) )
⇒ ( ¬d3 U d1 ) )

The property represents the set of scenarios that are not covered by the RTL
specification and is visually very similar to the property A1.

6.8 Concluding Remarks

If we study the growth in the size of digital circuits over the last decade, it
is quite astonishing that chips have been successfully taped out with so few
bugs. How do we do it?

The answer lies in methodology – the use of a very systematic approach
towards design and making the best use of existing CAD tools.

At the heart of this methodology is the designer’s ability to systematically
and recursively partition the design functionality into the functionality of the
component modules. This helps in coding the smaller blocks and verifying
them locally before intergrating them into the main design.

Creating the test environment for a design requires the same creativity
– the ability to partition the functionality of the test bench into the func-
tionalities of the components that constitute the environment of the design-
under-test. Not surprisingly, most recent test bench languages and verification
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methodologies (such as RVM of Synopsys and VMM of ARM/Synopsys) em-
phasize the need of a structured and hierarchical approach for designing test
benches.

Today, do we use a similar hierarchical approach for developing a formal
verification test plan? Possibly not. Most practitioners of FPV treat FPV as
a one-step approach – develop the formal specification and ask a FPV tool
to verify it over the given design. This approach limits the use of FPV to the
unit level beyond which it is currently infeasible.

Design intent coverage helps in enabling the notion of specification refine-
ment. It helps the validation engineer in developing a feasible formal verifi-
cation test plan. The validation engineer can start with the high level (archi-
tectural) specification and recursively decompose the specification into sets
of smaller properties over the components of the design. At each step, the
intent coverage tool enables her to verify whether (a) the decomposition is
correct, and (b) whether the decomposition is complete, that is, whether it
has sufficient properties to cover the original intent.

This is the missing formal validation flow that must run in parallel with
the design flow – that of using the design decomposition to perform the spec-
ification decomposition. This flow only uses the block structure of the imple-
mentation and is thereby scalable. The hierarchical decomposition terminates
at the unit level, where it is easy to design and easy to verify.

Design intent coverage is not a push-button solution. It relies on the val-
idation engineer’s ability to use the hierarchy of the design to partition the
specification and develop the properties at the lower levels of the design hier-
archy. Intent coverage only exposes the gaps and suggests the missing prop-
erties. It is up to the validation engineer to interpret the gaps and use the
information to strengthen the formal verification plan.

6.9 Bibliographic Notes

Several early literatures on compositional verification has studied the decom-
position of specifications into properties that describe the behavior of small
parts of the system [90, 64]. It is possible to show that if the system satisfies
each local property, and if the conjunction of the local properties implies the
overall specification, then the complete system must satisfy this specification
as well.

The notion of analyzing the coverage gap between temporal specifications
and the design intent coverage paradigm was developed through a collabora-
tion between our research group and Intel. The basic idea was first presented
in [14]. The algorithms for computing the coverage gap properties were out-
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lined in [44] and presented in details in [15]. Several additions to the basic
design intent coverage paradigm have been made recently [16, 46].



7

Test Generation Games

There are several important issues in the frontier between simulation and
FPV. Assuming that the future of design validation lies in the symbiotic co-
existence of these two technologies, it is important to investigate how each
may benefit the other. Our intention is to present some insights into this area,
but before we proceed to do so, we must study the recent developments in
simulation-based test environments.

The industry appears to be moving towards simulation frameworks that
employ a coverage driven random test generation approach, as opposed to
the traditional approach of writing directed tests. The traditional approach,
which is still prevalent in many chip design companies, is as follows:

1. The validation engineers identify the set of interesting behaviors where
they believe bugs may hide. The golden functional requirements in such
cases is sometimes refered to as the specification, and the interesting sce-
narios are called coverage points.

2. A test plan is developed to cover the set of interesting behaviors. The test
plan consists of a set of tests that together achieve the desired level of
coverage. The test plan is a document (say, in English).

3. Directed tests are written for each item of the test plan. For each test, the
validation engineer has to write a test bench to mimic the environment of
the design-under-test (DUT) and drive the appropriate stimuli to reach
the desired coverage points. In a complex design, the task of finding out
the sequence of stimulus that reaches a coverage point is often non-trivial
and requires careful planning and understanding of the design.

4. Simulation is performed for each of the directed tests.

For example, let us consider the task of verifying a master interface in the
ARM AMBA AHB protocol. The Bus architecture is shown in Fig 7.1. The
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Bus supports several different types of transfers – read and write transfers, sin-
gle and burst transfers, incremental bursts and bounded bursts, locked trans-
fers. It also supports split transfers and retry responses. It supports both types
of endianness. Since the master can initiate and participate in these different
types of transfers, a test plan for the master must cover many different cases.
In order to drive meaningful inputs into the module, a test environment for
the master must correctly mimic the behavior of the other components such
as the slave devices, the Bus arbiter, the bridge to the APB Bus, and other
contending master devices. The validation engineer must be aware of the pro-
tocol followed by the other components while developing a test for a given
master interface, which is a non-trivial task.
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Fig. 7.1. An Arm AMBA Architecture

As the design complexity increases, we face two problems, namely (a)
the number of directed tests required to cover all the interesting behaviors
grow alarmingly, and (b) the task of writing each directed test becomes more
complex, thereby requiring more time from the validation engineer.

7.1 Constrained Random Test Generation

As the design complexity keeps pace with Moore’s Law, the traditional ap-
proach of writing directed tests is loosing its relevance – it either requires too
much time, or it fails to achieve a meaningful level of coverage. This has paved
the way for randomized test environments.

If we use an unconstrained random test generation approach, then it be-
comes hard to guarantee that the test bench will drive valid input sequences.
For example, to verify a AMBA AHB master interface the test bench must
mimic a AHB compliant environment – one that drives valid AHB compliant
inputs during the course of a transaction. It is hard to guarantee this if we
randomly choose the values of the inputs in each cycle.



7.1 Constrained Random Test Generation 197

Therefore it is prudent to use randomization at the real choice points of
the environment. For example, there are several choice points for the test
environment of a AMBA AHB slave interface. We may randomly choose the
transfer type (read/write, single/burst, etc) and the master which initiates
the transfer. Once we have chosen the transfer type and the master, the test
bench initiates the transfer by imitating the transfer request from the master
in a protocol compliant manner. The length of the transfer, the values of the
address and data lines are the choice points during the transfer. None of these
choices are unconstrained. For example, to choose the given slave in a memory
mapped system, the values of the address lines have to be constrained so that
the address lies in the map of the device.

Monitoring the coverage is a very important component of the constrained
random verification approach. Since the tests are generated randomly, we must
know which behaviors have been covered. Recent test bench languages such
as the test bench language of SystemVerilog enables a validation engineer to
specify the coverage goal, it allows her to bias the random choice at choice
points by associating weights with the choices, and it allows her to monitor
the status of the coverage.

7.1.1 Layered Verification Methodologies

In the last few years, several EDA companies are promoting a structured hier-
archical methodology for developing the simulation test environment for com-
plex digital designs. These include the e-Reuse Methodology (eRM) of Verisity,
the Reference Verification Methodology (RVM) of Synopsys, and Verification
Methodology (VMM) of ARM and Synopsys. The focus of these methodologies
is in enabling the validation engineer to develop a set of functional models for
the components of a large design and then using these models in a constrained
random test generation environment.

Recent design and verification languages such as SystemVerilog and e sup-
port the style of verification suggested by these methodologies. SystemVerilog,
for example, is a combination of a design language (Verilog) and a test bench
language. The test bench language supports a large set of powerful constructs
that facilitate the development of behavioral models for the components of
a large design. For example, the SystemVerilog test bench language supports
fork-join constructs, synchronization constructs such as semaphores, commu-
nication constructs such as channels, and a fully object oriented design style.

How do the behavioral models help in building a randomized test environ-
ment? The test bench language supports features that enable the validation
engineer to call a randomizer to choose the values of signals under specified
constraints. The models of the components use this feature at each choice
point. The test bench instantiates those models that constitute the environ-
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ment of the DUT and handles the high-level choices (such as the choice of the
transaction type) randomly. The models randomly generate their responses in
a protocol compliant manner and this guarantees that the inputs driven into
the DUT are also protocol compliant.
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Fig. 7.2. A Layered Test Architecture

These ideas have been integrated into a systematic layered approach for
creating a test environment. The typical layers in a RVM or VM compliant
test architecture are shown in Fig 7.2. We briefly outline the meaning of these
layers in the context of a Bus protocol (say, AMBA AHB).

• Signal Layer. The sensitization of the DUT takes place in this layer. The
interfaces of the DUT with the test bench and the monitor are defined at
this layer.

• Command Layer. This layer drives the unit level transactions through
the DUT (using the signal layer). For example, typical transfer types in
AMBA AHB includes, idle, read, write, burst-read, and burst-write. The
command layer needs to be aware of the Bus protocol, and must drive the
transactions in a protocol compliant manner. This task becomes signifi-
cantly easier when the models of the components of the architecture are
used. For example, when we need to drive a write transfer to a slave DUT,
it makes our task significantly easier if we have the behavioral model of a
protocol compliant master to drive the transfer.

• Functional Layer. This layer creates sequences of transactions, and then
requests the command layer to drive each transaction in the appropriate
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sequence. Examples include, read followed by burst-write, and burst-write
followed by idle.

• Scenario Layer. Architectural scenarios are generated at this layer. For
example, consider the handling of an interrupt. An interrupt can happen
in many ways, and can be handled in many ways – each of these cases is
a potential test scenario. Other examples include DMA, cache flush, etc.
Each scenario consists of a sequence of transactions, which is handled by
the functional layer.

• Test Layer. The test cases are specified at the highest level of abstraction
in this layer. The contents of this layer is mostly application specific.

There is a notable difference between the communication in the signal
layer and that in the other layers. In the signal layer, we are actually sensi-
tizing the DUT through the interface. This is a real communication between
the DUT and its environment, which needs to be carried down into the hard-
ware. On the other hand, the communication between the higher layers model
commands being passed down from a higer layer to a lower layer, or cover-
age information being passed from the layer into the coverage monitor. These
communication channels help us in creating a layered test environment – the
channels themselves will not be present in the hardware.

Recent test bench languages such as SystemVerilog provide a communi-
cation primitive called channels for facilitating the communication between
the layers of the test bench. The validation engineer is expected to model all
communications between the layers using channels.

Where do the assertions fit into this architecture? Indeed, assertions are
needed everywhere. At the command layer, we need assertions to verify
whether the transactions are compliant with the Bus protocol. At the func-
tional layer, we need assertions to verify whether the pipelining between suc-
cessive transfers are being done correctly. At the higher layers, we need as-
sertions to verify whether in each scenario, the application specific properties
relevant to that scenario are being satisfied. In Fig 7.2, the assertions are
shown between the command layer and the functional layer because the as-
sertion IP for the AMBA protocol (which is application independent) resides
in these layers. Application specific assertions can off course be specified and
used at the higher layers of the architecture.

7.1.2 The Benefits

Writing the behavioral models for the components of a large design (and
validating them) requires a significant quantum of time. However, once the
models are complete, we are in an advantageous position. In order to verify
a given DUT, we can quickly construct a test bench by instantiating the
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models that constitute the environment of the DUT. After this, we begin the
simulation and no user intervention is required. Since the test bench generates
tests randomly, successive iterations of the test bench automatically sensitizes
different scenarios and automatically reaches different coverage points. As a
result, the test bench covers a large number of coverage points very quickly.
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Fig. 7.3. Coverage: Directed versus Randomized

Fig 7.3 shows a typical comparison of the coverage times between the tradi-
tional approach of writing directed tests and the new approach of constrained
random test generation.

In the traditional approach the coverage of behaviors starts right from the
beginning, since the simulation can begin as soon as the validation engineer
has developed a test. The slope of the curve depends on the manpower used
for writing the tests.

In the constrained randomized approach, simulation starts only after the
behavioral models for the components of the environment has been completed.
Therefore, there is an initial period when no coverage is achieved – this is the
model building phase. The length of this phase depends on the manpower used
for developing the models. Once the models are complete and the simulation
starts, we see a rapid growth in the coverage. The slope of this curve is dictated
by the speed of the simulation and the effectiveness of the randomization in
reaching the different coverage points. Significantly, the slope of this curve is
independent of the manpower used.

Typically the new approach overtakes the traditional approach in large
designs in terms of speed of coverage. However during the inception of this
approach in companies, validation teams are usually under tremendous pres-
sure in the model building phase since they do not have any coverage to show.
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7.1.3 The Limitations

What is the probability of a specific scenario being generated randomly? A sim-
ple analysis will show that the probability is the product of the probabilities of
making the right choices at the choice points that lead to the given scenario.
Therefore, if a corner case can be reached through a very special sequence of
choices, and the probability of picking the right choice is low in each step,
then the probability of coverage of the corner case may become quite low.

Let us consider an example. Let us say that a master device makes a Bus
request 10% of the time (that is, with a probability of 0.1). The Bus protocol
exhibits some special behavior when none of the masters are requesting – it
parks the grant on a default master. It also exhibits some special behavior
when all the masters are requesting – it sends a hold signal to the bridge
connecting to the low performance Bus. We want to cover both scenarios in a
system of 5 masters. What are the probabilities of reaching these two coverage
points randomly?

Our choice points here are the requesting status of the masters.

1. For the first case, the probability that a master is not requesting is 0.9.
Hence the probability that none of the masters are requesting is (0.9)5,
which is about 0.6. With this probability, it is quite likely that this corner
case will be covered.

2. For the second case, the probability that a master is requesting is 0.1, and
hence the probability that all of them are requesting is 0.00001, which is
very small. With this probability, it is much less likely that this corner
case will be covered, unless we run the simulation for a long time.

This is a standard problem in randomized testing – we reach a lot of
coverage points very fast, but it takes a lot of time to cover the corner cases
that have low probability of occurance. In other words the simulation tends
to get trapped in the common behaviors and fails to sensitize some of the
interesting uncommon behaviors.

How can we get around this problem? The most common approach is to
write directed tests for the special corner cases that were not covered by
randomized testing. While this seems to be the most logical thing to do,
it does take a significant amount of validation time, because the remaining
scenarios are difficult to conceive and finding the right tests to adequately
cover these cases is not straight forward. Recent research is attempting to
find automated solutions to the problem – the next section touches this topic.
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7.1.4 Dynamic Coverage Driven Verification

The intuitive idea being pursued by several researchers is to use the coverage
feedback dynamically to find the gap between the coverage goal (that is, what
needs to be covered) and the coverage status (that is, what has been covered)
and to automatically guide the test generator towards the gaps. The idea seems
to be applicable at all layers of the test architecture, and at various levels of
abstraction.
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Fig. 7.4. Scoreboard directed coverage

Recent constrained random test frameworks provide two key features to
implement the above idea. These are:

1. The notion of a scoreboard. A scoreboard keeps track of the coverage
points that have been hit during the simulation.

2. Dynamic modification of weights. It is possible to associate weights with
the different choices at each choice point. The randomzier uses these
weights to bias its selection. The weights (and therefore the selection prob-
ability) can be modified dynamically.

The above features enable the framework shown in Fig 7.4. A scoreboard
is maintained for the interesting coverage points. The feedback from the score-
board is used to re-distribute the weights on the choices at the random choice
points. The key challenge here is to decide how to compute the new weights
such that the remaining coverage points become more probable.
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7.2 Assertions Viewed as Coverage Points!

FPV cannot verify all the properties that we write. In fact, given the existing
state of affairs, FPV can only verify properties at the unit level, where the size
of the DUT is small. In the last chapter we presented the notion of design in-
tent coverage, which helps the validation engineer in her attempts to formulate
a FPV test plan that covers the system level (architectural level) properties
of a large design by verifying small local properties on the components of the
DUT.

Design intent coverage is an attractive option, and works well in many
cases, but not in all cases. Sometimes we have system level properties for
which it is not easy to find a covering set of component properties.

Dynamic assertion based verification is rapidly becoming popular because
it fills this void. It helps us to monitor the properties over the simulation run.
It flags the violations (and matches) and thereby helps us to debug the design.
The methodology does not have serious capacity limitations since we run the
assertion checkers over a simulation platform.

Transactor

Assertions

Scoreboard

DUT
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Fig. 7.5. Assertion Coverage

The main limitation of dynamic property verification is that the coverage
of the corner cases for which a property was written depends entirely on the
test generators ability to reach those corner cases by driving the appropriate
inputs into the DUT. If none of these corner cases are reached during simula-
tion, then the property remains unutilized, since we have not checked whether
the DUT satisfies the property in those corner cases.

In other words, an assertion is a concise specification of a set of corner
case behaviors. Therefore, we need to treat assertions as coverage points and
make sure that the simulation reaches those behaviors for which an assertion
has been written.
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One option for solving this problem is by writing directed tests to cover the
behaviors for which the property was written. There are at least two major
criticisms of this approach:

1. The property encodes the behaviors for which it was written. Having to
write the directed tests again to cover the same behaviors is (theoret-
ically) repitition of information, which ideally (that is, given the right
technology), should not be necessary.

2. A property can be triggered in complex ways. It is not easy for a validation
engineer to visualize all types of scenarios in which the property may
become relevant.

Our goal is to find an automated solution to this problem. Given an asser-
tion, we want to develop an automatic methodology for guiding the simulation
into those behaviors for which the assertion is relevant. The architecture of
the desired platform is shown in Fig 7.5. The main challenge is – How can we
automatically guide the simulation to cover the assertion? This is the focus of
this chapter.

7.3 Games with the Environment

Fundamentally, the problem of automatic test generation for covering asser-
tions may be formulated as a game between the DUT and its environment
(that is, the test generator). This is because of the fact that the test gener-
ator has no control over the behavior of the DUT. In other words, the DUT
is a black-box – we can drive inputs into it, but we can neither predict, nor
influence its behavior in any way.

Given an assertion, we can partition all possible behaviors of the DUT into
two sets – the set of behaviors for which the assertion is relevant and the set
of behaviors for which the assertion is not relevant. The assertion is vacuously
satisfied in the second set of behaviors. Therefore, validation is meaningful
with respect to the given assertion only if the simulation traces a run from
the first set.

The objective of the test generator in each cycle of the test generation game
is to determine the next set of inputs such that the simulation run traces a
behavior from the first set. Since the behavior of the DUT is unknown, we
assume that it is adversarial, that is, the DUT attempts to produce outputs
such that the simulation traces a behavior from the second set, and thereby
satisfies the property vacuously. The test generation algorithm should assume
that the DUT is adversarial in this sense. If on the other hand, the DUT
actually behaves in a friendly way, then we will reach the coverage goal faster.
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So far we have not formalized the notion of relevance of a run with respect
to a given assertion. We have two broad types of relevance, as explained in
the following subsections.

7.3.1 Vacuity Games

Let us consider the following properties for a 2-way round-robin arbiter having
request lines, r1 and r2, and grant lines, g1 and g2:

1. If none of the request lines are high, then in the next cycle both grant
lines should be low. We can write this property in SVA as:

property P1;
@ (posedge clk)
(!r1 && !r2) |− > ##1 !g1 && !g2 ;

endproperty

2. If both grant lines are low, and both request lines are high, then the arbiter
gives the grant to g1 in the next cycle. This may be written as:

property P2;
@ (posedge clk)
(r1 && r2 && !g1 && !g2) |− > ##1 g1 ;

endproperty

3. If r2 is high at time t then either g2 is asserted at time t + 1, or g2 is
asserted in t + 2 provided that r2 is kept high at t + 1. We may write this
as:

property P3;
@ (posedge clk)
r2 |− > ##1 (g2 or (!g2 && !r2)

or ((!g2 && r2) ##1 g2)) ;
endproperty

We explain our notion of vacuity through the above properties.

• The first property, P1, is relevant in only those scenarios where both re-
quest lines are low. In all other scenarios (that is, when r1 or r2 is high),
P1 is satsified vacuously because the DUT plays no part in satisfying the
property in this way.

In order to cover the property, P1, the test generator must drive both
request lines to low.
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• Let us consider the second property, P2. Obviously P2 is satisfied vacuously
in all scenarios where r1 or r2 is low.

Is it vacuously satisfied when both r1 and r2 are high, but g1 or g2 is high?
In this case, the antecedent of the implication is false, but the property is
satisfied non-vacuously. This is because the DUT played a role in falsifying
the antecedent.

The DUT can satisfy an implication property by satisfying the consequent
or by refuting the antecedent. In both cases the property is satisfied non-
vacuously, since the behavior of the DUT is responsible for the satisfaction.

In order to cover the property, P2, the test generator must drive both
request lines to high.

• The third property, P3, is vacuously satisfied at all times where r2 is low.
It is satisfied non-vacuously if r2 is high and the DUT asserts g2 in the
next cycle.

What if the DUT does not assert g2 in the next cycle? We have two cases,
namely (a) r2 is de-asserted in the next cycle, and (b) r2 remains asserted
in the next cycle. In the first case, the property is again satisfied vacuously.
In the second case, the property is satisfied (non-vacuously) if g2 is asserted
in the subsequent cycle.

What is the role of the test generator in this case? In order to cover P3, it
must drive the request line r2 to high and study the response of the DUT
in the next cycle. If the DUT asserts g2, then the test generator has a hit.
Otherwise, the DUT must drive r2 to high again, which is now guaranteed
to result in a non-vacuous match or fail.

The last case suggests that the test generator needs to be interactive. In other
words, the coverage of a temporal property may span over multiple cycles –
in each cycle, the test generator needs to study the response of DUT in order
to determine the non-vacuous inputs for the next cycle.

Let us now study the game between the DUT and its environment for
covering a given property, P. The execution of the initial-block of the DUT
is the first move of the DUT. If the initial state is sufficient to satify P, then
we have a hit. Otherwise, there must exist some assignment to the inputs in
the first cycle, such that P is not satisfied. The test generator must choose
one such assignment. We now simulate the DUT with that input and study
the response of the DUT (that is, the values of the non-inputs) in the next
cycle. If P is now satisfied, then we have a hit, otherwise we repeat the process
of test generation. At no point of time should the test generator generate an
assignment to the inputs for which the property is satisfied regardless of the
next response from the DUT.
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7.3.2 Realizability Games

In Chapter 4 we presented the notions of realizability and receptiveness. Both
of these concepts are important in the context of test generation.

Unreceptive specifications may create a debugging problem in dynamic
property verification. The reason (as outlined in Chapter 4) is as follows. With
unreceptive specifications, the failure of a property may take place several
cycles after the sensitization of a fault in the DUT. Worse still, a fault may
get masked before it is detected unless proper inputs are driven by the test
bench. In other words, the fault can be propagated through the cycles by an
intelligent choice of inputs until it refutes a property.

The reader is strongly urged to revisit Example 4.1 to refresh the notion
of receptiveness and the problems associated with unreceptive specifications.

As demonstrated by Example 4.1, when a fault occurs (that is, the DUT
makes a wrong move), the specification may become unrealizable but not
unsatisfiable. In other words, the property has not yet been refuted, but with
intelligent test generation we are guaranteed to drive the DUT to a state
where the property is refuted. This is a very important requirement, since our
end goal is to expose bugs.

Given an unrealizable specification, the goal of the test generator is to
drive the DUT to a state where the specification is refuted. This may happen
in a sequence of steps (with alternate moves between the DUT and the test
generator). In each step, the test generator needs to make sure that the inputs
generated by it does not make the specification realizable. This game between
the DUT and its environment will be called a realizability game.

When the DUT produces a fault that renders the specification unrealizable
(but not unsatisfiable), then we start a realizability game to drive the DUT
to a refuting state.

Why dont we simply report a failure when we find that the specification
has become unrealizable? The problem is in presentation of the bug. It is hard
to demonstrate succinctly why a specification is unrealizable. All counter-
example scenarios with respect to the unrealizable specification may not ac-
tually be present in the DUT. On the other hand, if we play the realizability
game then we can demonstrate a real counter-example after reaching the refu-
tation.
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7.4 Intelligent Test Generation for Property Coverage

We now formalize the approach for intelligent test generation1 when our goal
is to cover a given set of properties (that is, to cover the behaviors that
are relevant to these properties). We will present the methodology over LTL
specifications for ease of presentation.

Formally, we define a module J as an RTL design block having a set of
inputs I, a set of outputs O, an initial block Init, and a RTL description B.
The execution of the initial block produces the values of the output variables
at the beginning of the simulation.

Before we describe the formal procedure of intelligent test generation, we
define an X-pushed formula and an X-guarded formula.

Definition 7.1. [X-pushed formula: ]
A formula is said to be X-pushed if all the X operators in the formula are

pushed as far as possible to the left. �

Definition 7.2. [X-guarded formula: ]
A formula is said to be X-guarded if the corresponding X-pushed formula

starts with an X operator whose scope covers the whole formula. �

Example 7.3. Let us consider the temporal property

P = ( ( X p ) U ( X X q ) ) ∧ ( X F r )

The X-pushed form of P is:

PX = X ( ( p U ( X q ) ) ∧ ( F r ) )

Now P is a X-guarded formula because the corresponding X-pushed formula
PX starts with a X operator whose scope covers the whole formula. �

7.4.1 Dynamic Monitoring

The task of monitoring the truth of a given LTL property along a simulation
run works as follows (see Section 3.3 for details). If we are required to check
a LTL property, ϕ, from a given time step, t, we rewrite the LTL property as
a set of propositions over the signal values at time t and a set of X-guarded
LTL properties over the run starting from time t + 1. The rewriting rules are
standard and are reproduced from Section 3.3:
1 This notion of intelligent test generation was first presented in [13].
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Fϕ = ϕ ∨ XFϕ
Gϕ = ϕ ∧ XGϕ
p U q = q ∨ (p ∧ X(p U q))

The property checker reads the signal values from the simulation at time
t and substitutes these values on the rewritten properties and derives a new
temporal property that must hold on the run starting from time t + 1, by
dropping the leftmost X operator from each X-guarded term.

For example, to check the property p U (q U r) at time t, we rewrite it as:

(r ∨ (q ∧ X(q U r))) ∨ (p ∧ X(p U (q U r))

If the simulation at time t gives p = 0, q = 1, r = 0, then by substituting
these values, we obtain the property X(q U r). Therefore at time t + 1 we
need to check the property q U r. We repeat the same methodology on q U r
at time t + 1.

7.4.2 Online Test Generation

For automatic test generation, we may choose the values of the input signals
at each time step t while monitoring the property. The following definition is
useful for characterizing our goal.

Definition 7.4. [Vacuous input vector]
An input vector, Î, is vacuous at a given state on a run with respect to a

property, ϕ, if ϕ becomes true at that state on input Î regardless of the values
of the remaining variables. �

There are two goals of intelligent test generation:

1. To avoid the generation of vacuous input vectors, since these vectors do
not trigger the scenarios for which the property was created.

2. To verify whether the property ψ derived from the property ϕ by sub-
stituting the values of signals at time t is unrealizable. If so, the test
generator must drive tests to reach a refutation.

It may be noted that a non-vacuous input vector with respect to a conjunc-
tion of a set of properties Q may vacuously satisfy one or more members of
Q. The basic idea behind our approach is to treat each property separately, as
individual coverage points and generate tests targetting these coverage points.

The validation engineer may define her coverage points as a single property
or a combination of two or more properties. Our intelligent test generator
should generate tests targetting each coverage point in succession.
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7.4.3 Test Generation Algorithms

We will first present the test generation algorithms as a standalone procedure.
In the next section we will show how the test generation algorithms can be
embedded into a layered verification framework such as RVM or VM.

Procedure SimulateMain outlines our test generation algorithm for a mod-
ule J and a target property L. It calls procedure GenRefute when the module
makes a wrong move and calls GenStimulus in other cycles to produce non-
vacuous input vectors. In other words, the procedure GenRefute is called when
the specification becomes unrealizable in the presence of a fault – its role is to
return input vectors by playing the realizability game. Note that L can either
be a single property or a conjunction of one or more user-defined properties
depending on the coverage goal.

Algorithm 7.1 SimulateMain(module: J, property: L)

begin
Step 1: Set Ô = the output vector obtained after execution

of the initial block Init of J
Step 2: While (not end of simulation) begin

2.1: Rewrite L in terms of present state Boolean
propositions and X-guarded temporal properties

2.2: Substitute the values of the output variables from
Ô in the non X-guarded terms of L to obtain L̂

2.3: If L̂ = TRUE, return with success
2.4: If L̂ = FALSE, return with failure
2.5: If L̂ is unrealizable, then

Î = GenRefute(L̂)
else

Î = GenStimulus(L̂)
2.6: Obtain L′ from L̂ by substituting Î in the non

X-guarded terms of L̂ and dropping the left-
most X from each X-guarded temporal property

2.7: Simulate J with Î

2.8: Set Ô = the output vector obtained after simulation
2.9: Set L = L′

endWhile
end

EndAlgorithm
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Algorithm 7.2 Input Vector GenStimulus(property: L)

// L is a property over I and X-guarded terms over I
⋃

O
begin
Step 1: Rewrite L as a conjunction of clauses, where each clause

is a disjunction of Boolean formulas and X-guarded terms
Step 2: Set P = the Boolean formula obtained from L

after dropping the X-guarded terms
Step 3: If P is satisfiable

Set Î = a random input vector that refutes P
else

Set Î = any random input vector
Step 4: return Î
end
EndAlgorithm

Algorithm 7.3 Input Vector GenRefute(property: L)

begin
Step 1: Set Î = a random input vector
Step 2: For each input variable p ∈ I

2.1 Substitute p = 0 in the non X-guarded terms of L
2.2 If L remains unrealizable,

Set the pth bit of Î to 0;
else

Set the pth bit of Î to 1;
endFor

Step 3: return Î
end
EndAlgorithm

We explain the working of the algorithm over the case of Example 4.1.

Example 7.5. Recall the arbiter specification of Example 4.1. Initially, gd is
high, while g1 and g2 are low. Substituting the values of gd, g1 and g2, the
specification remains realizable but does not evaluate to true or false. Let us
assume P1 is taken as the first coverage point. We rewrite P1 as:

(¬r1 ∨ Xg1) ∧ XG(r1 ⇒ Xg1)

and call GenStimulus with this as the argument. GenStimulus returns a non-
vacuous input vector, say r1 = 1, r2 = 0.
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The DUT (arbiter) is simulated with this input vector. In response, the
DUT asserts g1, and control returns to Step 2 of SimulateMain, and a match
of P1 is found.

Suppose the test generator now targets the next coverage point, namely,
P2. Substituting the values of g1, g2 and gd obtained in the previous cycle,
the specification remains realizable, but does not evaluate to true or false.
GenStimulus is now called with:

(¬r2 ∨ Xg2 ∨ XXg2 ∨ XXXg2) ∧ XP2

which is the rewriting of P2. This produces the non-vacuous input vector r2

= 1 and r1 = 0 (r1 cannot be 1 due to assumption A1).

The DUT is simulated with this input vector and it asserts the output g2.
This time when the control returns to Step 2 and we substitute the value of
g2 in the specification, we find that the specification has become unrealizable,
since it now contains the unrealizable property:

Xgd ∧ ( r1 ⇒ Xg1 )

Therefore we call GenRefute. Evidently, for r1 = 1, the specification remains
unrealizable, and hence the vector r1 = 1, r2 = 0 is returned.

When the DUT is simulated with this input vector, it asserts g1, and a
refutation occurs on substitution of g1 due to the violation of P3. �

7.5 The Integrated Verification Flow

We have developed a prototype tool for intelligent test generation within
the layered test architecture proposed in RVM and VM. In our tool, the
specification is accepted in LTL. The functions GenStimulus and GenRefute
are implemented as oracles that can be called by the transactors through the
DirectC interface of SystemVerilog. We outline the broad mechanism for this
integration in this Section.

• The GenStimulus and GenRefute procedures are implemented in the gen-
erator layer.

• The monitor block samples the output values from the DUT at each sim-
ulation clock (Step 2.8 of SimulateMain).

• The coverage block takes a property L and does the following:

1. It rewrites L in terms of present state Boolean propositions and X-
guarded temporal properties (Step 2.1 of SimulateMain).
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2. It takes the current state of the DUT from the monitor block through
the associated channel (Step 2.8 of SimulateMain).

3. It substitutes the values of the output variables from Ô in the non
X-guarded terms of L to obtain L̂ (Step 2.2 of SimulateMain).

4. If L̂ = TRUE, we return with success (Step 2.3 of SimulateMain).

5. If L̂ = FALSE, we return with failure (Step 2.4 of SimulateMain).

6. Inform the realizability of the property to the generator layer through
the respective channel (Step 2.5 of SimulateMain).

7. It waits for the current input vector (driven to the DUT by the Driver)
at the input channel from the generator.

8. It obtains L′ from L̂ by substituting Î in the non X-guarded terms of L̂
and dropping the leftmost X from each X-guarded temporal property
(Step 2.6 of SimulateMain).

• The generator block waits at the input channel from the coverage block.
When it gets a transaction containing the realizability information of the
current property, it does the following:

1. If the property L is unrealizable, it provides the Driver an input
through GenRefute procedure (Step 2.5, part 1 of SimulateMain).

2. If the property L is realizable, it provides the Driver an input through
GenStimulus procedure (Step 2.5, part 2 of SimulateMain).

• The Driver waits for the input vector at the input channel from the gen-
erator layer. When it gets input vector Î, it sends it to the coverage block
through an output channel.

• It drives the DUT J with Î (Step 2.7 of SimulateMain).

We used this methodology on several verification IPs for standard Bus
protocols. The test generation algorithms helped us to reach several complex
coverage points in significantly less time as compared to a coverage driven
constrained random verification approach.

For example, consider the following property for a PLB Master device in
the IBM CoreConnect protocol:

The PLB Master should assert ReadBurst signal for the secondary
acknowledged burst read transfer in the cycle following the receipt of
ReadBurstTerm from the Slave device for the on-going primary burst
read transfer.



214 7 Test Generation Games

The formal property (in LTL) is:

ψ: G(((ReadBurst ∧ PAV ∧ S Ack) ∧ X(ReadBurst ∧ SAV ∧
S Ack) ∧ XX (ReadBurstTerm)) ⇒ XXX(ReadBurst))

It was hard to reach the behaviors covered by this property using the usual
constrained random test generation suite. On using the intelligent test gener-
ation approach (with vacuity games), we were able to reach these behaviors
remarkably faster.

7.6 Concluding Remarks

Several questions may come up while considering the utility of the methodol-
ogy presented in this chapter.

• Is it practical to go for property coverage using vacuity games right from
the beginning of simulation?

• Should we target test generation for one property at a time, or a collection
of properties at a time?

• Is it practical to invoke a realizability checker in every simulation step?
Will it degrade simulation performance?

We have some of the answers, but we believe that many more issues will come
up when intelligent test generation is brought into practice. Here are a few
thoughts on the above questions.

We believe that test generation for property coverage should be started at
a time when the constrained random test engine appears to be slowing down
in terms of covering new scenarios. This means that most of the common
scenarios have been covered and only rare corner case scenarios are left out.
At this stage of the simulation we should check the scoreboard to identify
those properties for which the coverage is low. Only these properties should
be targetted by the intelligent test generator. Initial results show that this
gives significant coverage gains.

It is important to note that the structure of the test bench is not changed
when we use intelligent test generation. Instead of invoking the randomizer
at the choice points for the input signals, we call GenStimulus to return a
random non-vacuous input vector. The rest of the test bench remains exactly
as before.

A realizability check is expensive, particularly when the specification is
large. It is therefore not practical to invoke a realizability check on the spec-
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ification at every step of the simulation. However in practice, when a fault
occurs, typically a small subset of the properties become unrealizable, and
as a consequence the whole specification becomes unrealizable. A relatively
experienced practitioner of FPV can identify the unreceptive parts of the spec-
ification and the properties that are related to the unreceptive properties. It is
practical to use a realizability checker on such small collections of properties.

We can eliminate the problem with unreceptive specifications altogether
by introducing additional properties to make the specification receptive. This
is theoretically possible. It remains to be seen whether it is feasible in practice.

7.7 Bibliographic Notes

A broad span of research from early work on algebraic specifications [58] to
more recent work such as [100] addresses the problem of relating tests to
formal specifications.

One of the main research directions on this topic is on the use of special
constructs for characterizing the input space. In [39], Clarke et. al. have pro-
posed a methodology which uses a statically-built BDD to represent the entire
input constraint logic. Shimizu et. al. [97] describe an approach in which the
same formal description is used for collecting coverage information and de-
riving simulation inputs. There have been many efforts based on constraint
solving for test generation as reported in [68].

Offline monitoring for test generation is another another notable approach.
In [104], Tasiran et. al. use the following approach. Simulation steps are trans-
lated (offline) to protocol states transitions using a refinement map and then
verified against the specification using a model checker. On the specification
state space, the model checker collects coverage information, which is used
for future test generation. Another approach is proposed in [65], where the
authors present a methodology for automatically determining the appropriate
vector constraints, based on the analysis of both the design and the property
being checked.

ATPG based techniques have been used in [2, 20] for automatic test gen-
eration. In these approaches, the formal properties are synthesized as non-
deterministic state machines and ATPG is targeted towards faults represent-
ing a discrepancy between the implementation and the state machine repre-
senting the specification.

In counterexample guided test generation, the model checker is used as an
oracle to compute the expected outputs and the counterexamples it generates
are used as test sequences. The counterexamples contain both inputs and
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expected values of outputs and so can automatically be converted to test
cases [8, 59]. In another work, Callahan, Schneider, and Easterbrook have
presented a methodology using the SPIN model checker to generate tests that
cover each block in a certain partitioning of the input domain [29].

The layered and reusable test bench development approach has been
adopted in several different verification methodologies. These include RVM [95]
of Synopsys, VMM [19] of Arm/Synopsys, and eRM [49] of Verisity.

The IBM CoreConnect protocol specs can be found in [70].
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A Roadmap for Formal Property Verification

The benefits of FPV has been established quite emphatically in the last
decade. Researchers have analyzed several historically significant failures and
have shown that the use of FPV could have detected the bug in the design.
Recent practitioners of FPV have been able to uncover interesting flaws in
the specifications of complex protocols and intricate bugs in live designs.

Yet, the penetration of FPV into the validation flows of most chip design
companies is low. Why?

There are both technical and logistic reasons. Design managers are often
reluctant to use FPV since the demonstration of its value requires an upfront
investment (in time and manpower), and there is no established method for
analyzing the gain in productivity as a function of this investment. Moreover,
trained manpower in FPV is scarce – as a result there is a (false) perception
that FPV is difficult to use, and a very real perception that the technology
does not scale well.

We believe that the biggest hindering factor in adopting FPV is in un-
derstanding how the technology glues with the rest of the validation flow. In
other words, the main challenge is in standardizing the creation of verifica-
tion plans that integrate simulation and FPV. This is the main puzzle that
we have to solve in the years to come.

The puzzle has many pieces. Off course the core model checking technology
is at the heart of the problem, but (given its theoretical limitations) it is
unlikely to solve the whole puzzle. If it could, then we would not need to glue
this technology with traditional simulation.

In this book we have studied some of the other pieces of the puzzle. These
include:
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1. Specification refinement. In Chapter 6 we studied the requirement to cre-
ate a specification refinement flow parallel to the design flow. Just as we
refine the design in steps by decomposing its functionality into that of its
blocks and adding level specific details, we must refine the formal specifica-
tion – starting from the architectural specification, down to the block level
specifications, and finally down to the specifications of unit level modules.
Formal methods of design intent coverage (presented in Chapter 6) enable
the validation engineer to establish that the refined specification at a level
always covers the golden behavior of the higher levels.

2. FPV coverage. Formal verification coverage is one of the most important
pieces of our puzzle. It helps us to formally establish the coverage of a
FPV test plan. The gaps in FPV coverage must be filled by adding new
properties or by reaching the missing behaviors through simulation. FPV
coverage is a relatively new area, and most validation engineers do not
understand how FPV coverage can be related to functional coverage as
targeted by a simulation test plan. We studied some of the advances in
FPV coverage in Chapter 5.

3. Property guided simulation. Formal specification languages enable the val-
idation engineer to express really complex corner case behaviors in a suc-
cinct way. The widely acclaimed benefit of FPV is in checking these prop-
erties, since it is extremely hard to hit such corner cases in simulation.
What should we do if FPV runs into capacity issues for such properties?
In Chapter 7, we presented some formal methods for using the property
itself to guide the simulation into the corner cases.

The core technology behind all of the above three pieces is one of checking (and
maintaining) consistency in formal property specifications. Formal methods
for consistency checking in formal specifications were presented in Chapter 4.

The objective of this chapter is twofold – (a) to fit these pieces into an
intergrated validation flow, and (b) to touch upon some of the missing pieces
that will no doubt assume significance in the years to follow.

8.1 Simulation-based Validation Flow

Let us first study the traditional design flow adopted by most chip design
companies for large digital designs. Fig 8.1 shows the typical stages of the
design flow. There are two broad parts in the validation flow, namely:

1. Design Intent Verification. At this stage, we want to decide what we want
to build. At this stage, the desired functionality of the chip is known, but
we do not know how to achieve the desired functionality. At this stage, the
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micro-architecture of the chip is decided, and we want to verify whether
the architecture will indeed achieve the desired functionality.

2. Implementation Verification. Once the architecture of the chip is decided,
the actual implementation of the chip begins. This starts with writing
the RTL, followed by the use of synthesis tools to develop the gate level
netlist, layout and mask.

Simulation is predominantly used in two places in this flow, namely, to verify
the architectural model during design intent verification, and to verify the RTL
during implementation verification. At the lower levels of the design flow (that
is, gate level and below) extensive simulation is not feasible, except in pockets.
For example, transistor level simulation is done for cell characterization, but
not for larger circuits (usually).

Behavioral
Simulation

RTL Simulation

Specifications

Microarchitecture

RTL Specs

RTL

Gate netlist

Layout

Design Intent Verification

Implementation Verification

Design Flow

Fig. 8.1. Design and Simulation

The architectural model is typically written at a very high level of abstrac-
tion, and in a high level language. Verification at this stage is conceptually
challenging, but simulation is not computationally intensive.

The RTL is typically written in a HDL such as Verilog or VHDL. RTL
simulation accounts for nearly 70% of the design cycle time of large digital
chips. This simulation typically takes place in several stages, namely, unit
level validation for individual modules, block level validation for collections
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of modules, and system level validation for the integrated design. In a large
chip design company, the unit level modules may be designed across the globe
in different design centers. Design integration and system level verification is
typically done in one place.

As an example of the complexities of system level verification, consider the
verification of the RTL of a 64-bit processor. Typically, the company will check
whether the processor can successfully load an operating system and execute
a set of computationally intensive applications before it tapes out the chip.
During system level verification, the RTL of the processor will be simulated
with the complete stack consisting of the operating system and the benchmark
applications. Not surprisingly, simulation runs into months.

One of the most glaring gaps in the flow shown in Fig 8.1 is that most
chip design companies pass only an English document from the design intent
creation phase to the implementation phase. In other words, the RTL designer
is typically provided with a specification document, and nothing else.

Misinterpretation of the specification document is one of the major sources
of logical bugs in the design. The unit level designer does not believe that a
bug exists in her design, since the module matches her interpretation of the
specification. After integrating all the modules we find that the design does
not match the architectural specification. Debugging shows that there has
been a mistake in interpreting the specification, which, more often than not
is a result of ambiguous or incomplete specifications. For large chip designs,
detecting an architectural violation at this stage of the design flow is really
bad news.

Recent design languages are attempting to overcome this problem by en-
abling the microarchitect and the RTL designer to use the same language. In
other words, languages such as System Verilog, SystemC, and Bluespec Ver-
ilog attempt to provide abstract modeling capabilities, while retaining all the
features of a hardware description language. Several companies also advocate
the synthesis of a design directly from an abstract model – it may be quite a
while before such frameworks become practical for complex designs.

Fig 8.2 shows the key components in simulation based validation. The test
plan is hierarchical in nature – we have unit level tests, block level tests, and
system level tests. It may be recalled that in Section 7.1.1 we outlined the
notion of layered test bench architectures. Using a structured and layered test
bench architecture appears to be the key to design validation.

There is a notable issue here, which will surface when we begin to sketch
the formal verification flow.

1. The design is planned top-down. The design is conceived as a collection of
communicating blocks. Each block is conceived as a collection of modules.
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Fig. 8.2. RTL Simulation

This is done recursively, until we have modules of limited functionality
(unit modules) that can be coded directly.

2. Verification is done bottom-up. We first validate the unit modules. Then
we stitch them into the RTL block and validate the block. In the last step,
we validate the whole integrated design.

Therefore, though the architectural functionality is decided first, we are
able to verify it at the very end, when all RTL modules have been developed.
This is possibly the largest cycle in the design and validation flow.

8.2 Formal Verification Flow

Where in the design flow should we start writing formal properties? Ideally
the answer should be – at the point where we define the design functionality.
Unfortunately, this is not the practice. Today we write properties only where
we can verify them. This style is largely the outcome of FPV tools having
limited capacity.

Fig 8.3 shows the typical stages where FPV may be used. The use of FPV
for design intent verification is a new phenomenon. Only recently architects
are appreciating the benefits of expressing the design intent formally. Re-
cent property specification languages have facilitated the task of developing a
formal architectural specification of a design. Though the notion of formal ver-
ification of architectural models is a new phenemenon in chip designs, similar
practices have existed in other areas such as automotive control and fly-by-
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wire systems, where formal specifications of key control laws are verified on
abstract models of the machine design before building the machine.

Specifications

Microarchitecture

RTL Specs

RTL

Gate netlist

Layout

Design Flow

property verification
Architectural

RTL property
verification

Equivalence checking

Design Intent Verification

Implementation Verification

Fig. 8.3. Design and Formal Verification

Most of the existing applications of FPV are on RTL designs. The use of
FPV is very limited below the RTL – typically formal equivalence checking is
favoured at these levels.

There is a major semantic difference between formal property verification
and formal equivalence checking. Formal property verification is a language
containment problem. In simple terms, it is possible to have several different
implementations of a design – all of which satisfy a given set of properties.
These implementations may not be logically equivalent (that is, they may
not implement the same Boolean logic), but each of them is an acceptable
implementation of the formal property specification. Equivalence checking, on
the other hand, requires that the golden model and the given implementation
are logically equivalent.

The RTL defines the logical functionality of the design. This logic does
not change when we synthesize the RTL into a gate level netlist. It also does
not change when we translate the gate level netlist into a transistor level
netlist. We can therefore use formal equivalence checking at these levels – to
verify whether the gate level circuit is equivalent to the RTL, and whether
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the transistor level circuit is equivalent to the gate level. Today we have an
arsenal of formal equivalence checking tools.

RTL Specs Design

FSM extractionProperties

Model Checking

Debug
Property bug Design bug

Fig. 8.4. RTL Formal Property Verification

Fig 8.4 shows the typical flow of RTL FPV. The interesting feature in this
flow is the existence of the two feedback arcs, one for property bugs and the
other for design bugs. Just as the designer may interpret the design specs in
an incorrect way, the validation engineer may also interpret the design specs
in an incorrect way. As long as both do not interpret the specs in the same
incorrect way, FPV will find an inconsistency.

What kinds of bugs do we find using FPV today? We may categorize them
as follows.

1. Bugs found due to schedule advantage. Typically FPV is used before sim-
ulation. Therefore quite a few bugs found by FPV would also have been
found during simulation.

2. Hole in simulation coverage. Often FPV finds bugs that are not covered
by the simulation because the test plan has gaps. Besides exposing the
fault, such bugs also enable the validation engineer to strenghten the test
plan.

3. Difficult corner case bugs. Some bugs are very hard to hit through simu-
lation. FPV can uncover such bugs because it validates the formal spec-
ification exhaustively on the design. Discovering such bugs justify the
investment made towards building a formal verification test plan.

4. Performance bugs. Functionality is not all about logical correctness. To-
day, performance is a critical component of functionality. It is hard to
evaluate worst case performance through simulation, since we need to
evaluate all possible behaviors in order to determine the worst case. FPV,
by virtue of its exhaustive nature can be used to verify performance pa-
rameters naturally.
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5. Impossible bugs. Sometimes FPV finds bugs at the block level that are
not real in the context of the design as a whole. In other words, only
some specific inputs to the block sensitizes the bug, and these inputs will
never be driven into the block by other blocks in the design. Nevertheless
finding such bugs is important, since the block may be reused in some
other design where some of the offending inputs may be driven into the
block.

In the previous section we had noted that today the bridge between design
intent verification and RTL implementation is the specification document, and
that this gap is one of the major sources of logical bugs in the design. Formal
properties can bridge this divide, provided that we express the architectural
intent as formal properties and then carry these properties right down the
design validation flow.

8.3 The Three Pillars

We believe that the roadmap for design verification will be around three key
technologies (Fig 8.5) – the core FPV (model checking) techniques, the tradi-
tional simulation techniques, and specification refinement techniques.

Simulation Checking
Specification
Refinement

Model

Fig. 8.5. The three key technologies

The important issue here is to figure out the way in which these three
technologies will gel to achieve our goal, namely, design validation. Simulation
and model checking have been extensively studied over the last couple of
decades. Specification refinement is the new methodology that promises to
integrate simulation and FPV into a unified validation flow.

The current state of the technology is such that we know what we want
to verify, and can also specify the verification requirement formally, but none
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of the two main technologies (simulation and model checking) enable us to
perform this verification adequately. Why?

Microarchitectural
Specs

This is what
we want to verify

?

Fig. 8.6. What we want to do

Fig 8.6 shows what we want to do. The notable issues in this flow are as
follows.

1. At the beginning of the design cycle, we start with the micro-architectural
specification of the design. Today we have the language support to for-
mally express the key features of the specification.

2. The design passes through several levels of abstraction. We never write
a single monolithic Verilog code for the whole design. Rather, the design
architect conceives a set of abstract blocks interconnected through some
simple glue logic, that together achieves the functionality of the design.
Large functional blocks are similarly decomposed into smaller blocks. This
process of design refinement continues until the functionality of each block
is simple enough to be coded as a single (unit level) module. In each step
of refinement, the designer makes implementation specific choices. The
last level, where we have coded all the unit level modules and intergrated
them into the design is our RTL implementation.

This approach has been followed by generations of designers, because it
follows the classical notion of divide-and-conquer, which is one of the main
methods by which human beings solve complex problems.
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The main problem in this approach is that we are not able to verify
whether the design refinement steps are correct. Divide and conquer is a
sound approach only when the divide is done correctly.

3. We want to verify whether the RTL implementation satisfies the microar-
chitectural specification. Current validation technology falls short of this
objective, because the implementation is too big. FPV tools cannot han-
dle this capacity. It is also not possible to achieve reasonable simulation
coverage for large designs in feasible time.

Therefore, though we have the language support to write micro-architectural
properties, this is not done in practice, since we do not have the tools to verify
these properties on the implementation.

Microarchitectural
Specs

?

?

?

?

?
?
?

?
RTL Specs

This is what
FPV allows us

Fig. 8.7. What we do

Fig 8.7 shows what we do as a stop gap solution today. We write formal
properties over individual modules and verify them locally using our FPV
tools.

Is there any productivity gain in doing this? The answer is yes. When
the module size is small, FPV tools can handle them easily and can verify
them with almost no user intervention. This is a big advantage, since the task
of achieving a similar degree of confidence through simulation can require
thousands of test vectors. Moreover, many practitioners of FPV have been
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able to dig out really complex bugs at this level – bugs that would be hard to
hit through simulation.

But this does not solve the main problem. By verifying local properties
on individual modules, we have not established that the design as a whole
satisfies the microarchitectural specification. This is because we have not es-
tablished any link between these local properties and the micro-architectural
specification.
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Fig. 8.8. The Specification Refinement Flow

Specification refinement provides this missing link. The basic idea is intu-
itive and simple. Just as we decompose the design functionality into that of its
components, we must decompose the formal microarchitectural specification
into the formal specification of the components.

Is this always possible? Theoretically, yes. If we can achieve the function-
ality of a module, M, through a set of component modules, M1, . . . ,Mk, then
it should be possible to theoretically establish that the formal functionality
of M1, . . . ,Mk (manifested through the formal specifications for M1, . . . ,Mk)
achieves the formal functionality of M.

At each step of specification refinement, we need to make sure that the
specifications of the components of M together cover the functionality of M,
that is, the new specification does not admit any behavior that is invalid with
respect to the original specification. The converse is not necessarily true. Since
new level specific design constraints are added into the design during design
refinement, it is quite possible that the new specification does not admit some



228 8 A Roadmap for Formal Property Verification

behaviors that were acceptable to the original specification. The design intent
coverage method presented in Chapter 6 enables the validation engineer to
check the validity of each specification refinement step, and to plug the gaps
in the new specification.

There are many advantages of this approach:

1. The specification refinement flow is scalable, since we work only with
specifications.

2. It helps the validation engineer to prove that the decomposition of the
design is correct. Moreover, since this proof works only on the specs, we
can do it before we invest in writing the RTL of the modules.

3. It facilitates reuse. In future design IPs will come with verification IPs that
specify the properties that are guaranteed by the design IP. Such prop-
erties can be directly used in the specification refinement proof (through
design intent coverage).

4. It systematically allows the development of the formal RTL specs of the
unit level modules, ensuring at each step that these specs together cover
the micro-architectural specs.

5. The specs at each level act as the coverage goal for the lower levels. This
helps us in deciding whether we have written enough properties at a given
level.

Specification refinement is actually a formal way of developing a formal
verification test plan. The target of the test plan is to cover the micro-
architectural specification through local properties over small modules (ones
that can be handled by existing FPV tools).

Does specification refinement solve all our problems? In reality, no. This
is because specification refinement is easier said than done. Given a micro-
architectural property over a design, M, it is conceptually hard to find the set
of properties over the components of M that can together cover the micro-
architectural property. There are two issues here:

1. The property specification language may not be expressive enough to spec-
ify the set of properties that cover the architectural property. This is rarely
the case, since the new property specification languages are very powerful
– perhaps more powerful than they need to be.

2. The validation engineer is unable to come up with the desired set of prop-
erties. This will be a real problem during the inception of FPV in a com-
pany, but will reduce considerably with the experience of the validation
engineer in handling complex specifications. The support received from



8.3 The Three Pillars 229

the intent coverage tool (which points out the gaps) will play a significant
role here.

Specification refinement provides a formal mechanism to scale FPV technology
by using human ability to decompose functional specifications.

There are many missing pieces in the validation flow consisting of simula-
tion, model checking and specification refinement. We will now look into these
pieces.

8.3.1 What’s Between Simulation and Model Checking?

The gap between simulation and model checking has been extensively studied
in the last decade. This research has led to the development of several hybrid
techniques. Broadly, these methods can be classified into two heads:

1. Formal property verification aided by simulation

2. Simulation aided by formal property verification

There has been a lot of research on each of the above. We present a flavor of
some of the interesting ideas that have been productized in some of the recent
tools.

FPV Aided by Simulation

The main bottleneck of FPV is in its space complexity. If we can fit the state
machine of the implementation in memory, then FPV works well. Otherwise
it runs into capacity issues.

This limitation has encouraged many researchers to study the task of creat-
ing abstractions of the implementation. Some abstractions preserve the truth
of properties in given languages. For example bisimulation equivalence ab-
stractions preserve most temporal languages, and stuttering equivalence ab-
stractions preserve untimed temporal logics without the X operator. These
abstractions are safe – if our property fails on the abstraction, then it is guar-
anteed to fail in the implementation, and vice versa.

Safe abstractions do not always give us the desired reduction in space –
they are often too big. It is possible to create much smaller abstractions, but
they may not preserve the truth of all the properties in the specification. In
such cases two things may happen:
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Fig. 8.9. FPV aided by simulation

1. A property evaluates to true in the abstract model, but is actually false
in the implementation. This means that a bug escapes detection, and this
defeats the whole purpose of formal property verification.

2. A property evaluates to false in the abstract model, but is actually true in
the implementation. This means that our abstract model produces false
counter-examples – ones that do not actually exist in the implementation.

The first is obviously the worse among the two. Therefore, abstractions are
made in such a way that the first never happens. In other words, if the abstract
model satisfies the specification, then the implementation is guaranteed to
satisfy the specification.

How do we verify the soundness of a counter-example? This is where we
use simulation (Fig 8.9). We want to verify whether the counter-example
trace produced by the model checker from the abstract model is real, that
is, whether we can reproduce the counter-example in the implementation. We
perform this test by simulating the implementation using the valuations of the
input signals in the counter-example trace. If the simulation reproduces the
counter-example, then we have indeed found a bug. This method is popularly
known as counter-example guided abstraction refinement [40].

Simulation Aided by FPV

Typically companies prefer to use FPV before simulation. One common ques-
tion that is often heard is – does FPV help in reducing my simulation time in
any way?

The answer is quite intricate. Many companies view FPV as a technology
for uncovering difficult corner case bugs. They do not expect FPV to influence
simulation effort – thereby, they prefer to run the entire simulation anyway.
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The question is therefore heard more often in companies that are in the
process of adopting formal verification into their validation flow, and are hes-
itant to invest in the additional time and manpower. For them, there are two
answers to this question.

1. Within its capacity limitations, FPV runs substantially faster than simu-
lation. Therefore the common bugs are uncovered quickly, and the time to
verify the fix is also less. This reduces the number of times that we need
to repeat the simulation.

2. Test plan coverage by FPV will become a reality, once the test plan struc-
ture becomes rigid.

Some of the leading chip design companies use languages having very limited
expressibility for specifying their test plan. These specifications are used for
automatic generation of the tests (and the test bench). It is possible to check
whether these semi-formal specifications are covered by a given set of formal
properties. We believe that in future it will be possible for a validation engineer
to reduce the number of simulation tests by FPV.

In Chapter 7 we presented a methodology for using formal methods for
intelligent test generation. We believe that approaches like this will help us
to guide the simulation so that we achieve higher coverage of the interesting
behaviors in less time.

8.3.2 What’s between Intent Coverage and Model Checking?

High level verification is all about comparing two entities – a specification and
an implementation. Typically there can be many implementations that realize
a given specification. The verification goal is to determine whether the given
implementation is one among these.

In formal property verification, the specification consists of a set of tem-
poral properties. The power of property specification languages enable us to
specify formal properties at any level of the design hierarchy.

What is the implementation? FPV tools typically accept RTL code as the
implementation. Is RTL code the only way to define the implementation?

The answer is, no. RTL code is too low level, and therefore too big. FPV
tools are unlikely to be able to handle large designs if the implementation is
RTL code.

Design intent coverage is also a form of verification, where both the spec-
ification and implementation are sets of formal properties – only the imple-
mentation is a more detailed set of properties. In other words, our implemen-
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tation here is at a more abstract level than RTL code – it is smaller in size
and thereby more amenable to formal analysis.

 RTL

 RTL

 RTL

 RTL

Specs

Specs

Specs

Specs

Specification

Specification

Specification

Implementation

Implementation

Implementation

Intent Coverage

Model Checking

What’s this?

Specs

Fig. 8.10. Intent Coverage and Model Checking

If we are given the architecture of a design and the formal specification
of the design, then model checking and design intent coverage represent the
two ends of a spectrum (Fig 8.10). For model checking we need the RTL code
for each block in the architecture. For design intent coverage we need formal
property specifications for each block in the architecture. In both cases, the
reference is the architectural specification spanning all the blocks.

What lies between design intent coverage and model checking?

In practice validation engineers will have to explore this gap because:

1. Model checking alone will not work due to capacity limitations

2. Design intent coverage alone will not work, since we will always have
some modules whose functionality cannot be adequately captured through
formal properties.

Therefore in order to prove an architectural property over a design, we will
have to use a combination of design intent coverage and model checking.
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The basic idea is as follows. We need to be able to handle RTL blocks in
the design intent coverage proof. How can we do this?

1. We may extract the relevant properties from the given RTL blocks, which,
along with the RTL properties of the other blocks can be used to establish
an intent coverage proof of coverage of the architectural specification.

2. We may find the gap between the architectural specification and the RTL
specification and then attempt to prove the properties representing the
gap on the RTL components (using model checking).

A recent paper from our group [46] presents more details on these approaches.

It is important to understand where the competetive advantage lies. If we
allow too many RTL blocks into the intent coverage approach, then we will
end up with the same capacity issues as in model checking. Therefore at the
higher levels of the design hierarchy, we should persuade the validation engi-
neers to express the key functionality of the blocks through abstract formal
properties. Ideally, at the highest level, only the glue logic used to interconnect
the architectural blocks should be in RTL, and all the blocks should be de-
scribed through properties. As we go down the design hierarchy, we will have
smaller modules to deal with – ones that are amenable to model checking and
also amenable to the hybrid approach outlined above.

8.3.3 What’s between Intent Coverage and Simulation?

We have seen that the intent coverage methodology helps us in setting up a
formal verification test plan for the RTL design. We have also studied some of
the links between simulation and FPV. Is there any direct link between intent
coverage and simulation?

We do not yet have a good answer to this question. We do have some
preliminary results that may set up a bridge between the two technologies in
future. We briefly outline these methods.

1. The specifications of most modules in a design are assume-guarantee in
nature. In assume-guarantee properties we expect certain behaviors from
the DUT under specific assumptions on the inputs. Simulation targets the
input scenarios that satisfy the assumptions. Typically a randomized test
bench may be viewed as a non-deterministic state machine that generates
inputs for the DUT under given constraints. Languages such as SVA allow
the designer to specify constraints on the input signals at various states
of the test bench – at a given state, the randomizer is constrained by the
user specified constraints at that state.
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Intent coverage can act as the link between FPV and simulation by con-
straining the test bench to those scenarios that are not covered through
FPV. Recall that the primary goal of intent coverage is to show the valida-
tion engineer the gap between the architectural specification and the RTL
specification consisting of the local properties of the component modules.

The key technology here is to extract the assume part from the assume-
guarantee specification representing the coverage gap between the archi-
tectural specs and RTL specs. This assume part is then mapped into
constraints that further constrain the randomized test bench, thereby con-
fining the search for a bug into those parts of the input space that were
not covered by FPV. A recent paper from our research group [16] gives
more details on this approach.

2. We have presented the intent coverage methodology as a means of com-
paring specifications at two different layers of the design hierarchy. Intent
coverage can also be used between assume-guarantee specifications at a
given layer of the design.

For example, if module C receives its inputs from module A and module B,
then the guarantee part of the specifications of A and B should satisfy the
assume part of the specification of C. If not, then A and B can potentially
drive such inputs into C that do not satisfy its assumptions on its inputs.
Therefore, it becomes imperative to verify whether module C satisfies
its guarantee also for such inputs. If FPV fails to handle C, then intent
coverage can find the offending input scenarios and drive the simulation
into those areas.

We believe that several other symbiotic relations between the three key tech-
nologies, namely, simulation, FPV and intent coverage, will evolve in the years
to come.

8.4 The Integrated Flow

In this section we will attempt to construct an integrated validation flow
with the three key technologies and the linkages between them as outlined in
the previous section. The focus will be on architectural validation and RTL
validation. FPV techniques are also used in the lower levels of the design
hierarchy, but a study of those applications is beyond the scope of this book.
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8.4.1 Architectural Validation

Architectural validation is all about creating the design intent. Today this is
the most critical stage in the design flow in terms of intellectual property.
Today most of the traditional optimization goals, such as timing, area, power,
testability, are taken up at the architectural level. Some of the leading chip
design companies believe that the competitive advantage in their designs are
mostly due to the right choices at the architectural level.

Architectural validation has two main challenges:

1. Modeling the architecture and verifying the correctness of the model.

2. Verifying the consistency of the architectural decisions.

Chip design companies use a wide range of frameworks for modeling the ar-
chitecture. Examples include C, C++, SystemC, System Verilog, SpecC, Es-
terel, Bluespec Verilog, and SDL. The architectural model is an executable
that demonstrates the desired behavior from an abstract level.

Formal Specification

Architectural Model
( executable )

Micro−architectural
Specification

Micro−architectural
Specification

Formal Specification

Architectural Model
( executable )

Model bug

Property
bug

This is what we can do presently This is for the future!

Verification

Consistency

Completeness

Fig. 8.11. Architectural Validation: New Flow

We believe that formal specifications will play an increasingly significant
role in architectural validation in the years to come. Fig 8.11 shows two inte-
grated flows in architectural validation – one for the present and one for the
future. We explain each of these flows below.

1. Today it is premature to expect that the full architectural specification
will be specified formally. Therefore, it is only the key architectural de-
cisions that will be specified through formal assertions. Typical examples
include caching and arbitration policies, bus protocol properties, address-
ing modes, and instruction set architectures.
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What will we do at the architectural level with these properties?

a) We will use consistency checking algorithms to verify whether these
properties do not conflict with each other. This is an important issue,
since inherent inconsistencies in the architectural specification is often
hard to detect. We had studied some of these issues in Chapter 4.

b) We will verify these properties on the architectural model. This may
be done using static or dynamic methods. For static methods, we need
to specify the architectural model in a form from which the abstract
states of the model can be easily extracted. This verification is mu-
tually beneficial – if the model does not satisfy one of the properties,
then either the property is incorrect and must be rectified, or the
architecture is flawed.

At the architecture level, we must use coverage methods to check whether
we have written enough properties. Both the mutation based approach
and the fault based approach (presented in Chapter 5) may be used at
this level. For mutation based approaches we may use the architectural
model as the reference – at this level the model has modest size, thereby
mutation based coverage is feasible.

2. In the future it should be possible to synthesize the architectural model
directly from the formal specification. To make this possible, the formal
specification should not only contain properties, but also more expressive
formal models. Some of the recent specification languages are beginning
to claim partial support towards this direction.

Today the bridge between the architectural level and the implementation is
the microarchitectural specs document. In the new flow this will be augmented
with the formal architectural properties.

8.4.2 RTL Validation

The existing practice in most companies today is to develop large digital
designs top-down and verify them bottom-up. In other words, the design team
starts with the architectural specs and develops the design top down. At each
step, the designers decompose large functional blocks into smaller modules
and define the functionality of the smaller modules. These steps continue
until the modules are small enough to be coded directly – we call these unit
level modules.

Today, validation is done bottom-up. We verify the unit modules first and
then proceed bottom-up until we are left with the complete integrated design.
This is natural in a simulation based validation flow, since simulation can
begin only when we have the complete code for a fragment of the design.
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In the integrated flow, we will have a top-down formal verification flow,
and a bottom-up simulation-based flow. The key technology in the top-down
flow will be intent coverage, and the key technology in the bottom-up flow
will be simulation. The two flows will meet at the unit level (or at the level
of small blocks), where model checking will play a key role.
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Fig. 8.12. RTL Validation: New Flow

Fig 8.12 shows the integrated flow. The design and validation teams will
have to work together when the design is developed top-down. Whenever, the
design team decomposes the functionality of a block into a set of modules, the
validation team will write the formal functional specification of the component
modules, and check (using intent coverage) whether it meets the properties
of the parent block. This approach will benefit the design team as well – for
example, in Chapter 6 we had shown a case where the flaw in the design
planning could be detected before writing any RTL code.

Therefore at the block level (other than the unit level), the validation team
has the following responsibilities:

1. Developing the formal specification of the modules at the next level.

2. Verifying whether the specifications of the modules taken together cover
the properties of the block (intent coverage). Typically this check will
show that some of the block properties are covered while the rest are not
covered.
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a) What shall we do with the properties that are covered? We will relegate
the responsibility of verifying the specifications of the child modules
to the next levels, and this will formally guarantee the verification of
these properties – this guarantee is by virtue of intent coverage.

b) What should we do with the block properties that could not be covered
by intent coverage? In the top-down flow we will save these properties.
When the bottom-up simulation based validation flow picks up this
block for validation we will verify these properties dynamically. At
that time, we may also use the techniques presented in Chapter 7
to guide the simulation into the behaviors for which these properties
were written.

At the unit level, we may assume that FPV will be attempted before
simulation. In the new flow, the top down validation flow will create the
properties that are to be checked on each unit module. We will use FPV tools
to check these properties and follow it up with simulation. This will mark the
start of the bottom-up simulation-based validation flow.

8.5 Sharing the Task

This is the most delicate section of this chapter. If we are to adopt the inte-
grated verification flow, then how should we delegate responsibilities? Today
several questions are often heard as companies share their experience in adopt-
ing formal property verification in their design flows.

• Should micro-acrhitects write formal properties?

• What are the responsibilities of the formal validation team? Writing prop-
erties, or running the FPV tools?

• Should designers use FPV tools? Should the sign-off criteria for a unit
level designer include the compliance with a set of formal properties?

Since this is a collective responsibility, it is hard for an individual to answer
all these questions. It is harder still for an academic (who has none of these
responsibilities) to answer these questions.

8.5.1 Architect’s Corner

If we adopt the new validation flow, then we will have to write the first formal
specification at the architecture level. We will also have to do this before
implementation starts.
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Who will write this specification? Should architects be persuaded to write
formal specifications?

Writing formal specifications in a structured and readable form is con-
sidered by many as an art, just as developing good architectures is an art.
Therefore, there is a difference between understanding what is correct and ex-
pressing what is correct. At the architectural level, we need people dedicated
to the art of developing formal property specifications. Let us call these people
formal verification leads. It is possibly premature to expect microarchitects
to become masters of property specification during the inception of the new
flow.

Nevertheless, architects will have to participate in the development of the
formal architectural specification. They will have to convey to the formal
verification leads the exact correctness features of the design architecture.
They will have to help in analyzing the completeness of the formal specification
by specifying the types of behaviors (faults) that the architecture should not
admit.

8.5.2 Design Manager’s Corner

The design manager’s role in the new validation flow is very crucial. The
design manager must believe that the new flow benefits her the most. The
top down phase of the new validation flow helps in identifying defects in the
planning of the design. If these defects are not detected in the top-down phase
then they will surface during the bottom-up phase much later in the design
cycle. When the defect is detected, the specification of several blocks in the
design may have to be changed leading to major changes in the RTL code,
and that too for no fault of the RTL designers. In the new approach, we will
detect (and rectify) the defect in the top-down phase before creating the RTL
for that block.

Therefore, it is up to the design manager to establish a protocol between
the design team and the validation team. Whenever the functional specifica-
tion of a design block is decomposed into a set of smaller blocks, the valida-
tion team must be called in to develop the formal specification for the smaller
blocks and check whether there is any flaw in the decomposition. This process
will also help in giving the validation team a head start in developing the
simulation test plan for the bottom-up phase of the validation flow.

The intent coverage technology requires a good amount of skill in under-
standing and working with formal specifications. This task cannot be relegated
to designers. Formal verification leads in the validation team must supervise
the specification refinement steps, so that we achieve a good coverage of the
architectural properties.
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8.5.3 Unit Designer’s Corner

Who then will use the model checking tools? We believe that this responsi-
bility will ultimately be pushed to the unit designer. Given a set of formal
properties on a reasonably small module, FPV works well as an automated
methodology. On finding a bug, it produces a counter-example trace (say, as
a timing diagram), which is perfectly legible to the designer.

We believe that in future, the sign-off criteria for the design of a unit
module should include the check that all given formal properties passed on
the design. This will reduce the number of iterations between the design and
validation teams.

8.6 Concluding Remarks

It is hard to define the roadmap for formal property verification. There are
many missing pieces in the roadmap that we have presented in this book. A
roadmap (by definition) looks into the future – the FPV community will always
like to create roadmaps that show the promise of the core FPV technology in
design validation.

Over the last five years, we have attempted to create a roadmap for formal
property verification that will go beyond the core technology of model checking
and will open up the possibility of setting up a unified verification flow that
uses formal methods at all levels of the design hierarchy. We have attempted
to find the missing technologies in this roadmap and have been able to address
some of the major challenges. On the way, we have had the opportunity of
finding some formidable partners, including Intel and Synopsys, who have
vastly helped us in forming this vision.

There has been several important realizations during the conceptualization
of this roadmap.

1. Model checking has hit a complexity barrier which we cannot adequately
overcome by adopting engineering ideas in FPV tools.

2. If we can develop large designs by decomposition, then we should also be
able to verify large designs by decomposition. If design decomposition can
be conceived by human beings, then specification decomposition can also
be conceived by human beings. We only need to provide formal methods
to verify whether the decomposition of a formal specification is correct.

3. Formal verification is not an alternative to simulation. The main benefits
of FPV are at the higher levels of the RTL design hierarchy – to ver-
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ify whether the design is being developed in accordance to the design’s
architectural intent.

4. Verifying the consistency and completeness of formal property specifica-
tions will become an increasingly significant problem. We need good tools
for this purpose, if FPV is to be adopted by many.

5. Specification guided automatic test generation and simulation will become
a reality. We will have to look for bugs in the right places – it will be
increasingly infeasible for simulation to look for them everywhere.

All these points out to the fact that FPV technology is poised at an interesting
state today. Many chip design companies realize that this technology holds
tremendous potential, and yet are unable to seamlessly adopt the technol-
ogy into their validation flow because of the missing pieces in the integrated
validation flow.

These missing pieces offer great opportunities to EDA companies. It is
possible to come up with an arsenal of new tools that will scale FPV tech-
nology and also enable its integration into a simulation-dominated validation
flow.
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