
UVM (Universal Verification Methodology)
For SW Engineers

Tuan Nguyen-viet

1

ASIC/IC testbench methodology adoption trends

2

3

Key Components of a UVM Testbench

Sequencer Sequencer

Scoreboard

Functional
Coverage

Tx Agent Rx Agent

Environment Top
Tx Environment Rx Environment

Test

Testbench Top

Sequence item / Sequence Sequence item / Sequence

4

DUT

Interface Interface

Driver Monitor Driver Monitor

UVM - Simple Architecture w/ Single Agent

Sequencer

ScoreboardAgent

Environment

Test

Testbench Top

Sequence item / Sequence
Functional
Coverage

5
DUT

Interface

Driver Monitor

Sequencer

Hierarchy

• UVM testbench is built from dynamic objectsdynamic objects,

– that do not exist in memory before they are created,

• a static component is needed for launching the simulation.

• The static component in UVM is a top level SystemVerilogtop level SystemVerilog modulemodule

– that includes pin connections to the DUT

– and starts the testtest,

• which then configures the environmentenvironment

– and runs a sequence of transactionssequence of transactions to the DUT.

6

Packages

• UVM testbench file hierarchy uses SystemVerilog packagespackages.

– Packages are constructs that combine related declarationsdeclarations and
definitionsdefinitions together in a common namespace that is a single
compilation unit for the simulator.

• To access the namespace and the underlying definitions

– the package must be importedimported. – the package must be importedimported.

• The usage of packages allows the testbench developer to organize the
code and ensure consistent references to typestypes and classesclasses.

7

Packages (2)

• A package file should contain all the related class declaration files.

• > For a simple UVM testbench

– a single package could contain all the definitions,

• < but in a large system level testbench

– the declarations could be divided between multiple packages

– so that there is

• a separate packageseparate package for every bus interface

• and a number of packages for different types of test sequences

– that contain all the declarations for running different tests.

8

Packages (3)

• Instead of declaring all the classes directly in the package file,

– the coding guidelines by Mentor Graphics state that

• every class declaration should be in a separate file

• and all the declaration files are included in the package

– using a SystemVerilog include directive.

• The include directive instructs the compilercompiler to insert the entire contents
of a source file inside another file in place of the directive. of a source file inside another file in place of the directive.

• The package should only contain the include directives for class
declaration files.

• > The testbenches in the firstfirst exercises would be simplesimple

– so that the whole hierarchy can be declared in one packageone package,

• < but in a more advanced additionalmore advanced additional exercise,

–– multiple submultiple sub--level packageslevel packages could be introduced.

9

Objects and components

•• ObjectObject is the basic building block in a UVM testbench

– and all the objects are extended from the uvm_objectuvm_object base class.

• The primary role of the uvm_objectuvm_object base class

– is to define the common methods for basic operations, e.g.

•• createcreate and printprint,

– that are used for every object.

• It also defines instance identification interfaces, e.g.

–– namename

– unique idid.

• The most basic objects are datadata packages sent to the DUT

– that are instantiated as sequencessequences of packages to generate test input.

10

UVM base class hierarchy

11

UVM component class hierarchy

12

UVM component class hierarchy (2)

• The components can communicate with each other

– by delivering transaction level modeling (TLM) transaction objectstransaction objects

– or by reading/writing the UVM configuration systemUVM configuration system.

• The TLM transactionstransactions are

– delivered via channels between portsports and exportsexports in components

– then connected to each other.

• A portport initiate transaction requests.

• The portsports are connected to implementations in components

– that implement the initiated methods.

•• ExportsExports are channel items

– that forward an implementation to be connected by the portport.

13

UVM component class hierarchy (3)

14

Macros and methods

All the reporting in UVM should be done using reporting macrosreporting macros

• A sformatfsformatf method is used to format the info message

– using the syntax similar to printfprintf function in the C language.

• There are also similar macros for errors and fatal errors.

– `uvm_info (…)

– `uvm_warning (…)

Other important macros are the factory registration macrosfactory registration macros

•• UVM factoryUVM factory•• UVM factoryUVM factory

– a database or a lookup table

– stores user-defined classes (extended from UVM classesUVM classes)

• The factoryfactory

– a class internal to the UVM mechanisms,

– takes care of creating UVM objectsUVM objects and componentscomponents

– maintains a list of every instantiation done in the testbench.

• All the objectsobjects and componentscomponents should be registered to the factorythe factory

15

Macros and methods (2)

• In order to register a class in factoryfactory, two macrosmacros are used:

– `uvm_component_utils(a class):

• This macro registers class names

– which are derived from uvm_componentuvm_component base class.

– `uvm_object_utils(a class):

• This macro registers class names

– that are derived from uvm_transactionuvm_transaction, uvm_sequence, etc.

16

UVM factory

17
REF: https://www.asictronix.com/uvm-factory-and-uvm-configuration/

UVM factory (2)

• The purpose of the registration macroregistration macro is to help the factorythe factory to keep a record of
every objectobject and componentcomponent in the testbench.

– The classesclasses can be later substituted with another compatible classclass

• by using the factorythe factory without changing the underlying component
hierarchy code.

In addition to the registration macroregistration macro,

• the class instantiation should be done using a special factory method

– instead of calling the constructor functionconstructor function directly. – instead of calling the constructor functionconstructor function directly.

• The factory method will call the constructor functionconstructor function of the classesclasses,

– but also performs additional procedures that are mandatory for the function
of the UVM factory.

• The syntax for the factory method for instantiating an imaginary class comp :

– comp_h = comp::type_id::create("comp_h", this);

18

UVM Configuration SystemUVM Configuration System

19

Configuration database

• Another important internal mechanism of UVM is the configuration configuration
databasedatabase.

• The configuration databaseconfiguration database stores variablesvariables to be read in the components
to allow communication across the testbench during runtime.

• In addition to the variable namevariable name and valuevalue,

– a scopescope is set that dictates the hierarchical path to the component – a scopescope is set that dictates the hierarchical path to the component
using the valuevalue.

• The configuration databaseconfiguration database can be written and read by every component

– by using functions setset and getget.

• Usage of the configuration databaseconfiguration database enhances efficient reuse

– by making the components in the testbench more configurable.

20

Configuration database (2)

21REF: https://www.chipverify.com/uvm/configure-components

Configuration database (2)

• UVM manages the configuration databaseconfiguration database using a syntax
called uvm_config_db.

• The syntax is as follows.

–– setset : " Set the database named field_namefield_name in inst_nameinst_name located
in cntxt to the value named valuevalue ! "

–– getget : " Get the database named field_namefield_name in inst_nameinst_name located
in cntxt as valuevalue !“in cntxt as valuevalue !“

static function void set(uvm_componeny cntxt, string inst_name, string
field_name, T value)

static function bit get(uvm_component cntxt, string inst_name, string
field_name, inout T value)

• The first argument is the contextcontext (cntxtcntxt) which is the starting point of the
lookup search.

22

Configuration database (3)

Argument Description

Component Context (cntxt)

Specifies the scope of the

configuration setting.

Instance Name (inst_name)

Identifies the specific instance

of the component.

23

Instance Name (inst_name) of the component.

Field Name (field_name)

Specifies the configuration

parameter we want to modify or

add.

Value

Represents the new value to

assign to the configuration

setting.

Configuration database (4)

24

Configuration database (5)

// set configuration databaseconfiguration database of type intint on envenv

uvm_config_db#(int)::set(this, "env", "my_int", 1024);

// set configuration databaseconfiguration database of type stringstring on envenv

uvm_config_db#(string)::set(this, "env", "my_string", "hello world");

// set configuration databaseconfiguration database of type stringstring on agentagent

uvm_config_db#(string)::set(this, "env.agent", "my_string", "foo bar");

25

Configuration database (6)

void uvm_config_db#(type T = int)::setset(uvm_component cntxt, string inst_name,
string field_name, T value);

• Setting the interface handle intfintf, type mem_ifmem_if, label mem_intfmem_intf with global scope.

mem_if intf(clk,reset); //interface instance

uvm_config_db#(virtual mem_if)::set(null,"*","mem_intf",intf); //set method

• How a resource whose name is mem_intfmem_intf and type is mem_ifmem_if is stored in the • How a resource whose name is mem_intfmem_intf and type is mem_ifmem_if is stored in the
pool.

26

Configuration database (7)

bit uvm_config_db#(type T=int)::getget(uvm_component cntxt, string inst_name, string
field_name, ref T value);

• Using the get method to get a virtual interface handle from a database and assigns
it to mem_vif.

– If the get method fails, the fatal message will be displayed.

virtual interface mem_if mem_vif; //virtual interface declaration

if(!uvm_config_db#(virtual mem_if)::get(this,"*", "mem_intf", mem_vif))

`uvm_fatal(get_full_name(),{"virtual interface must be set for:",".mem_vif"}); //get `uvm_fatal(get_full_name(),{"virtual interface must be set for:",".mem_vif"}); //get
method

• How a resource whose name is mem_intfmem_intf and type is mem_ifmem_if is stored in the pool.

27

Thank YouThank You

28

	UVM (Universal Verification Methodology) For SW Engineers
	ASIC/IC testbench methodology adoption trends
	Key Components of a UVM Testbench
	Hierarchy
	Packages (2)
	Objects and components
	UVM component class hierarchy
	UVM component class hierarchy (3)
	Macros and methods (2)
	UVM factory (2)
	Configuration database
	Configuration database (2)
	Configuration database (4)
	Configuration database (6)
	Thank You

