UVM (Universal Verification Methodology)
For SW Engineers

Tuan Nguyen-viet

ASIC/IC testbench methodology adoption trends

80%

m 2012
70% m 2014
60% m 2016 .
® Trend in 2017
. 50%
©
-g-. 40%
< 30%
20%
0% - CRRRSS———— h

URM RVM VMM ovM
Methodology used (mu!tfpie answers possible)

UvVM Top module (SV)

DUV Instantiation

Interface (SV)

Test entry function

DPI Interface

UVM Test (SystemVerilog = SV)

UVM Sequences: generate constrained-random transactions

Test
Configuration
Object

Log Files

(SV)

r 3

Function
calls

Reference
Model
(€

UVM Environment

UVM Active Agent

UVM Input
Monitor

| I

UVM Driver

Signals

UVM Passive Agent

DUV

UVM Output

Monitor

Design under Verification

AAda

(VHDL)

A

P UVM Sequencer

Virtual Interface
(8V)

Properties

Uvm
Transaction

k

UVM Scoreboard

L

v

(SV)

Reference Model Wrapper

Qutput comparison \&

Lo

TEST RESULTS !

Coverage Collector

Key Components of a UVM Testbench

Testbench Top

Test

Tx Environment

i

Tx Agent

Sequencer

v

Sequence item / Sequence

?

Environment Top

Rx Environment

Scoreboard <

Functional

Coverage

Driver

Monitor

Rx Agent

Sequence item / Sequence

i

Sequencer

v

?

Driver

Monitor

!

Interface

v 1

!

Interface

v 1

DUT

UVM - Simple Architecture w/ Single Agent

Testbench Top

Test

Environment

Agent P> Scoreboard
/
Sequence item / Sequence / -
/ > Functional
/
l ;s Coverage
Y4
Sequencer 17
! £
Driver Monitor
\ A
A 7
\ /
N 2
Interface

v 1
DUT

U

Hierarchy

 UVM testbench is built from dynamic objects,
— that do not exist in memory before they are created,
°*a is needed for launching the simulation.

e The inUVM is a module
— that includes pin connections to the DUT
— and starts the test,
e which then configures the environment
— and runs a sequence of transactions to the DUT.

Packages

UVM testbench file hierarchy uses SystemVerilog packages.

— Packages are constructs that combine related declarations and
definitions together in a common namespace that is a single
compilation unit for the simulator.

To access the namespace and the underlying definitions

— the package must be imported.

The usage of packages allows the testbench developer to organize the
code and ensure consistent references to types and classes.

Packages (2)

* A package file should contain all the related class declaration files.

* > Forasimple UVM testbench
— asingle package could contain all the definitions,
* <butinalarge system level testbench
— the declarations could be divided between multiple packages
— so that there is
e aseparate package for every bus interface
* and a number of packages for different types of test sequences
— that contain all the declarations for running different tests.

Packages (3)

Instead of declaring all the classes directly in the package file,
— the coding guidelines by Mentor Graphics state that
» every class declaration should be in a separate file
* and all the declaration files are included in the package
— using a SystemVerilog include directive.

The include directive instructs the compiler to insert the entire contents
of a source file inside another file in place of the directive.

The package should only contain the include directives for class
declaration files.

> The testbenches in the first exercises would be simple

— so that the whole hierarchy can be declared in one package,
< but in a more advanced additional exercise,

— multiple sub-level packages could be introduced.

Objects and components

Object is the basic building block in a UVM testbench

— and all the objects are extended from the uvm_object base class.
The primary role of the uvm_object base class

— is to define the common methods for basic operations, e.g.

e create and print,
— that are used for every object.

It also defines instance identification interfaces, e.g.

— name

— unique id.
The most basic objects are data packages sent to the DUT

— that are instantiated as sequences of packages to generate test input.

10

UVM base class hierarchy

uvm_void

uvm_object

[uvm_report_object I

*

uvm_component

*

i o

component
base classes
, 1 1
user components

-

.

r

I uvm_transaction

b

% user transactions

}

L

-

uvm_sequence_item

i

h

- user sequence items

}

b

r

uvm_sequence_base

}

-

-

uvm_sequence

4—[user sequences

11

UVM component class hierarchy

[uvm_component]

A

[uvm_monitor]—
[uvm_driver]—
[uvm_sequencer]—

uvm_test]

—[uvm_env]

uvm_agent]

—[uvm_subscriber]

1

[uvm_scoreboard]—

12

UVM component class hierarchy (2)

The components can communicate with each other
— by delivering transaction level modeling (TLM) transaction objects
— or by reading/writing the UVM configuration system.

The TLM transactions are
— delivered via channels between ports and exports in components
— then connected to each other.

A port initiate transaction requests.

The ports are connected to implementations in components
— that implement the initiated methods.

Exports are channel items
— that forward an implementation to be connected by the port.

13

UVM component class hierarchy (3)

Component 1 Component 2
Subcomponent
Consumer O+« Oe(C—-
femmee ' port | port export | export | implementation | Producer
. _get_

Macros and methods

All the reporting in UVM should be done using reporting macros

A sformatf method is used to format the info message

— using the syntax similar to printf function in the C language.
There are also similar macros for errors and fatal errors.

— ‘uvm_info (...)

— ‘uvm_warning (...)

Other important macros are the factory registration macros

UVM factory

— a database or a lookup table

— stores user-defined classes (extended from UVM classes)
The factory

— aclass internal to the UVM mechanisms,

— takes care of creating UVM objects and components

— maintains a list of every instantiation done in the testbench.
All the objects and components should be registered to the factory

15

Macros and methods (2)

In order to register a class in factory, two macros are used:

— ‘uvm_component_utils(a class):
* This macro registers class names
— which are derived from uvm_component base class.

— ‘uvm_object_utils(a class):
* This macro registers class names
— that are derived from uvm_transaction, uvm_sequence, etc.

16

a extends uvm_comp;
"uvm_comp_utils(a)

- register
» override

» Create

UVM factory

uvm_registry#{(a,"a")

uvm_registry#(b,"b)

REF: https://www.asictronix.com/uvm-factory-and-uvm-configuration/

uvm_factory

m_types[obj]

m_type overrides[$]

ab

17

UVM factory (2)

The purpose of the registration macro is to help the factory to keep a record of
every object and component in the testbench.

— The classes can be later substituted with another compatible class

* by using the factory without changing the underlying component
hierarchy code.

In addition to the registration macro,

the class instantiation should be done using a special factory method
— instead of calling the constructor function directly.
The factory method will call the constructor function of the classes,

— but also performs additional procedures that are mandatory for the function
of the UVM factory.

The syntax for the factory method for instantiating an imaginary class comp :
— comp_h = comp::type_id::create("comp_h", this);

18

UVM Configuration System

19

Configuration database

Another important internal mechanism of UVM is the configuration
database.

The configuration database stores variables to be read in the components
to allow communication across the testbench during runtime.

In addition to the variable name and value,

— ascope is set that dictates the hierarchical path to the component
using the value.

The configuration database can be written and read by every component
— by using functions set and get.

Usage of the configuration database enhances efficient reuse
— by making the components in the testbench more configurable.

20

Configuration database (2)

uvm_scoreboard

WM _agen

UV SEGUBNDED

v manitor

uvm_driver

interface

REF: https://www.chipverify.com/uvm/configure-components

Configuration database (2)

« UVM manages the configuration database using a syntax
called uvm_config_db.

* The syntax is as follows.

— set : " Set the database named field _name in inst_name located
in cntxt to the value named value "

— get : " Get the database named field _name in inst_name located
in cntxt as value

static function void set(uvm_componeny cntxt, string inst_name, string
field_name, T value)

static function bit get(uvm_component cntxt, string inst_name, string
field_name, inout T value)

* The first argument is the context (cntxt) which is the starting point of the
lookup search.

22

Configuration database (3)

Argument

Description

Component Context (cntxt)

Specifies the scope of the
configuration setting.

Instance Name (inst_name)

|ldentifies the specific instance
of the component.

Field Name (field_name)

Specifies the configuration
parameter we want to modify or
add.

Value

Represents the new value to
assign to the configuration
setting.

23

Configuration database (4)

set()

my_test

my_env

my_agent

driver

monitor

get()
Instance Field Value
uvm_test_top.env my_int 1024
uvm_test_top.env my_string | "hello world"
uvm_test_top.env.agent | my_string | '"foo bar"

sequencer

24

Configuration database (5)

// set configuration database of type int on env
uvm_config_db#(int)::set(this, "env", "my _int", 1024);

// set configuration database of type string on env

uvm_config_db#(string)::set(this, "env", "my_string", "hello world");

// set configuration database of type string on agent

uvm_config_db#(string)::set(this, "env.agent”, "my_string", "foo bar");

25

Configuration database (6)

void uvm_config_db#(type T = int)::set(uvm_component cntxt, string inst_name,
string field_name, T value);

e Setting the interface handle intf, type mem _if, [abel mem_intf with global scope.
mem_if intf(clk,reset); //interface instance
uvm_config_db#(virtual mem_if)::set(null,"*","mem_intf",intf); //set method

* How a resource whose name is mem_intf and type is mem_if is stored in the
pool.

26

Configuration database (7)

bit uvm_config_db#(type T=int)::get(uvm_component cntxt, string inst_name, string
field_name, ref T value);

* Using the get method to get a virtual interface handle from a database and assigns
it to mem_vif.

— If the get method fails, the fatal message will be displayed.
virtual interface mem_if mem_vif; //virtual interface declaration

nkir n

if(l'uvm_config_db#(virtual mem_if)::get(this,"*", "mem_intf", mem_vif))
‘uvm_fatal(get_full_name(),{"virtual interface must be set for:",".mem_vif"}); //get
method

* How a resource whose name is mem_intf and type is mem_if is stored in the pool.

27

Thank You

28

	UVM (Universal Verification Methodology) For SW Engineers
	ASIC/IC testbench methodology adoption trends
	Key Components of a UVM Testbench
	Hierarchy
	Packages (2)
	Objects and components
	UVM component class hierarchy
	UVM component class hierarchy (3)
	Macros and methods (2)
	UVM factory (2)
	Configuration database
	Configuration database (2)
	Configuration database (4)
	Configuration database (6)
	Thank You

