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Key Components of a UVM Testbench
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UVM - Simple Architecture w/ Single Agent
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Hierarchy

• UVM testbench is built from dynamic objectsdynamic objects, 

– that do not exist in memory before they are created, 

• a static component is needed for launching the simulation.

• The static component in UVM is a top level SystemVerilogtop level SystemVerilog modulemodule

– that includes pin connections to the DUT 

– and starts the testtest, 

• which then configures the environmentenvironment

– and runs a sequence of transactionssequence of transactions to the DUT. 
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Packages

• UVM testbench file hierarchy uses SystemVerilog packagespackages. 

– Packages are constructs that combine related declarationsdeclarations and 
definitionsdefinitions together in a common namespace that is a single 
compilation unit for the simulator. 

• To access the namespace and the underlying definitions 

– the package must be importedimported. – the package must be importedimported. 

• The usage of packages allows the testbench developer to organize the 
code and ensure consistent references to typestypes and classesclasses.
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Packages (2)

• A package file should contain all the related class declaration files. 

• > For a simple UVM testbench 

– a single package could contain all the definitions, 

• < but in a large system level testbench 

– the declarations could be divided between multiple packages 

– so that there is 

• a separate packageseparate package for every bus interface 

• and a number of packages for different types of test sequences 

– that contain all the declarations for running different tests. 
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Packages (3)

• Instead of declaring all the classes directly in the package file, 

– the coding guidelines by Mentor Graphics state that 

• every class declaration should be in a separate file 

• and all the declaration files are included in the package 

– using a SystemVerilog include directive. 

• The include directive instructs the compilercompiler to insert the entire contents 
of a source file inside another file in place of the directive. of a source file inside another file in place of the directive. 

• The package should only contain the include directives for class 
declaration files.

• > The testbenches in the firstfirst exercises would be simplesimple

– so that the whole hierarchy can be declared in one packageone package, 

• < but in a more advanced additionalmore advanced additional exercise, 

–– multiple submultiple sub--level packageslevel packages could be introduced. 
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Objects and components

•• ObjectObject is the basic building block in a UVM testbench 

– and all the objects are extended from the uvm_objectuvm_object base class. 

• The primary role of the uvm_objectuvm_object base class 

– is to define the common methods for basic operations, e.g.

•• createcreate and printprint, 

– that are used for every object. 

• It also defines instance identification interfaces, e.g.

–– namename

– unique idid. 

• The most basic objects are datadata packages sent to the DUT

– that are instantiated as sequencessequences of packages to generate test input.
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UVM base class hierarchy
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UVM component class hierarchy
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UVM component class hierarchy (2)

• The components can communicate with each other 

– by delivering transaction level modeling (TLM) transaction objectstransaction objects

– or by reading/writing the UVM configuration systemUVM configuration system.

• The TLM transactionstransactions are 

– delivered via channels between portsports and exportsexports in components 

– then connected to each other. 

• A portport initiate transaction requests. 

• The portsports are connected to implementations in components 

– that implement the initiated methods. 

•• ExportsExports are channel items 

– that forward an implementation to be connected by the portport.
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UVM component class hierarchy (3)

14



Macros and methods

All the reporting in UVM should be done using reporting macrosreporting macros

• A sformatfsformatf method is used to format the info message 

– using the syntax similar to printfprintf function in the C language.

• There are also similar macros for errors and fatal errors.

– `uvm_info (…)

– `uvm_warning (…)

Other important macros are the factory registration macrosfactory registration macros

•• UVM factoryUVM factory•• UVM factoryUVM factory

– a database or a lookup table 

– stores user-defined classes (extended from UVM classesUVM classes)

• The factoryfactory

– a class internal to the UVM mechanisms, 

– takes care of creating UVM objectsUVM objects and componentscomponents

– maintains a list of every instantiation done in the testbench. 

• All the objectsobjects and componentscomponents should be registered to the factorythe factory
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Macros and methods (2)

• In order to register a class in factoryfactory, two macrosmacros are used:

– `uvm_component_utils(a class): 

• This macro registers class names 

– which are derived from uvm_componentuvm_component base class.

– `uvm_object_utils(a class): 

• This macro registers class names 

– that are derived from uvm_transactionuvm_transaction, uvm_sequence, etc.
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UVM factory
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UVM factory (2)

• The purpose of the registration macroregistration macro is to help the factorythe factory to keep a record of 
every objectobject and componentcomponent in the testbench.

– The classesclasses can be later substituted with another compatible classclass

• by using the factorythe factory without changing the underlying component 
hierarchy code.

In addition to the registration macroregistration macro, 

• the class instantiation should be done using a special factory method

– instead of calling the constructor functionconstructor function directly. – instead of calling the constructor functionconstructor function directly. 

• The factory method will call the constructor functionconstructor function of the classesclasses, 

– but also performs additional procedures that are mandatory for the function 
of the UVM factory. 

• The syntax for the factory method for instantiating an imaginary class comp :

– comp_h = comp::type_id::create("comp_h", this); 
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UVM Configuration SystemUVM Configuration System
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Configuration database

• Another important internal mechanism of UVM is the configuration configuration 
databasedatabase. 

• The configuration databaseconfiguration database stores variablesvariables to be read in the components 
to allow communication across the testbench during runtime. 

• In addition to the variable namevariable name and valuevalue, 

– a scopescope is set that dictates the hierarchical path to the component – a scopescope is set that dictates the hierarchical path to the component 
using the valuevalue. 

• The configuration databaseconfiguration database can be written and read by every component 

– by using functions setset and getget.

• Usage of the configuration databaseconfiguration database enhances efficient reuse 

– by making the components in the testbench more configurable.
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Configuration database (2)
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Configuration database (2)

• UVM manages the configuration databaseconfiguration database using a syntax 
called uvm_config_db. 

• The syntax is as follows. 

–– setset : " Set the database named field_namefield_name in inst_nameinst_name located 
in cntxt to the value named valuevalue ! "

–– getget : " Get the database named field_namefield_name in inst_nameinst_name located 
in cntxt as valuevalue !“in cntxt as valuevalue !“

static function void set(uvm_componeny cntxt, string inst_name, string
field_name, T value)

static function bit get(uvm_component cntxt, string inst_name, string
field_name, inout T value)

• The first argument is the contextcontext (cntxtcntxt) which is the starting point of the 
lookup search.
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Configuration database (3)

Argument Description

Component Context (cntxt)

Specifies the scope of the 

configuration setting.

Instance Name (inst_name)

Identifies the specific instance 

of the component.
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Instance Name (inst_name) of the component.

Field Name (field_name)

Specifies the configuration 

parameter we want to modify or 

add.

Value

Represents the new value to 

assign to the configuration 

setting.



Configuration database (4)
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Configuration database (5)

// set configuration databaseconfiguration database of type intint on envenv

uvm_config_db#(int)::set(this, "env", "my_int", 1024);

// set configuration databaseconfiguration database of type stringstring on envenv

uvm_config_db#(string)::set(this, "env", "my_string", "hello world");

// set configuration databaseconfiguration database of type stringstring on agentagent

uvm_config_db#(string)::set(this, "env.agent", "my_string", "foo bar");
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Configuration database (6)

void uvm_config_db#(type T = int)::setset(uvm_component cntxt, string inst_name, 
string field_name, T value);

• Setting the interface handle intfintf, type mem_ifmem_if, label mem_intfmem_intf with global scope.

mem_if intf(clk,reset);  //interface instance  

uvm_config_db#(virtual mem_if)::set(null,"*","mem_intf",intf);  //set method

• How a resource whose name is mem_intfmem_intf and type is mem_ifmem_if is stored in the • How a resource whose name is mem_intfmem_intf and type is mem_ifmem_if is stored in the 
pool.
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Configuration database (7)

bit uvm_config_db#(type T=int)::getget(uvm_component cntxt, string inst_name, string 
field_name, ref T value);

• Using the get method to get a virtual interface handle from a database and assigns 
it to mem_vif. 

– If the get method fails, the fatal message will be displayed.

virtual interface mem_if mem_vif;    //virtual interface declaration   

if( !uvm_config_db#(virtual mem_if)::get(this,"*", "mem_intf", mem_vif))

`uvm_fatal(get_full_name(),{"virtual interface must be set for:",".mem_vif"} ); //get `uvm_fatal(get_full_name(),{"virtual interface must be set for:",".mem_vif"} ); //get 
method

• How a resource whose name is mem_intfmem_intf and type is mem_ifmem_if is stored in the pool.
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Thank YouThank You
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